
TIMELY. PRACTICAL. RELIABLE.

Mohammed J. Kabir

Secure PHP
Development

Wiley Technology Publishing Timely. Practical. Reliable.

Your in-depth guide to designing and developing secure PHP applications

You’ll learn how to:

• Implement the featured applica-
tions in business environments
such as intranets, Internet Web
sites, and system administrations

• Develop e-mail and intranet
solutions using PHP

• Determine the importance of cer-
tain coding practices, coding styles,
and coding security requirements

• Follow the entire process of each
PHP application life cycle from
requirements, design, and develop-
ment to maintenance and tuning.

• Use PHP in groupware, document
management, issue tracking, bug
tracking, and business applications

• Mature as a PHP developer by
using software practices as part
of your design, development, and
software life cycle decisions

• Improve the performance of PHP
applications

Programming and Software Development/Security $50.00 USA/$77.95 CAN/£34.95 UK

It’s a hacker’s dream come true:
over one million Web sites are now
vulnerable to attack through recently
discovered flaws in the PHP scripting
language. So how do you protect your
site? In this book, bestselling author
Mohammed Kabir provides all the
tools you’ll need to close this security
gap. He presents a collection of 50
secure PHP applications that you can
put to use immediately to solve a
variety of practical problems. And he
includes expert tips and techniques
that show you how to write your own
secure and efficient applications for
your organization.

Visit our Web site at www.wiley.com/compbooks/

Secure PH
P D

evelopm
ent

Kabir
ISBN: 0-7645-4966-9

INCLUDES
CD-ROM

MOHAMMED J. KABIR is the
founder and CEO of Evoknow,
Inc., a company specializing in
customer relationship manage-
ment software development. His
previous books include Red Hat®

Security and Optimization, Red

Hat® Linux® 7 Server, Red Hat®

Linux® Administrator’s

Handbook, Red Hat® Linux®

Survival Guide, and Apache 2

Server Bible (all from Wiley).

,!7IA7G4-fejggd!:P;P;k;k;k*85555-BBDACc

Building
50 Practical
Applications

The companion CD-ROM contains:
• 50 ready-to-use PHP applications

• Searchable e-version of the book

• The latest versions of PHP,
Apache, and MySQL™

549669 Cover_rb2.qxp 3/19/03 10:39 AM Page 1

Secure PHP Development: Building
50 Practical Applications

01549669 FM.qxd 4/4/03 9:23 AM Page i

01549669 FM.qxd 4/4/03 9:23 AM Page ii

Secure PHP
Development:
Building 50
Practical
Applications

Mohammed J. Kabir

01549669 FM.qxd 4/4/03 9:23 AM Page iii

Secure PHP Development: Building 50 Practical Applications

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-4966-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/SU/QU/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail:
permcoordinator@wiley.com.

is a trademark of Wiley Publishing, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE
FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED
TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Library of Congress Control Number: 2003101844

Trademarks: Wiley, the Wiley Publishing logo, and related trade dress are trademarks or registered
trademarks of Wiley Publishing, Inc., in the United States and other countries, and may not be used without
written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

01549669 FM.qxd 4/4/03 9:23 AM Page iv

Credits

SENIOR ACQUISITIONS EDITOR
Sharon Cox

ACQUISITIONS EDITOR
Debra Williams Cauley

PROJECT EDITOR
Sharon Nash

DEVELOPMENT EDITORS
Rosemarie Graham
Maryann Steinhart

TECHNICAL EDITORS
Richard Lynch
Bill Patterson

COPY EDITORS
Elizabeth Kuball
Luann Rouff

EDITORIAL MANAGER
Mary Beth Wakefield

VICE PRESIDENT & EXECUTIVE GROUP
PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE
PUBLISHER

Bob Ipsen

VICE PRESIDENT AND PUBLISHER
Joseph B. Wikert

EXECUTIVE EDITORIAL DIRECTOR
Mary Bednarek

PROJECT COORDINATOR
Dale White

GRAPHICS AND PRODUCTION
SPECIALISTS

Beth Brooks
Kristin McMullan
Heather Pope

QUALITY CONTROL TECHNICIANS
Tyler Connoley
David Faust
Andy Hollandbeck

PROOFREADING AND INDEXING
TECHBOOKS Production Services

01549669 FM.qxd 4/4/03 9:23 AM Page v

About the Author
Mohammed J. Kabir is CEO and founder of EVOKNOW, Inc. His company
(www.evoknow.com) develops software using LAMP (Linux, Apache, MySQL, and
PHP), Java, and C++. It specializes in custom software development and offers
security consulting services to many companies around the globe.

When he is not busy managing software projects or writing books, Kabir enjoys
riding mountain bikes and watching sci-fi movies. Kabir studied computer engi-
neering at California State University, Sacramento, and is also the author of Apache
Server 2 Bible, Apache Server Administrator’s Handbook, and Red Hat Server 8. You
can contact Kabir via e-mail at kabir@evoknow.com or visit the book’s Web site at
http://www.evoknow.com/publications/books/phpbook.php.

01549669 FM.qxd 4/4/03 9:23 AM Page vi

Preface
Welcome to Secure PHP Development: Building 50 Practical Applications. PHP
has come a long way since its first incarnation as a Perl script. Now PHP is a pow-
erful Web scripting language with object-oriented programming support. Slowly
but steadily it has entered the non-Web scripting arena often reserved for Perl and
other shell scripting languages. Arguably, PHP is one of the most popular Web plat-
forms. In this book you will learn about how to secure PHP applications, how to
develop and use an application framework to develop many useful applications for
both Internet and intranet Web sites.

Is This Book for You?
This is not a PHP language book for use as reference. There are many good PHP
language books out there. This book is designed for intermediate- to advanced-
level PHP developers who can review the fifty PHP applications developed for this
book and deploy them as is or customize them as needed. However, it is entirely
possible for someone with very little PHP background to deploy the applications
developed for this book. Therefore, even if you are not currently a PHP developer,
you can make use of all the applications with very little configuration changes.

If you are looking for example applications that have defined features and
implementation requirements, and you want to learn how applications are devel-
oped by professional developers, this book a great starting point. Here you will find
numerous examples of applications that have been designed from the ground up
using a central application framework, which was designed from scratch for this
book.

The book shows developers how PHP applications can be developed by keeping
security considerations in focus and by taking advantage of an object-oriented
approach to PHP programming whenever possible to develop highly maintainable,
extensible applications for Web and intranet use.

How This Book Is Organized
The book is organized into seven parts.

Part I: Designing PHP Applications
Part I is all about designing practical PHP applications while understanding and
avoiding security risks. In this part, you learn about practical design and imple-
mentation considerations, best practices, and security risks and the techniques you
can take to avoid them.

vii

01549669 FM.qxd 4/4/03 9:23 AM Page vii

Part II: Developing Intranet Solutions
Part II introduces you to the central application framework upon which almost all
the Web and intranet applications designed and developed for this book are based.
The central application framework is written as a set of object-oriented PHP classes.
Using this framework of classes, you are shown how to develop a set of intranet
applications to provide central authentication, user management, simple document
publishing, contact management, shared calendar, and online help for your intranet
users. Because all of the applications in this part of the book are based on the core
classes discussed in the beginning of the book, you will see how that architecture
works very well for developing most common applications used in modern
intranets.

Part III: Developing E-mail Solutions
Part III deals with e-mail applications. These chapters describe a suite of e-mail
applications such as Tell-a-Friend applications, e-mail-based survey applications,
and a MySQL database-driven e-mail campaign system that sends, tracks, and
reports e-mail campaigns.

Part IV: Using PHP for Sysadmin Tasks
Part IV focuses on demonstrating how PHP can become a command-line scripting
platform for managing many system administration tasks. In these chapters, you
learn to work with many command-line scripts that are designed for small, specific
tasks and can be run automatically via Cron or other scheduling facilities.
Applications developed in this part include the Apache virtual host configuration
generator, the BIND zone generator, a multi-user e-mail reminder tool, a POP3
spam filtering tool, a hard disk partition monitoring tool, a system load monitoring
tool, and more.

Part V: Internet Applications
In Part V, you learn how to develop a generic Web form management application
suite and a voting (poll) application for your Web site. Because Web form manage-
ment is the most common task PHP performs, you will learn a general-purpose
design that shows you how PHP can be used to centralize data collection from Web
visitors, a critical purpose of most Web sites.

Part VI: Tuning and Securing PHP Applications
In this part, you learn ways to fine-tune your PHP applications for speed and secu-
rity. You will learn how to benchmark your applications, and cache your applica-
tion output and even application opcode. You will also learn to protect your
applications using various security measures involving PHP development and the
Apache Web server platform.

viii Preface

01549669 FM.qxd 4/4/03 9:23 AM Page viii

Part VII: Appendixes
The four appendixes in Part VII present a detailed description of the contents and
structure of the CD-ROM, and help on PHP, SQL and Linux. The CD-ROM contains
full source code used in the entire book.

The SQL appendix introduces you to various commands that enable you to cre-
ate and manage MySQL databases, tables, and so on, from the command line and
via a great tool called phpMyAdmin.

Linux is one of the most popular PHP platforms. In the Linux appendix, you
learn how you can install PHP and related tools on a Linux platform.

Tell Us What You Think
I am always very interested in learning what my readers are thinking about and
how this book could be made more useful. If you are interested in contacting me
directly, please send e-mail to kabir@evoknow.com. I will do my best to respond
promptly. The most updated versions of all the PHP applications discussed in this
book can be found at http://www.evoknow.com/phpbook.php.

Preface ix

01549669 FM.qxd 4/4/03 9:23 AM Page ix

01549669 FM.qxd 4/4/03 9:23 AM Page x

Acknowledgments
I’d like to thank Debra Williams Cauley, Sharon Cox, Sharon Nash, Rosemarie
Graham, Maryann Steinhart, Elizabeth Kuball, Luann Rouff, Richard Lynch, and
Bill Patterson for working with me on this book.

I would also like to thank Asif, Tamim, Ruman, and the members of the EVO-
KNOW family, who worked with me to get all the development work done for this
book. Thanks, guys!

Finally, I would also like to thank the Wiley team that made this book a reality.
They are the people who turned a few files into a beautiful and polished book.

xi

01549669 FM.qxd 4/4/03 9:23 AM Page xi

Contents at a Glance

Preface . vii

Acknowledgments . xi

Part I Designing PHP Applications

Chapter 1 Features of Practical PHP Applications 3
Chapter 2 Understanding and Avoiding Security Risks 25
Chapter 3 PHP Best Practices . 41

Part II Developing Intranet Solutions

Chapter 4 Architecture of an Intranet Application 65
Chapter 5 Central Authentication System 121
Chapter 6 Central User Management System 157
Chapter 7 Intranet System . 203
Chapter 8 Intranet Simple Document Publisher 247
Chapter 9 Intranet Contact Manager 293
Chapter 10 Intranet Calendar Manager 335
Chapter 11 Internet Resource Manager 359
Chapter 12 Online Help System . 403

Part III Developing E-mail Solutions

Chapter 13 Tell-a-Friend System . 431
Chapter 14 E-mail Survey System . 473
Chapter 15 E-campaign System . 507

Part IV Using PHP for Sysadmin Tasks

Chapter 16 Command-Line PHP Utilities 559
Chapter 17 Apache Virtual Host Maker 607
Chapter 18 BIND Domain Manager . 641

Part V Internet Applications

Chapter 19 Web Forms Manager . 661
Chapter 20 Web Site Tools . 697

xii

01549669 FM.qxd 4/4/03 9:23 AM Page xii

Part VI Tuning and Securing PHP Applications

Chapter 21 Speeding Up PHP Applications 713
Chapter 22 Securing PHP Applications 737

Part VII Appendixes

Appendix A What’s on the CD-ROM . 753
Appendix B PHP Primer . 757
Appendix C MySQL Primer . 763
Appendix D Linux Primer . 781

Index . 833

Wiley Publishing, Inc. End-User
License Agreement . 881

01549669 FM.qxd 4/4/03 9:23 AM Page xiii

01549669 FM.qxd 4/4/03 9:23 AM Page xiv

Contents

Preface . vii

Acknowledgments . xi

Part I Designing PHP Applications

Chapter 1 Features of Practical PHP Applications 3
Features of a Practical PHP Application 3
Employing the Features in Applications 5

Creating object-oriented design . 5
Using external HTML templates . 5
Using external configuration files . 11
Using customizable messages . 14
Using relational database . 21
Using portable directory structure . 22
Using access control . 24

Summary . 24
Chapter 2 Understanding and Avoiding Security Risks 25

Identifying the Sources of Risk . 25
Minimizing User-Input Risks . 26

Running external programs with user input 26
Getting user input in a safe way . 30
Using validation code . 35

Not Revealing Sensitive Information 38
Summary . 40

Chapter 3 PHP Best Practices . 41
Best Practices for Naming Variables and Functions 41
Best Practices for Function/Method 43

Returning arrays with care . 43
Simplifying the function or method argument list order issue . . . 45

Best Practices for Database . 47
Writing good SELECT statements . 47
Dealing with missing data . 48
Handling SQL action statements . 49

Best Practices for User Interface . 54
Avoiding HTML in application code . 54
Generating HTML combo lists in application code 55
Reducing template code . 58

Best Practices for Documentation . 59
xv

01549669 FM.qxd 4/4/03 9:23 AM Page xv

Best Practices for Web Security . 60
Keep authentication information away from prying eyes 60
See your errors before someone else does 61
Restrict access to sensitive applications 61

Best Practices for Source Configuration Management 61
Summary . 62

Part II Developing Intranet Solutions

Chapter 4 Architecture of an Intranet Application 65
Understanding Intranet Requirements 65
Building an Intranet Application Framework 67

Using an HTML template-based presentation layer 68
Using PHP Application Framework components 68
Business logic . 69
Relational database . 69

Creating a Database Abstraction Class 71
Creating an Error Handler Class . 81
Creating a Built-In Debugger Class 85
Creating an Abstract Application Class 91
Creating a Sample Application . 113
Summary . 119

Chapter 5 Central Authentication System 121
How the System Works . 121
Creating an Authentication Class . 124
Creating the Central Login Application 127
Creating the Central Logout Application 138
Creating the Central Authentication Database 146
Testing Central Login and Logout 148
Making Persistent Logins in Web Server Farms 149
Summary . 155

Chapter 6 Central User Management System 157
Identifying the Functionality Requirements 157
Creating a User Class . 158
User Interface Templates . 168
Creating a User Administration Application 168

Configuring user administration applications 181
Configuring user administration application messages 186
Configuring user administration application error messages . . . 186
Testing the user management application 187

Creating a User Password Application 190
Creating a Forgotten-Password Recovery Application 194

Designing the forgotten-password recovery application 195
Implementing the forgotten-password recovery application . . . 197
Testing the forgotten-password recovery application 201

Summary . 202

xvi Contents

01549669 FM.qxd 4/4/03 9:23 AM Page xvi

Chapter 7 Intranet System . 203
Identifying Functionality Requirements 203
Designing the Database . 204
Designing and Implementing the Intranet Classes 207
Message class . 207
ActivityAnalyzer class . 213
Creating the IntranetUser class . 217

Setting Up Application Configuration Files 219
Setting Up the Application Templates 222
Intranet Home Application . 223

MOTD manager application . 225
Access reporter application . 230
Admin access reporter application . 233
Daily logbook manager application . 236
User tip application . 237
User preference application . 237

Installing Intranet Applications from the CD-ROM 238
Testing the Intranet Home Application 240

Changing user preferences . 242
Checking user access logs . 242
Writing a message to other users . 244

Summary . 245
Chapter 8 Intranet Simple Document Publisher 247

Identifying the Functionality Requirements 247
The Prerequisites . 248
Designing the Database . 248
The Intranet Document Application Classes 250

The Category class . 251
The Doc class . 255
The Response class . 258

Setting Up Application Configuration Files 261
The main configuration file . 261
The messages file . 266
The errors file . 267

Setting Up the Application Templates 267
The Document Publisher Application 268

The document index display application 278
The document details application . 280
The document response application . 281
The document view list application . 282

Installing Intranet Document Application 283
Testing Intranet Document Application 285

Creating a new category . 286
Adding a new document . 288

Summary . 292

Contents xvii

01549669 FM.qxd 4/4/03 9:23 AM Page xvii

Chapter 9 Intranet Contact Manager . 293
Functionality Requirements . 293
Understanding Prerequisites . 294
The Database . 294
The Intranet Contact Manager Application Classes 297

The Category class . 298
The Contact class . 302

The Application Configuration Files 308
The main configuration file . 308
The messages file . 312
The errors file . 312

The Application Templates . 312
The Contact Category Manager Application 313
The Contact Manager Application 317
Installing Intranet Contract Manager 323
Testing Contract Manager . 325

Adding categories . 326
Adding a contact . 328
Searching for a contact . 329
Sending e-mail to a contact . 330
Searching for contacts in a subcategory 330

Summary . 333
Chapter 10 Intranet Calendar Manager . 335

Identifying Functionality Requirements 335
Understanding Prerequisites . 336
Designing the Database . 336
The Intranet Calendar Application Event Class 337
The Application Configuration Files 343

The main configuration file . 344
The messages file . 347
The errors file . 347

The Application Templates . 348
The Calendar Manager Application 348
The Calendar Event Manager Application 350
Installing the Event Calendar on Your Intranet 353
Testing the Event Calendar . 354

Adding a new event . 355
Modifying an existing event . 356
Viewing an event reminder . 356

Summary . 358
Chapter 11 Internet Resource Manager . 359

Functionality Requirements . 359
Understanding the Prerequisites . 360
Designing the Database . 360

CATEGORY table . 360
RESOURCE table . 360

xviii Contents

01549669 FM.qxd 4/4/03 9:23 AM Page xviii

RESOURCE_KEYWORD table . 361
RESOURCE_VISITOR table . 361

Designing and Implementing the Internet Resource
Manager Application Classes . 362
Designing and implementing the IrmCategory class 362
Designing and implementing the IrmResource class 364
Designing and implementing the Message class 368

Creating Application Configuration Files 369
Creating the main configuration file 369
Creating a messages file . 373
Creating an errors file . 373

Creating Application Templates . 373
Creating a Category Manager Application 374

run() . 375
addDriver() . 375
modifyDriver() . 375
addCategory() . 375
modifyCategory() . 376
deleteCategory() . 376
displayModifyCategoryMenu() . 377
displayAddCategoryMenu() . 377
populateCategory() . 378
populateSubCategory() . 378
showMenu() . 378
showWithTheme() . 379
authorize() . 379

Creating a Resource Manager Application 379
run() . 380
addDriver() . 380
modifyDriver() . 380
populateCategory() . 380
populateSubCategory() . 381
showAddMenu() . 381
addResource() . 382
showModifyMenu() . 382
modifyResource() . 383
delete() . 383
displayDescription() . 384
selectResource() . 384
displayWithTheme() . 384
authorize() . 385

Creating a Resource Tracking Application 385
run() . 385
keepTrack() . 385
authorize() . 386

Contents xix

01549669 FM.qxd 4/4/03 9:23 AM Page xix

Creating a Search Manager Application 386
run() . 386
populateCategory() . 386
populateSubCategory() . 387
populateResource() . 387
showMenu() . 387
displaySearchResult() . 388
sortAndDisplay() . 389
displaySearResultNextandPrevious() 389
showTopRankingResource() . 390
showMostVisitedResource() . 390
showWithTheme() . 390
authorize() . 391
sortByResourceTitle() . 391
sortByResourceAddedBy() . 391
sortByResourceRating() . 391
sortByResourceVisitor() . 391

Installing an IRM on Your Intranet 391
Testing IRM . 393
Security Concerns . 401
Summary . 401

Chapter 12 Online Help System . 403
Functionality Requirements . 403
Understanding the Prerequisites . 404
Designing and Implementing the Help

Application Classes . 404
Designing and implementing the Help class 404

Creating Application Configuration Files 415
Creating a main configuration file . 415
Creating a messages file . 417
Creating an error message file . 417

Creating Application Templates . 417
Creating the Help Indexing Application 418

run() . 419
makeIndex() . 419
getMapHash() . 420
authorize() . 420

Creating the Help Application . 420
run() . 420
authorize() . 421
getCommand() . 421
getAppInfo() . 421
showHelp() . 421
displayOutput() . 422
doSearch() . 423

Installing Help Applications . 423

xx Contents

01549669 FM.qxd 4/4/03 9:23 AM Page xx

Testing the Help System . 424
Security Considerations . 427

Restricting access to makeindex.php script 428
Summary . 428

Part III Developing E-mail Solutions

Chapter 13 Tell-a-Friend System . 431
Functionality Requirements . 431
Understanding Prerequisites . 433
Designing the Database . 433

TAF_FORM Table . 433
TAF_FRM_BANNED_IP Table . 434
TAF_FRM_OWNER_IP Table . 434
TAF_MESSAGE Table . 434
TAF_MSG_OWNER_IP Table . 434
TAF_SUBMISSION Table . 434
TAF_SUBSCRIPTION Table . 434

Designing and Implementing the Tell-a-Friend
Application Classes . 435
Designing and implementing the Form class 436
Designing and implementing the Message class 442
Designing and implementing the AccessControl class 444

Creating Application Configuration Files 446
Creating the main configuration file 446
Creating a Messages file . 449
Creating an Errors file . 449

Creating Application Templates . 450
Creating the Tell-a-Friend Main Menu

Manager Application . 451
run() . 451
displayTAFMenu() . 451

Creating a Tell-a-Friend Form Manager Application 452
run() . 452
authorize() . 452
addModifyDriver() . 452
displayAddModifyMenu() . 453
addModifyForm() . 453
deleteForm() . 454

Creating a Tell-a-Friend Message Manager Application . . . 454
run() . 454
authorize() . 455
addModifyDriver() . 455
displayAddModifyMenu() . 455
addModifyMessage() . 456
deleteMessage() . 456

Contents xxi

01549669 FM.qxd 4/4/03 9:23 AM Page xxi

Creating a Tell-a-Friend Form Processor Application 457
run() . 457
processRequest() . 457

Creating a Tell-a-Friend Subscriber Application 458
run() . 458
authorize() . 458
processRequest() . 459

Creating a Tell-a-Friend Reporter Application 459
run() . 460
generateFormCreatorReport() . 460
generateOriginReport() . 460

Installing a Tell-a-Friend System . 461
Testing the Tell-a-Friend System . 462

Creating Msg for Friend (Introduction Msg) 464
Security Considerations . 471
Summary . 471

Chapter 14 E-mail Survey System . 473
Functionality Requirements . 474
Architecture of the Survey System 475
Designing the Database . 477
Designing and Implementing the Survey Classes 479

Designing and implementing the Survey Class 479
Designing and implementing the SurveyList Class 480
Designing and implementing the SurveyForm Class 482
Designing and implementing the SurveyResponse Class 483
Designing and implementing the SurveyReport Class 484

Designing and Implementing the Survey Applications . . . 484
Developing Survey Manager . 485
Developing Survey List Manager . 486
Developing Survey Form Manager . 488

Developing Survey Execution Manager 489
Developing Survey Response Manager 491
Developing Survey Report Manager 492

Setting Up the Central Survey Configuration File 493
Setting Up the Interface Template Files 497

Setting Up the Central Survey Messages File 498
Setting Up the Central Survey Errors File 498
Creating Survey Forms . 499

Testing the Survey System . 500
Security Considerations . 506
Summary . 506

Chapter 15 E-campaign System . 507
Features of an E-campaign System 507
Architecting an E-campaign System 509
Designing an E-campaign Database 511

xxii Contents

01549669 FM.qxd 4/4/03 9:23 AM Page xxii

Understanding Customer Database Requirements 515
Designing E-campaign Classes . 516

Creating a List class . 516
Creating a URL class . 518
Creating a Message class . 519
Creating a Campaign class . 521
Creating a URL Tracking class . 521
Creating an Unsubscription Tracking class 522
Creating a Report class . 522

Creating Common Configuration and Resource Files 523
Creating an e-campaign configuration file 523
Creating an e-campaign messages file 526
Creating an e-campaign errors file . 526

Creating Interface Template Files . 526
Creating an E-campaign User Interface Application 528

run() . 528
displayMenu() . 528
authorize() . 528

Creating a List Manager Application 528
run() . 528
addDriver() . 529
modifyDriver() . 530
authorize() . 530
displayAddListMenu() . 530
displayModListMenu() . 530
modifyList() . 530
modifyDatabaseFieldMap() . 531
delList() . 531
takeMap() . 531
addList() . 531
addDatabaseFieldMap() . 532

Creating a URL Manager Application 532
run() . 532
addURLDriver() . 532
authorize() . 532
modifyURLDriver() . 533
delURL() . 534
displayAddURLMenu() . 534
addURL() . 534
displayModifyURLMenu() . 534
modifyURL() . 534

Creating a Message Manager Application 535
run() . 536
addDriver() . 536
modifyDriver() . 536

Contents xxiii

01549669 FM.qxd 4/4/03 9:23 AM Page xxiii

authorize() . 537
displayAddMessageMenu() . 537
displayModMessageMenu() . 537
updateMessage() . 537
deleteMessage() . 537
addMessage() . 538
getMsgPreviewInput() . 538
doPreview() . 538
showMsgPreview() . 538
appendHashes() . 538

Creating a Campaign Manager Application 538
run() . 539
createCampaign() . 539
delCampaign() . 540
modifyCampaign() . 540
authorize() . 540
displayCampaignMenu() . 540
addCampaign() . 540
updateCampaign() . 541

Creating a Campaign Execution Application 541
run() . 541
executeCampaign() . 542
authorize() . 543

Creating a URL Tracking and Redirection Application 544
run() . 544
computeCheckSum() . 545
keepTrackAndRedirect() . 545
redirectTest() . 545

Creating an Unsubscription Tracking Application 545
run() . 545
computeCheckSum() . 546
askForConfirmation() . 547
unsubUser() . 547

Creating a Campaign Reporting Application 547
run() . 548
showEcampaignReport() . 548
authorize() . 548
toggleDescField() . 549

Testing the E-Campaign System . 549
Creating a list . 549
Creating a target URL . 550
Creating a message . 552
Creating a campaign . 553

xxiv Contents

01549669 FM.qxd 4/4/03 9:23 AM Page xxiv

Executing a campaign . 554
Viewing a campaign report . 554

Security Considerations . 555
Summary . 555

Part IV Using PHP for Sysadmin Tasks

Chapter 16 Command-Line PHP Utilities 559
Working with the Command-Line Interpreter 560

Reading standard input . 562
Getting into arguments . 563

Building a Simple Reminder Tool 569
Features of the reminder tool . 570
Implementing the reminder tool . 570
Installing the reminder tool as a cron job 582

Building a Geo Location Finder Tool for IP 583
Building a Hard Disk Usage Monitoring Utility 587

Installing the hdmonitor tool as a cron job 594
Building a CPU Load Monitoring Utility 595

Installing the loadmonitor tool as a cron job 605
Summary . 606

Chapter 17 Apache Virtual Host Maker . 607
Understanding an Apache Virtual Host 607
Defining Configuration Tasks . 609
Creating a Configuration Script . 611
Developing makesite . 612

Creating the makesite.conf file . 612
Creating the virtual host configuration 615
Creating the contents configuration file 617
Creating the e-mail template . 618
Creating the makesite script . 619

Installing makesite on Your System 636
Testing makesite . 638
Summary . 640

Chapter 18 BIND Domain Manager . 641
Features of makezone . 641
Creating the Configuration File . 642
Understanding makezone . 647

The makezone Functions . 653
Installing makezone . 655
Testing makezone . 656
Summary . 658

Contents xxv

01549669 FM.qxd 4/4/03 9:23 AM Page xxv

Part V Internet Applications

Chapter 19 Web Forms Manager . 661
Functionality Requirements . 661
Understanding Prerequisites . 662
Designing the Database . 662

WEBFORMS_DL_TBL table . 663
X_TBL table (a sample form table) . 663

Designing and Implementing the Web Forms Manager
Application Classes . 664
Designing and implementing the ACL class 665
Designing and implementing the DataCleanup class 666
Designing and implementing the DataValidator class 667
Designing and implementing the FormSubmission class 669
Designing and implementing the FormData class 672

Creating the Application Configuration Files 674
Creating the main configuration file 674
Creating a sample form configuration file 677
Creating the errors file . 678

Creating Application Templates . 679
Creating the Web Forms Submission

Manager Application . 679
run() . 680
showPage() . 680
authorize() . 681

Creating the Web Forms Reporter Application 681
run() . 681
showReport() . 681

Creating the CSV Data Exporter Application 682
run() . 682
processRequest() . 683

Installing the Web Forms Manager 683
Testing the Web Forms Manager . 685
Security Considerations . 693
Summary . 695

Chapter 20 Web Site Tools . 697
Functionality Requirements . 697
Understanding Prerequisites . 698
Designing the Database . 698

VOTES Table . 698
Designing and Implementing the Voting Tool

Application Class . 699
Designing and implementing the Vote class 699

xxvi Contents

01549669 FM.qxd 4/4/03 9:23 AM Page xxvi

Creating the Application Configuration Files 701
Creating the main configuration file 701
Creating an errors file . 703

Creating the Application Templates 703
Creating the Vote Application . 703

run() . 704
setPollID() . 704
getPollID() . 704
addVote() . 704
displayVoteResult() . 704

Installing the Voting Tool . 705
Testing the Voting Tool . 706
Summary . 710

Part VI Tuning and Securing PHP Applications

Chapter 21 Speeding Up PHP Applications 713
Benchmarking Your PHP Application 714

Benchmarking your code . 714
Avoiding bad loops . 718
Stress-testing your PHP applications using ApacheBench 722

Buffering Your PHP Application Output 723
Compressing Your PHP Application Output 725
Caching Your PHP Applications . 727

Caching PHP contents using the jpcache cache 727
Caching PHP contents using the PEAR cache 729
Using PHP opcode caching techniques 734

Summary . 736
Chapter 22 Securing PHP Applications . 737

Controlling Access to Your PHP Applications 737
Restricting access to your PHP application-related files 738
Using Web server–based authentication 739
Using the MD5 message digest for login 740
Using Web server–based authorization 743
Restricting write access to directories 744

Securely Uploading Files . 744
Using Safe Database Access . 747
Recommended php.ini Settings for a

Production Environment . 748
Limiting File System Access for PHP Scripts 748
Running PHP Applications in Safe Mode 749
Summary . 750

Contents xxvii

01549669 FM.qxd 4/4/03 9:23 AM Page xxvii

Part VII Appendixes

Appendix A What’s on the CD-ROM . 753
Appendix B PHP Primer . 757
Appendix C MySQL Primer . 763
Appendix D Linux Primer . 781

Index . 833

Wiley Publishing, Inc. End-User
License Agreement . 881

xxviii Contents

01549669 FM.qxd 4/4/03 9:23 AM Page xxviii

Designing PHP Applications
CHAPTER 1

Features of Practical PHP Applications

CHAPTER 2
Understanding and Avoiding Security Risks

CHAPTER 3
PHP Best Practices

Part I

02 549669 PP01.qxd 4/4/03 9:23 AM Page 1

02 549669 PP01.qxd 4/4/03 9:23 AM Page 2

Chapter 1

Features of Practical PHP
Applications
IN THIS CHAPTER

◆ Exploring the features of a practical PHP application

◆ Putting the features to work in applications

PHP BEGAN AS A PERSONAL home page scripting tool. Today PHP is widely used in
both personal and corporate worlds as an efficient Web application platform. In
most cases, PHP is introduced in a corporation because of its speed, absence of
license fees, and fast development cycle.

The last reason (fast development cycle) is often misleading. There is no question
that PHP development is often faster than other Web-development platforms like
Java. However, the reasons for PHP development’s faster cycle are often questioned
by serious non-PHP developers. They claim that PHP development lacks design and
often serves as a glue logic scripting platform — thrown together in a hurry.
Frankly, I’ve seen many such scripts on many commercial engagements. In this
book, I introduce you to a PHP application design that is both well planned and
practical, therefore, highly maintainable.

Features of a Practical PHP
Application
When developing a practical PHP application you should strongly consider the fol-
lowing features:

◆ An object-oriented code base: Granted, most freely available PHP appli-
cations are not object oriented, but hopefully they will change soon. The
benefits of object-oriented design outweigh the drawbacks. The primary
benefits are a reusable, maintainable code base. You’ll find that there are
similar objects in every application you develop, and reusing previously
developed, tested, and deployed code gives you faster development time
as you develop more and more applications. 3

03 549669 ch01.qxd 4/4/03 9:24 AM Page 3

I developed all the applications in this book using a single object frame-
work (discussed in Chapter 4). Being able to develop more than 50 appli-
cations using the same framework means that I can easily fix any bugs,
because the framework object code base is shared among almost all the
applications.

◆ External HTML interfaces using templates: Having user interface ele-
ments within an application makes it difficult to adapt to the changing
Web landscape. Just as end users like to change their sites’ look and feel,
they also like to make sure the application-generated screens match their
sites’ overall design. Using external HTML templates to generate applica-
tion screens ensures that an end user can easily change the look and feel
of the application as frequently as he or she wants.

◆ External configuration: When designing a practical application, the
developer must ensure that end-user configuration is not within the code.
Keeping it in an external-configuration-only file makes it very easy for
end users to customize the application for their sites. The external config-
uration file should have site configuration data such as database access
information (host name, username, password, port, etc.), path information,
template names, etc.

◆ Customizable messages: The messages and error messages shown by the
application should be customizable, because a PHP application could find
its way into many different locales. A basic internationalization scheme
would be to keep all the status and error messages in external files so that
they can be customized per the local language.

◆ Relational data storage: Storing data on flat files or comma-separated
value (CSV) files is old and a lot less manageable than storing data in a
fast relational database such as MySQL. If the Web application collects
lots of data points from the Web visitors or customers, using a relational
database for storing data is best. Using a database can often increase your
data security, because proper database configuration and access control
make it difficult for unauthorized users to access the stored data.

◆ Built-in access control: If a Web application has sensitive operations that
are to be performed by only a select group of people and not the entire
world of Web visitors, then there has to be a way for the application to
control access to ensure security.

◆ Portable directory structure: Because most PHP applications are deployed
via the Web, it’s important to make the applications easy to install by
making the required directory structure as portable as possible. In most
cases, the PHP application will run from a directory of its own inside the
Web document root directory.

4 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 4

Employing the Features in
Applications
Now let’s look at how you can implement those features in PHP applications.

Creating object-oriented design
The very first step in designing a practical application is to understand the problem
you want the application to solve and break down that problem into an object-
oriented design.

For example, say you’re to develop a Web-based library check-in/checkout sys-
tem. In this situation, you have to identify the objects in your problem space. We all
know that a library system allows its members to check in and check out books. So
the objects that are immediately visible are members (that is, users) and books.
Books are organized in categories, which have certain attributes such as name,
description, content-maturity ratings (adults, children), and so on. A closer look
reveals that a category can be thought of as an object as well. By observing the
actual tasks that your application is to perform, you can identify objects in the sys-
tem. A good object-oriented design requires a great deal of thinking ahead of cod-
ing, which is always the preferred way of developing software.

After you have base object architecture of your system, you can determine
whether any of your previous work has objects that are needed in your new appli-
cation. Perhaps you have an object defined in a class file that can be extended to
create a new object in the new problem space. By reusing the existing proven code
base, you can reduce your application’s defects probability number significantly.

Using external HTML templates
Next, you need to consider how user interfaces will be presented and how can you
allow for maximum customization that can be done without changing your core
code. This is typically done by introducing external HTML templates for interface.
For example, instead of using HTML code within your application, you can use
HTML templates.

HTML templates are used for all application interfaces in this book so that the
applications are easy to update in terms of look and feel. To understand the power
of external HTML user-interface templates, carefully examine the code in Listing
1-1 and Listing 1-2.

Listing 1-1: A PHP Script with Embedded User Interface

<?php

// Turn on all error reporting
error_reporting(E_ALL);

Continued

Chapter 1: Features of Practical PHP Applications 5

03 549669 ch01.qxd 4/4/03 9:24 AM Page 5

Listing 1-1 (Continued)

// Get name from GET or POST request
$name = (! empty($_REQUEST[‘name’])) ? $_REQUEST[‘name’] : null;

// Print output
print <<<HTML

<html>
<head><title>Bad Script</title></head>
<body>
<table border=0 cellpadding=3 cellspacing=0>

<tr>
<td> Your name is </td>
<td> $name </td>
</tr>

</table>
</body>
</html>

HTML;

?>

Listing 1-1 shows a simple PHP script that has HTML interface embedded deep
into the code. This is a very unmaintainable code for an end user who isn’t PHP-
savvy. If the end user wants to change the page this script displays, he or she has to
modify the script itself, which has a higher chance of breaking the application. Now
look at Listing 1-2.

Listing 1-2: A PHP Script with External User Interface

<?php

// Enable all error reporting
error_reporting(E_ALL);

// Set PHPLIB path
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// Add PHPLIB path to PHP’s include path
ini_set(‘include_path’, ‘:’ . $PHPLIB_DIR . ‘:’

. ini_get(‘include_path’));

// Include the PHPLIB template class
include(‘template.inc’);

6 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 6

// Setup this application’s template
// directory path
$TEMPLATE_DIR = $_SERVER[‘DOCUMENT_ROOT’] .

‘/ch1/templates’;

// Setup the output template filename
$OUT_TEMPLATE = ‘listing2out.html’;

// Get name from GET or POST request
$name = (! empty($_REQUEST[‘name’])) ? $_REQUEST[‘name’] : null;

// Create a new template object
$t = new Template($TEMPLATE_DIR);

// Set the template file for this object to
// application’s template
$t->set_file(“page”, $OUT_TEMPLATE);

// Setup the template block
$t->set_block(“page”, “mainBlock” , “main”);

// Set the template variable = value
$t->set_var(“NAME”, $name);

// Parse the template block with all
// predefined key=values
$t->parse(“main”, “mainBlock”, false);

// Parse the entire template and print the output
$t->pparse(“OUT”, “page”);

?>

This application looks much more complex than the one shown in Listing 1-1,
right? At first glance, it may look that way, but it’s really a much better version of
the script. Let’s review it line by line:

$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

The first line of the script sets a variable called $PHPLIB_DIR to a path where
PHPLIB library files are stored. The path is set to PHPLIB (phplib) subdirectory doc-
ument root (hereafter %DocumentRoot%). This means if your Web document root is
set to /usr/local/apache/htdocs, the script assumes your PHPLIB directory is

Chapter 1: Features of Practical PHP Applications 7

03 549669 ch01.qxd 4/4/03 9:24 AM Page 7

/usr/local/apache/htdocs/phplib. Of course, if that is not the case, you can
change it as needed. For example:

$PHPLIB_DIR = ‘/www/phplib’;

Here the PHPLIB path is set to /www/phplib, which may or may not be within
your document root. As long as you point the variable to the fully qualified path, it
works. However, the preferred path is the %DocumentRoot%/somepath, as shown in
the script.

The next bit of code is as follows:

ini_set(‘include_path’, ‘:’ . $PHPLIB_DIR . ‘:’
. ini_get(‘include_path’));

It adds the $PHPLIB_DIR path to PHP’s include_path setting, which enables
PHP to find files in PHPLIB. Notice that we have set the $PHPLIB_DIR path in front of
the existing include_path value, which is given by the ini_get(‘include_path’)
function call. This means that if there are two files with the same name in
$PHPLIB_DIR and the original include_path, the $PHPLIB_DIR one will be found
first.

Next, the code sets the $TMEPLATE_DIR variable to the template path of the
script:

$TEMPLATE_DIR = $_SERVER[‘DOCUMENT_ROOT’] .
‘/ch1/templates’;

The path is set to %DocumentRoot%/ch1/templates. You can change it to what-
ever the exact path is. Again, the ideal path setting should include $_SERVER
[‘DOCUMENT_ROOT’] so that the script is portable. If an exact path is hard coded,
such as the following, then the end user is more likely to have to reconfigure the
path because the %DocumentRoot% may vary from site to site:

$TEMPLATE_DIR = ‘/usr/local/apache/htdocs/ch1/templates’;

The next line in Listing 1-2 sets the output template file name to $OUT_
TEMPLATE:

$OUT_TEMPLATE = ‘listing2out.html’;

This file must reside in the $TEMPLATE_DIR directory.
The code then sets $name variable to the ‘name’ value found from an HTTP GET

or POST request:

$name = (! empty($_REQUEST[‘name’])) ? $_REQUEST[‘name’] : null;

8 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 8

The script creates a template object called $t using the following line:

$t = new Template($TEMPLATE_DIR);

The Template class is defined in the template.inc file, which comes from the
PHPLIB library.

The $t template object will be used in the rest of the script to load the HTML
template called $OUT_TEMPLATE from $TEMPLATE_DIR, parse it, and display the
resulting contents. The HTML template file listing2out.html is shown in Listing
1-3.

Notice that in creating the object, the $TEMPLATE_DIR variable is passed as a
parameter to the Template constructor. This sets the $t object’s directory to
$TEMPLATE_DIR, which is where we are keeping our listing2out.html HTML
template.

The following line is used to set the $t object to the $OUT_TEMPLATE file. This
makes the $t object read the file and internally reference the file as “page”.

$t->set_file(“page”, $OUT_TEMPLATE);

The following line defines a template block called “mainBlock” as “main” from
the “page” template:

$t->set_block(“page”, “mainBlock” , “main”);

A block is a section of template contents that is defined using a pair of HTML com-
ments, like the following:

<!-- BEGIN block_name -->

HTML CONTENTS GOES HERE

<!-- END block_name -->

A block is like a marker that allows the template object to know how to manip-
ulate a section of an HTML template. For example, Listing 1-3 shows that we have
defined a block called mainBlock that covers the entire HTML template.

Listing 1-3: The HTML Template (listing2out.html) for Listing 1-2 Script

<!-- BEGIN mainBlock -->
<html>
<head><title>Bad Script</title></head>
<body>
<table border=1>

Continued

Chapter 1: Features of Practical PHP Applications 9

03 549669 ch01.qxd 4/4/03 9:24 AM Page 9

Listing 1-3 (Continued)

<tr>
<td> Your name is </td>
<td> {NAME} </td>
</tr>

</table>
</body>
</html>
<!-- END mainBlock -->

You can define many blocks; blocks can be nested as well. For example:

<!-- BEGIN block_name1 -->

HTML CONTENTS GOES HERE

<!-- BEGIN block_name2 -->

HTML CONTENTS GOES HERE

<!-- END block_name2 -->

<!-- END block_name1 -->

block_name1 is the block that has block_name2 as a nested block. When defin-
ing nested blocks, you have to use set_block() method carefully. For example:

$t->set_block(“page”, “mainBlock” , “main”);
$t->set_block(“main”, “rowBlock” , “rows”);

The mainBlock is a block in “page” and rowBlock is a block within “main”
block. So the HTML template will look like this:

<!-- BEGIN mainBlock-->

HTML CONTENTS GOES HERE

<!-- BEGIN rowBlock -->

HTML CONTENTS GOES HERE

<!-- END rowBlock -->

<!-- END mainBlock -->

10 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 10

You cannot define the embedded block first.
The next line in Listing 1-2 sets a template variable NAME to the value of $name

variable:

$t->set_var(“NAME”, $name);

In Listing 1-3, you will see a line such as the following:

<td> {NAME} </td>

Here the template variable is {NAME}. When setting the value for this template
variable using the set_var() method, you didn’t have to use the curly braces, as it
is automatically assumed.

Now that the script has set the value for the only template variable in the tem-
plate, you can parse the block as done in the next line:

$t->parse(“main”, “mainBlock”, false);

This line calls the parse() method of the $t template object to parse the
mainBlock, which is internally named as “main.” The third parameter is set to
false, because we don’t intend to loop through this block. Because nested blocks
are often used in loops, you’d have to set the third parameter to true to ensure that
the block is parsed properly from iteration to iteration.

Finally, the only remaining thing to do is print and parse the entire page:

$t->pparse(“OUT”, “page”);

This prints the output page.
What all this additional code bought us is an implementation that uses an exter-

nal HTML template, which the end user can modify without knowing anything
about the PHP code. This is a great achievement, because most of the time the end
user is interested in updating the interface look and feel as his or her site goes
through transitions over time.

Using external configuration files
An external configuration file separates code from information that is end-user
configurable.

By separating end-user editable information to a separate configuration file we
reduce the risk of unintentional modification of core application code. Experienced
commercial developers will tell you that this separation is a key timesaver when
customers make support calls about PHP applications. As a developer, you can
instruct the end user to only modify the configuration file and never to change
anything in the core application files. This means any problem created at the end-
user site is confined to the configuration file and can be identified easily by the
developer.

Chapter 1: Features of Practical PHP Applications 11

03 549669 ch01.qxd 4/4/03 9:24 AM Page 11

In Listing 1-2, we had the following lines:

$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

ini_set(‘include_path’, ‘:’ . $PHPLIB_DIR . ‘:’
. ini_get(‘include_path’));

include(‘template.inc’);

include(‘template.inc’);

$TEMPLATE_DIR = $_SERVER[‘DOCUMENT_ROOT’] .
‘/ch1/templates’;

$OUT_TEMPLATE = ‘listing2out.html’;

These lines are configuration data for the script. Ideally, these lines should be
stored in an external configuration file. For example, Listing 1-4 shows a modified
version of Listing 1-2.

Listing 1-4: Modified Version of Listing 1-2

<?php

require_once(‘app_name.conf’);

// Enable all reporting
error_reporting(E_ALL);

// Get name from GET or POST request
$name = (! empty($_REQUEST[‘name’])) ? $_REQUEST[‘name’] : null;

// Create a new template object
$t = new Template($TEMPLATE_DIR);

// Set the template file for this object to
// application’s template
$t->set_file(“page”, $OUT_TEMPLATE);

// Setup the template block
$t->set_block(“page”, “mainBlock” , “main”);

// Set the template variable = value
$t->set_var(“NAME”, $name);

12 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 12

// Parse the template block with all
// predefined key=values
$t->parse(“main”, “mainBlock”, false);

// Parse the entire template and print the output
$t->pparse(“OUT”, “page”);

?>

Notice that all the configuration lines from the Listing 1-2 script have been
removed with the following line:

require_once(‘app_name.conf’);

The require_once() function loads the configuration file. The configuration
lines now can be stored in the app_name.conf file, as shown in Listing 1-5.

Listing 1-5: Configuration File for Listing 1-4 Script

<?php

// Set PHPLIB path
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// Add PHPLIB path to PHP’s include path
ini_set(‘include_path’, ‘:’ . $PHPLIB_DIR . ‘:’

. ini_get(‘include_path’));
// Include the PHPLIB template class
include(‘template.inc’);

// Setup this application’s template
// directory path
$TEMPLATE_DIR = $_SERVER[‘DOCUMENT_ROOT’] .

‘/ch1/templates’;

// Setup the output template filename
$OUT_TEMPLATE = ‘listing2out.html’;

?>

Another great advantage of a configuration file is that it allows you to define
global constants as follows:

define(YOUR_CONSTANT, value);

Chapter 1: Features of Practical PHP Applications 13

03 549669 ch01.qxd 4/4/03 9:24 AM Page 13

For example, to define a constant called VERSION with value 1.0.0 you can add
the following line in your configuration file:

define(VERSION, ‘1.0.0’);

Because constants are not to be modified by design, centralizing then in a con-
figuration file makes a whole lot of sense.

Using customizable messages
To understand the importance of customizable messages that are generated by an
application, let’s look at a simple calculator script.

Listing 1-6 shows the script, called calc.php. The configuration file used by
calc.php is calc.conf, which is similar to Listing 1-5 and not shown here. This
script expects the user to enter two numbers (num1, num2) and an operator (+ for
addition, – for subtraction, * for multiplication, or / for division). If it doesn’t get
one or more of these required inputs, it prints error messages which are stored in an
$errors variable.

Listing 1-6: calc.php

<?php

// Enable all error reporting
error_reporting(E_ALL);

require_once(‘calc.conf’);

// Get inputs from GET or POST request
$num1 = (! empty($_REQUEST[‘num1’])) ? $_REQUEST[‘num1’] : null;
$num2 = (! empty($_REQUEST[‘num2’])) ? $_REQUEST[‘num2’] : null;

$operator = (! empty($_REQUEST[‘operator’])) ?
$_REQUEST[‘operator’] : null;

// Set errors to null
$errors = null;

// If number 1 is not given, error occurred
if ($num1 == null)
{

$errors .= “You did not enter number 1.”;
}

14 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 14

// If number 2 is not given, error occurred
if ($num2 == null) {

$errors .= “You did not enter number 2.”;
}

// If operator is not given, error occurred
if (empty($operator)) {

$errors .= “You did not enter the operator.”;
}

// Set result to null
$result = null;

// If operation is + do addition: num1 + num2
if (!strcmp($operator, ‘+’))
{

$result = $num1 + $num2;

// If operation is - do subtraction: num1 - num2
} else if(! strcmp($operator, ‘-’)) {

$result = $num1 - $num2;

// If operation is * do multiplication: num1 * num2
} else if(! strcmp($operator, ‘*’)) {

$result = $num1 * $num2;

// If operation is / do division: num1 / num2
} else if(! strcmp($operator, ‘/’)) {

// If second number is 0, show divide
// by zero exception
if (! $num2) {

$errors .= “Divide by zero is not allowed.”;
} else {

$result = sprintf(“%.2f”, $num1 / $num2);
}

}

// Create a new template object
$t = new Template($TEMPLATE_DIR);

// Set the template file for this
// object to application’s template
$t->set_file(“page”, $OUT_TEMPLATE);

Continued

Chapter 1: Features of Practical PHP Applications 15

03 549669 ch01.qxd 4/4/03 9:24 AM Page 15

Listing 1-6 (Continued)

// Setup the template block
$t->set_block(“page”, “mainBlock” , “main”);

// Set the template variable = value
$t->set_var(“ERRORS”, $errors);
$t->set_var(“NUM1”, $num1);
$t->set_var(“NUM2”, $num2);
$t->set_var(“OPERATOR”, $operator);
$t->set_var(“RESULT”, $result);

// Parse the template block with all
// predefined key=values
$t->parse(“main”, “mainBlock”, false);

// Parse the entire template and
// print the output
$t->pparse(“OUT”, “page”);

?>

The script can be called using a URL such as the following:

http://yourserver/ch1/calc.php?num1=123&operator=%2B&num2=0

The calc.php script produces an output screen, as shown in Figure 1-1, using the
calc.html template stored in ch1/templates.

Figure 1-1: Output of the calc.php script.

If the script is called without one or more inputs, it shows error messages. For
example, say the user forgot to enter the operator, in such a case the output looks
as shown in Figure 1-2.

16 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 16

Figure 1-2: Output of the calc.php script (calling without an operator).

Similarly, if the operator is division (/) and the second number is 0, then the
divide by zero error message is shown, as in Figure 1-3.

Figure 1-3: Output of calc.php script (divide by zero error message).

So this script is able to catch input errors and even a run-time error caused by
bad user input (divide by zero). But, sadly, this script is violating a design principle
of a practical PHP application. Notice the following lines in the script:

$errors .= “You did not enter number 1.”;
// lines skipped

$errors .= “You did not enter number 2.”;
// lines skipped

$errors .= “You did not enter the operator.”;
// lines skipped

$errors .= “Divide by zero is not allowed.”;

Chapter 1: Features of Practical PHP Applications 17

03 549669 ch01.qxd 4/4/03 9:24 AM Page 17

These error messages are in English and have HTML tags in them. This means if
the end user wasn’t fond of the way the messages were shown, he or she would
have to change them in the code and potentially risk modification of the code that
may result in bugs. Also, what if the end user spoke, say, Spanish, instead of
English? This also means that the end user would have to change the code. A bet-
ter solution is shown in Listing 1-7 and Listing 1-8.

Listing 1-7: calc2.php

<?php

// Enable all error reporting
error_reporting(E_ALL);

require_once(‘calc2.conf’);
require_once(‘calc2.errors’);

// Get inputs from GET or POST request
$num1 = (! empty($_REQUEST[‘num1’])) ? $_REQUEST[‘num1’] : null;
$num2 = (! empty($_REQUEST[‘num2’])) ? $_REQUEST[‘num2’] : null;

$operator = (! empty($_REQUEST[‘operator’])) ?
$_REQUEST[‘operator’] : null;

// Set errors to null
$errors = null;

// If number 1 is not given, error occurred
if ($num1 == null)
{

$errors .= $ERRORS[LANGUAGE][‘NUM1_MISSING’];
}

// If number 2 is not given, error occured
if ($num2 == null) {

$errors .= $ERRORS[LANGUAGE][‘NUM2_MISSING’];
}

// If operator is not given, error occured
if (empty($operator)) {

$errors .= $ERRORS[LANGUAGE][‘OPERATOR_MISSING’];
}

// Set result to null
$result = null;

18 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 18

// If operation is + do addition: num1 + num2
if (!strcmp($operator, ‘+’))
{

$result = $num1 + $num2;

// If operation is - do subtraction: num1 - num2
} else if(! strcmp($operator, ‘-’)) {

$result = $num1 - $num2;

// If operation is * do multiplication: num1 * num2
} else if(! strcmp($operator, ‘*’)) {

$result = $num1 * $num2;

// If operation is / do division: num1 / num2
} else if(! strcmp($operator, ‘/’)) {

// If second number is 0, show divide by zero exception
if (! $num2) {

$errors .= $ERRORS[LANGUAGE][‘DIVIDE_BY_ZERO’];
} else {

$result = sprintf(“%.2f”, $num1 / $num2);
}

}

// Create a new template object
$t = new Template($TEMPLATE_DIR);

// Set the template file for this object to application’s template
$t->set_file(“page”, $OUT_TEMPLATE);

// Setup the template block
$t->set_block(“page”, “mainBlock” , “main”);

// Set the template variable = value
$t->set_var(“ERRORS”, $errors);
$t->set_var(“NUM1”, $num1);
$t->set_var(“NUM2”, $num2);
$t->set_var(“OPERATOR”, $operator);
$t->set_var(“RESULT”, $result);

// Parse the template block with all predefined key=values
$t->parse(“main”, “mainBlock”, false);

// Parse the entire template and print the output
$t->pparse(“OUT”, “page”);

?>

Chapter 1: Features of Practical PHP Applications 19

03 549669 ch01.qxd 4/4/03 9:24 AM Page 19

The difference between calc.php and calc2.php is that calc2.php doesn’t
have any error messages hard-coded in the script. The calc.php error messages
have been replaced with the following:

$errors .= $ERRORS[LANGUAGE][NUM1_MISSING];
$errors .= $ERRORS[LANGUAGE][NUM2_MISSING];
$errors .= $ERRORS[LANGUAGE][OPERATOR_MISSING];
$errors .= $ERRORS[LANGUAGE][DIVIDE_BY_ZERO];

The calc2.php script loads error messages from the calc2.errors file using the
following line:

require_once(‘calc2.errors’);

The calc.errors file is shown in Listing 1-8.

Listing 1-8: calc2.errors

<?php

// US English
$ERRORS[‘US’][‘NUM1_MISSING’] = “You did not enter number 1.”;
$ERRORS[‘US’][‘NUM2_MISSING’] = “You did not enter number 2.”;
$ERRORS[‘US’][‘OPERATOR_MISSING’] = “You did not enter the operator.”;
$ERRORS[‘US’][‘DIVIDE_BY_ZERO’] = “Divide by zero is not allowed.”;

// Spanish (translated using Google
// Uncomment the following lines to get Spanish error messages
// Also, set LANGUAGE in calc2.conf to ES
// $ERRORS[‘ES’][‘NUM1_MISSING’] = “Usted no incorporo el numero 1”;
// $ERRORS[‘ES’][‘NUM2_MISSING’] = “Usted no incorporo el numero 2.”;
// $ERRORS[‘ES’][‘OPERATOR_MISSING’] = “Usted no inscribio a operador..”;
// $ERRORS[‘ES’][‘DIVIDE_BY_ZERO’] = “Dividase por cero no se permite.”;

?>

The calc2.errors file loads a multidimensional associative array called
$ERRORS. The first dimension is the language and the second dimension is error
code. For example:

$ERRORS[‘US’][‘NUM1_MISSING’] = “You did not enter number 1.”;

‘US’ is shorthand code for the U.S. English language. The NUM1_MISSING is a
code that has the “You did not enter number 1.” error message associated
with it. When the calc2.php script executes a line such as the following:

$errors .= $ERRORS[LANGUAGE][‘NUM1_MISSING’];

20 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 20

The $errors string is set to the value of given code (NUM1_MISSING) for the cho-
sen language (set using LANGUAGE in the calc2.conf configuration file).

Since we have defined LANGUAGE constant as follows in calc2.conf:

define(LANGUAGE, ‘US’);

The U.S. language versions of error messages are selected. However, if you
wanted to choose the Spanish language (ES) version of error messages, all you have
to do is set LANGUAGE to ES in calc2.conf and uncomment the ES version of error
codes in calc2.errors file. To save memory you can comment out the U.S. version
of the error code or remove them if wanted.

In most applications in this book we define $DEFAULT_LANGUAGE as the

language configuration for applications.

So you see how a simple configuration change can switch the language of a
script from English to Spanish. You can access a large number of major languages
using this method.

We translated the U.S. English to Spanish using Google’s language transla-

tion service and therefore the accuracy of the translation is not verified.

In larger application, you will not only have error messages but also messages
that are shown in dialog windows or status screens. In such case you can use the
exact same type of configuration files to load messages. In most of the applications
throughout the books we use app_name.messages for dialog/status messages and
app_name.errors for error messages.

Using relational database
If you need to store data, strongly consider using a relational database. My experi-
ence shows that, in the beginning of most projects, developers decide whether to
use a database based on available data, complexity of managing data, and expected
growth rate of data. Initially, all of these seem trivial in many projects and, there-
fore, a flat file or comma-separated values (CSV) files–based data store is elected
for quick and dirty jobs.

If you have access to a fast database such as MySQL, strongly consider storing
your application data in the database. The benefits of a database like MySQL are
almost unparalleled when compared with other data-storage solutions.

Chapter 1: Features of Practical PHP Applications 21

03 549669 ch01.qxd 4/4/03 9:24 AM Page 21

Using portable directory structure
When designing the directory structure of your application, consider a portable
one. A portable directory structure is one that is easy to deploy and avoids hard-
coded fully qualified paths whenever possible. Almost all the applications in this
book use the following portable directory structure:

%DocumentRoot%
|
+---app_name

|
+--apps

|
+---class
|
+---templates

For example, the calendar application in Chapter 10 uses the following:

%DocumentRoot%
|
+---framework
|
+---pear
|
+---phplib
|
+---calendar

|
+--apps

|
+---class
|
+---templates

This directory structure can be created using the following PHP code

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change the setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

// If you have installed PHPLIB in a different
// directory than %DocumentRoot%/phplib, change the setting below.
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

22 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 22

// If you have installed framewirk directory in a different
// directory than %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;

//If you have installed this application in a different
// directory than %DocumentRoot%, chance the settings below.
$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/calendar’;

$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;
$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

The key point is that you should avoid hard-coding a fully qualified path in the
application so that deployment of your application is as hassle-free as it can be. For
example, say you have developed the application on your Web server with the fol-
lowing directory structure:

/usr/local/apache/htdocs
|
+---your_app

|
+---templates

If /usr/local/apache/htdocs is your Web server’s document root
(%DocumentRoot%), make sure that you haven’t hard-coded it in the configuration.
If you use $TEMPLATE_DIR to point to your template directory in your_app.conf,
you should use the following:

$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/your_app;
$TEMPLATE_DIR = $ROOT_PATH . ‘/templates’;

Instead of:

$TEMPLATE_DIR =
‘/usr/local/apache/htdocs/your_app/templates’;

The benefit of the non-hard-coded version is that if you created a tar ball or a
zip file of your entire application and gave it to another user whose Web document
root is set to something else, she doesn’t have to change your application configu-
ration for fixing paths as long as she installs the application in the
%DocumentRoot%/your_appsee directory.

Chapter 1: Features of Practical PHP Applications 23

03 549669 ch01.qxd 4/4/03 9:24 AM Page 23

Using access control
If your PHP application is deployed on a site where unauthorized use is possible,
you have to implement access control. Access control can be established using two
methods:

◆ Authentication, such as restriction using username/password. You can
learn more about this in detail in Chapter 5.

◆ Authorization, such as IP/network address allow/deny control. You can
learn more about this in detail in Chapter 22.

You can deploy one or both of these techniques in developing a comprehensive
access control for sensitive applications.

Summary
In this chapter, you learned about the features of a practical PHP application. When
you write an application that uses external configuration files, template-based
interface, and database for storage in an object-oriented manner, you are likely to
have a well-structured, maintainable application.

24 Part I: Designing PHP Applications

03 549669 ch01.qxd 4/4/03 9:24 AM Page 24

Chapter 2

Understanding and
Avoiding Security Risks
IN THIS CHAPTER

◆ Identifying sources of risks

◆ Minimizing user-input risks

◆ Running external programs safely

◆ Acquiring user input in a safe manner

◆ Protecting sensitive information

BEFORE YOU CAN DESIGN secure PHP applications, you have to understand the secu-
rity risks involved and know how to deal with them. In this chapter, we will discuss
the most common risks involved with Web-based PHP applications.

Identifying the Sources of Risk
The sources of most security problems are user input, unprotected security infor-
mation, and unauthorized access to applications.

Among these risk factors, user input stands out the most, and it is also the most
exploited to make unauthorized, unintended use of applications. A poorly written
PHP application that handles user input as safe data provides ample opportunity for
security breaches quite easily.

Sensitive data is often made available unintentionally by programs to people
who should not have any access to the information. Such exposure can result in
disaster if the information falls in the hands of a malicious hacker.

Unauthorized access is difficult to deal with if users can’t be authenticated using
user names and passwords and/or hostname/IP address based access control cannot
be established. User authentication and access control are covered in detail in
Chapter 5 and Chapter 22 so we will not discuss them here.

In the following sections, we discuss these risks and potential solutions in detail.

25

04 549669 ch02.qxd 4/4/03 9:24 AM Page 25

26 Part I: Designing PHP Applications

Minimizing User-Input Risks
As previously mentioned, user input poses the most likely security risk to your Web
applications. Let’s look at a few scenarios for how seemingly harmless and simple
programs can be made to do malicious tasks.

Running external programs with user input
Listing 2-1 shows a simple PHP script called bad_whois.php (bad_ has been added
so that you think twice before actually putting this script in any real Web site).

Listing 2-1: bad_whois.php

<?php

// Set error reporting to all
error_reporting(E_ALL);

// Get domain name
$domain = (! empty($_REQUEST[‘domain’])) ?

$_REQUEST[‘domain’] : null;

// The WHOIS binary path
$WHOIS = ‘/usr/bin/whois’;

// Execute WHOIS request
exec(“$WHOIS $domain”, $output, $errors);

// Initialize output buffer
$buffer = null;

while (list(,$line)=each($output))
{

$buffer .= $line . ‘
’;
}

echo $buffer;

04 549669 ch02.qxd 4/4/03 9:24 AM Page 26

if (! empty($errors))
{

echo “Error: $errors when trying to run $WHOIS
”;
}

?>

This simple script displays the whois database information for a given domain. It
can be run like this:

http://server/bad_whois.php?domain=evoknow.com

The output is shown in Figure 2-1.

Figure 2-1: Harmless output of bad_whois.php script.

Now what’s wrong with this output? Nothing at all. domain=evoknow.com is
used as an argument to execute the /usr/bin/whois program. The result of the
script is the way it was intended by the programmer: It displays the whois database
query for the given domain.

But look what happens when the user runs this same script as follows:

http://server/bad_whois.php?domain=evoknow.com;cat%20/etc/passwd

Chapter 2: Understanding and Avoiding Security Risks 27

04 549669 ch02.qxd 4/4/03 9:24 AM Page 27

The output is shown in Figure 2-2.

Figure 2-2: Dangerous output of bad_whois.php script.

The user has supplied domain=evoknow.com;cat%20/etc/passswd, which is
run by the script as

$runext = exec(“/usr/bin/whois evoknow.com;cat /etc/passwd”, $output);

The user has not only supplied a domain name for the whois program but also
inserted a second command using the semicolon separator. The second command is
cat /etc/passwd, which displays the /etc/passwd file. This is where this simple
script becomes a tool for the malicious hackers to exploit system information or
even do much more harmful activities such as running the rm -rf command to
delete files and directories.

Now, what went wrong with the simple script? The script programmer trusted
user input and will end up paying a big price for such a misplaced trust. You should
never trust user input when you have no idea who the next user is. Listing 2-2
shows an improved version of bad_whois.php script called better_whois.php.

Listing 2-2: better_whois.php

<?php

// Set error reporting to all
error_reporting(E_ALL);

// Get domain name

28 Part I: Designing PHP Applications

04 549669 ch02.qxd 4/4/03 9:24 AM Page 28

$secureDomain = (! empty($_REQUEST[‘domain’])) ?
escapeshellcmd($_REQUEST[‘domain’]) : null;

// The WHOIS binary path
$WHOIS = ‘/usr/bin/whois’;

echo “Running whois for $secureDomain
”;

// Execute WHOIS request
exec(“$WHOIS $secureDomain”, $output, $errors);

// Initialize output buffer
$buffer = null;

while (list(,$line)=each($output))
{

if (! preg_match(“/Whois Server Version/i”, $line))
{

$buffer .= $line . ‘
’;
}

}

echo $buffer;

if (! empty($errors))
{

echo “Error: $errors when trying to run $WHOIS
”;
}

?>

If this script is run as

http://server/bette_whois.php?domain=evoknow.com;cat%20/etc/passwd

it will not run the cat /etc/passwd command, because the escaping of shell
characters using the escapeshellcmd() function makes the given domain name
evoknow.com\;cat /etc/passwd. Because this escaped version of the (illegal)
domain name does not exist, the script doesn’t show any results, which is much
better than showing the contents of /etc/passwd.

So why didn’t we call this script great_whois.php? Because it still has a user-
input-related problem, which is discussed in the next section.

Chapter 2: Understanding and Avoiding Security Risks 29

04 549669 ch02.qxd 4/4/03 9:24 AM Page 29

Getting user input in a safe way
In the preceding example, we had user input returned to us via the HTTP GET
method as part of the URL, as in the following example:

http://server/bette_whois.php?domain=evoknow.com

When better_whois.php is called, it automatically gets a variable called
$domain created by PHP itself. The value of the $domain variable is set to evo-
know.com.

This automatic creation of input variables is not safe. For an example, take a
look at Listing 2-3.

Listing 2-3: bad_autovars.php

<?php

error_reporting(E_ALL);

// This bad example will only work
// if you have register_globals = Off
// in your php.ini.

// This example is for educational
// purpose only. It will not work in
// sites with register_globals = On

global $couponCode;

if (is_coupon($couponCode))
{

$is_customer = isCustomer();

}

if ($is_customer)
{

echo “You are a lucky customer.
”;
echo “You won big today!
”;

} else {
echo “Sorry you did not win!
”;

}

function is_coupon($code = null)
{

30 Part I: Designing PHP Applications

04 549669 ch02.qxd 4/4/03 9:24 AM Page 30

// some code to verify coupon code
echo “Check if user given coupon is valid or not.
”;
return ($code % 1000 == 0) ? TRUE : FALSE;

}

function isCustomer()
{

// a function to determine if current user
// user is a customer or not.
// not implemented.
echo “Check if user is a customer or not.
”;
return FALSE;

}

?>

When this script is run as

http://server/bad_autovars.php?couponCode=2000

it checks to see if the coupon code is valid. The is_coupon() function takes the
user given coupon code and checks if the given code is completely divisible by
1000 or not. Code that are divisible by 1000 are considered valid and the function
returns TRUE else it returns FALSE. If the coupon code is valid, it checks whether
the current user is a customer. If the current user is a customer, it shows a message
indicating that the customer is a winner. If the current user is not a customer, it
shows the following:

Check if user given coupon is valid or not.
Check if user is a customer or not.
Sorry you did not win!

Because we didn’t implement the isCustomer() function, we return FALSE at all
times, so there’s no way we should ever show a message stating that the current
user is a winner. But alas! Look at the following request:

http://server/bad_autovars.php?couponCode=1001&is_customer=1

Even with an invalid coupon, the user is able to see the following message:

Check if user given coupon is valid or not.
You are a lucky customer.

You won big today!

Chapter 2: Understanding and Avoiding Security Risks 31

04 549669 ch02.qxd 4/4/03 9:24 AM Page 31

Do you know why the user is able to see the preceding message? Because this
user has supplied is_customer=1, which became an automatic variable and forced
the winner message to appear. This type of trick can be done only with strong
knowledge of the application being used. For example, if this was a free script
widely used by many sites, a malicious hacker could force it to get what he wants.

This example demonstrates that automatic variables can be tricked into doing
things that are not intended by the programmers, so we need to have a better way
of getting user data. Thankfully, PHP 4.2 or above by default do not create auto-
matic variables. Creating automatic variables is turned off in the php.ini configu-
ration file using the following configuration parameter:

register_globals = Off

When register_globals is off by default, PHP does not create automatic variables.
So how can you get data from the user? Very easily using $_GET, $_POST,
$_REQUEST, $_SERVER, $_SESSION, $_ENV, and $_COOKIE. Table 2-1 shows which of
these variables correspond to what input of a request.

TABLE 2-1 PHP GLOBAL-REQUEST-RELATED AUTOMATIC VARIABLES

Variable Description

$_GET Used for storing data passed via HTTP GET method. For example,
http://server/any.php?a=1&b=2 will result in

$_GET[‘a’] = 1;
$_GET[‘b’] = 2;

$_POST Used for storing data passed via HTTP POST method. For
example:

<form action=”any.php” method=”POST”>
<input type=text name=”email”>
<input type=hidden name=”step” value=”2”>
</form>

When this form is submitted, the any.php will have

$_POST[‘email’] = user_supplied_email
$_POST[‘step’] = 2

$_REQUEST Works for both GET and POST. This variable is the best choice
because it will work with your application whether data is
submitted via the GET method or the POST method.

$_SESSION Stores session data.

$_COOKIE Stores cookie data.

32 Part I: Designing PHP Applications

04 549669 ch02.qxd 4/4/03 9:24 AM Page 32

Variable Description

$_ENV Stores environment information.

$_FILES Stores uploaded file information.

$GLOBALS All global variables that are stored in this associative array.

Now let’s implement bad_autovars.php without the automatic field variables as
shown in Listing 2-4.

Listing 2-4: autovars_free.php

<?php

// Enable all error reporting
error_reporting(E_ALL);

// Initialize
$is_customer = FALSE;

// Get coupon code
$couponCode = (! empty($_REQUEST[‘couponCode’])) ?

$_REQUEST[‘couponCode’] : null;

if (is_coupon($couponCode))
{

$is_customer = isCustomer();
}

if ($is_customer)
{

echo “You are a lucky customer\n”;
echo “You win big today!\n”;

} else {
echo “Sorry you do not win!\n”;

}

function is_coupon($code = null)
{

// some code to verify coupon code
echo “Check if user given coupon is valid or not
”;
return ($code % 1000 == 0) ? TRUE : FALSE;

Continued

Chapter 2: Understanding and Avoiding Security Risks 33

04 549669 ch02.qxd 4/4/03 9:24 AM Page 33

Listing 2-4 (Continued)

}

function isCustomer()
{

// a function to determine if current user
// user is a customer or not.
// not implemented.
echo “Check if user is customer
”;
return FALSE;

}

?>
<?php
// Enable all error reporting
error_reporting(E_ALL);
// Initialize
$is_customer = FALSE;
// Get coupon code
$couponCode = (! empty($_REQUEST[‘couponCode’])) ?

$_REQUEST[‘couponCode’] : null;
if (is_coupon($couponCode))
{

$is_customer = isCustomer();
}
if ($is_customer)
{

echo “You are a lucky customer\n”;
echo “You win big today!\n”;

} else {
echo “Sorry you do not win!\n”;

}

function is_coupon($code = null)
{

// some code to verify coupon code
echo “Check if user given coupon is valid or not
”;
return ($code % 1000 == 0) ? TRUE : FALSE;

}
function isCustomer()
{

// a function to determine if current user
// user is a customer or not.

34 Part I: Designing PHP Applications

04 549669 ch02.qxd 4/4/03 9:24 AM Page 34

// not implemented.
echo “Check if user is customer
”;
return FALSE;

}
?>

Here $is_customer is first initialized to FALSE, which makes it impossible for the
user to set it using the GET or POST method. Next, improvement is made by using
the $_REQUEST[‘couponCode’] to get the coupon data. With this version, the user
can’t force $is_customer to any value and, therefore, the code works as intended.

Using validation code
In addition to getting user data from $_REQUEST, you also need to validate user
input, because it may contain unwanted patterns that cause security problems.
Sometimes programmers confuse validation with cleanup. Earlier, in Listing 2-2
(better_whois.php), we used escapeshellcmd() to escape any user-provided
shell characters. This would qualify as a cleanup or quarantine operation. A valida-
tion operation checks the validity of the data and, if it’s invalid, the script rejects it
instead of fixing it.

For example, say you have a PHP script that expects a data field called num1.
You can do a test like the following:

if (!is_numeric($_REQUEST[‘num1’]))
{

// User supplied num1 not a number!
}

There are many built-in functions, such as is_numeric(), is_int(),
is_float(), is_array(), and so forth, that you can use to perform validation.
However, often you want to validate a number or string from a different prospec-
tive. For example, e-mail addresses are strings, but not all strings are e-mail
addresses. To validate e-mail addresses, you need a validation function for e-mail
address. Similarly, ZIP codes are special type of numbers with nnnnn or nnnnn-
nnnn formats. For validating ZIP codes, you would need to create custom validation
functions. Your validation functions should return TRUE for valid data and FALSE
for invalid data. The following is a simple structure of a validation function:

function isValidFIELDNAME($fieldValue = null)
}

// Perform validation code here
// You must return TRUE here if valid.

// Default is false
return FALSE;

}

Chapter 2: Understanding and Avoiding Security Risks 35

04 549669 ch02.qxd 4/4/03 9:24 AM Page 35

Validation can be done not only on data types but also on other aspects of the
user input. However, the type validation is more of a security concern than the
actual meaning of the value in your application context. For example, say the user
fills out a form field called “age” with a value of 3000. Because we have yet to find
a person anywhere (on Earth or anywhere else) who lived 3,000 years, the age value
is invalid. However, it isn’t an invalid data type. In this case, you may want to com-
bine all your validity checking in a single isValidAge() function.

One of the best ways to validate data is to use regular expressions. Following are
some of the regular expression functions PHP provides:

◆ preg_match(). This function takes a regular expression and searches for
it in the given string. If a match is found, it returns TRUE; otherwise, it
returns FALSE. The matched data can also be returned in an array. It stops
searching after finding the first match. For example, say you want to find
out if a user data field called $userData contains anything other than
digits. You can test it with preg_match(“/[^0-9]/”, $userData). Here,
the regular expression /[^0-9]/ tells preg_match to find anything but
the digits.

◆ preg_match_all(). This function is just like preg_match(), except it
continues searching for all regular expression patterns in the string. For
example: preg_match(“/[^0-9]/”, $userData, $matches). Here the
regular expression /[^0-9]/ tells preg_match_all to find anything but
the digits and store them in $matches.

◆ preg_quote(). You can use this function to escape a regular expression
that contains regular expression characters. For example, say you want to
find out if a string called $userData contains a pattern such as “[a-z]”.
If you call the preg_match() function as preg_match(“/[a-z]/”,
$userData), it will return wrong results because “[a-z]” happens to be a
valid regular expression itself. Instead, you can use preg_quote() to
escape “[a-z]” and then use it in the preg_match() call. For example,
preg_match(‘/’ . preg_quote(“[a-z]”) . ‘/’ , $userData) will
work.

There are other functions such as preg_grep(), preg_replace(), and so forth,
that are also useful. For example, you can access information on these functions
via http://www.evoknow.com/preg_grep and http://www.evoknow.com/
preg_replace. Instead of writing validation routines for common data types, you
can find free validation classes on the Web. One such class is called Validator,
which can be found at www.thewebmasters.net/php/Validator.phtml.

After you download and install the Validator class per its author’s instructions,
you can use it very easily. For example, Listing 2-5 shows a simple Web form script
called myform.php that uses this validation class to validate user data.

36 Part I: Designing PHP Applications

04 549669 ch02.qxd 4/4/03 9:24 AM Page 36

Listing 2-5: myform.php

<?php
error_reporting(E_ALL);
define(‘DEBUG’, FALSE);
include(“class.Validator.php3”);

// Create a Validator object
$check = new Validator ();

// Get User data
$email = (! empty($_REQUEST[‘email’])) ? $_REQUEST[‘email’] : null;
$state = (! empty($_REQUEST[‘state’])) ? $_REQUEST[‘state’] : null;
$phone = (! empty($_REQUEST[‘phone’])) ? $_REQUEST[‘phone’] : null;
$zip = (! empty($_REQUEST[‘zip’])) ? $_REQUEST[‘zip’] : null;
$url = (! empty($_REQUEST[‘url’])) ? $_REQUEST[‘url’] : null;
DEBUG and print “Debug Code here \n”;

// Call validation methods
if (!$check->is_email($email)) { echo “Invalid email format
\n”;}
if (!$check->is_state($state)) { echo “Invalid state code
\n”; }
if (!$check->is_phone($phone)) { echo “Invalid phone format
\n”;}
if (!$check->is_zip($zip)) { echo “Invalid zip code
\n”; }
if (!$check->is_url($url)) { echo “Invalid URL format
\n”; }

// If form data has errors show error and exit
if ($check->ERROR)
{

echo “$check->ERROR
\n”;
exit;

}

// Process form now
echo “Form processing not shown here.
”;

?>

The class Validator.php3 is included in the script. The $check variable is a
Validator object, which is used to validate user-supplied data. If there is any error
in any of the validation checks — that is, if any of the validation methods return
false — the script displays an error message. If no error is found, the script continues
to process the form, which is not shown in this sample code. To learn more about
the validation methods that are available in this class, review the documentation
supplied with the class.

Chapter 2: Understanding and Avoiding Security Risks 37

04 549669 ch02.qxd 4/4/03 9:24 AM Page 37

Not Revealing Sensitive Information
Another major source of security holes in applications is unnecessary disclosure of
information. For example, say you have a script called mysite.php as follows:

<?php
phpinfo();

?>

This script shows all the PHP information about the current site, which is often very
useful in finding various settings. However, if it is made available to the public, you
give malicious hackers a great deal of information that they would love to explore
and potentially exploit.

Such a harmless script can be a security hole. It reveals too much information
about a site. For security purposes, it is extremely important that you don’t reveal
your system-related information about your site to anyone. We recommend that you use
phpinfo() in only development systems which should not be allowed to be accessed by
everyone on the Web. For example, you can use $_SERVER[‘REMOTE_ADDR’] value to
restrict who has access to a sensitive script. Here is an example code segment:

<?php

// Enable all error reporting
error_reporting(E_ALL);

// Create a list of valid IP addresses that can access
// this script
$validIPList = array(‘192.168.1.1’, ‘192.168.1.2’);

// If current remote IP address is not in our valid list of IP
// addresses, do not allow access
if (! in_array($_SERVER[‘REMOTE_ADDR’], $validIPList))
{

echo “You do not access to this script.”;
exit;

}

// OK, we have a valid IP address requesting this script
// so show page
phpinfo();

?>

38 Part I: Designing PHP Applications

04 549669 ch02.qxd 4/4/03 9:24 AM Page 38

Here the script exists whenever a request to this script comes from a remote IP
address that is not in the valid IP list ($validIPList).

Let’s take a look at some other ways in which you can safely conceal informa-
tion about your application:

◆ Remove or disable any debugging information from your application.
Debugging information can provide clues about your application design
(and possibly its weaknesses) to others who may take the opportunity to
exploit them. If you add debugging code, use a global flag to enable and
disable debugging. For example:

<?php

define(‘DEBUG’, FALSE);

DEBUG and print “Debug message goes here.\n”;

?>

Here DEBUG constant is set to FALSE and, therefore, the print statement is
not going to print anything. Setting DEBUG to TRUE enables debug mes-
sages. If all your debug code is enabled or disabled in this manner, you
can easily control DEBUG messages before you put the script in the pro-
duction environment.

◆ Don’t reveal sensitive paths or other information during Web-form
processing. A common misunderstanding that hidden fields are secret,
often causes security-novice developers to reveal sensitive path or other
information during Web-form processing. For example:

<input type=hidden name=”save_path”
value=”/www/secret/upload”>

This line in a HTML form is not hidden from anyone who has a decent
Web browser with the View Source feature. So do not ever rely on hidden
field for security. Use hidden fields only for storing information that are
not secret.

◆ Never store sensitive information on the client side. If you must store
sensitive data, consider using a database or at least a file-based session,
which will store data on the server side. If you must store data on the
client side for some special reason, consider encrypting the data (not just
encoding it). See Chapter 22 for details on data encryption.

Chapter 2: Understanding and Avoiding Security Risks 39

04 549669 ch02.qxd 4/4/03 9:24 AM Page 39

Summary
In this chapter, you learned about the common security risks for PHP applications
and how to deal with them. Most of the security risks are related to user input and
how you handle them in your scripts. Expecting all users will behave politely and
will not try to break your code is not at all realistic. Let’s face it, there are a lot of
people (of all ages) with too much free time and Internet bandwidth these days,
which means there is a lot out there with intents to hack, deface Web sites just for
the sake of it. So do not trust user input to be just what you need to run your appli-
cation. You need to deal with unexpected input as well.

Revealing sensitive information such as software version, server environment
data, etc., can also have a major ill effect on your overall security as such informa-
tion can be used in building attack tools or techniques. The best practice is to reveal
as little as necessary.

40 Part I: Designing PHP Applications

04 549669 ch02.qxd 4/4/03 9:24 AM Page 40

Chapter 3

PHP Best Practices
IN THIS CHAPTER

◆ Best practices for naming variables and functions or methods

◆ Best practices for functions or methods

◆ Best practices for database

◆ Best practices for user interface

◆ Best practices for documentation

◆ Best practices for configuration management

THE APPLICATION CODE PRESENTED in this book uses a set of programming practices
that qualify as best practices for any PHP application development. This chapter
discusses these practices. Familiarizing yourself with them will ease the learning
curve for the applications discussed in the rest of the book.

Best Practices for Naming Variables
and Functions
Top software engineers know that good variable, function (or method), and class
names are necessary for the maintainability of the code. A good name is one that
conveys meaning related to the named function, object, class, variable, etc.
Application code becomes very difficult to understand if the developers don’t use
good, meaningful names. Take a look at the following code sample:

<?php
error_reporting(E_ALL);
$name = (! empty($_REQUEST[‘field1’])) ? $_REQUEST[‘field1’] : “Friend”;
outputDisplayMsg(“Hello $name”);
exit;

41

05 549669 ch03.qxd 4/4/03 9:24 AM Page 41

function outputDisplayMsg($outTextMsgData = null)
{

echo $outTextMsgData;
}

?>

Now look at the same code segment with meaningful names for variables and
functions:

<?php

error_reporting(E_ALL);

$name = (! empty($_REQUEST[‘field1’])) ? $_REQUEST[‘field1’] : “Friend”;

showMessage(“Hello $name”);

exit;

function showMessage($outTextMessageData = null)
{

echo $outTextMessageData;
}

?>

The second version is clearly easier to understand because showMessage is a bet-
ter name for the outputDisplayMsg function.

Now let’s look at how you can use easy-to-understand names for variables,
functions (or methods), and classes.

When creating a new variable or function name (or method), ask yourself the
following questions:

◆ What is the purpose of this variable? In other words, what does this vari-
able hold?

◆ Can you use a descriptive name that represents the data the variable
holds?

◆ If the descriptive name appears to be too long, can you use meaningful
abbreviations? For example, $textMessage is as good as $txtMsg.
Names exceeding 15 characters probably need to be reconsidered for
abbreviation.

42 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 42

After you determine a name, follow these rules:

◆ Use title casing for each word in multiword names. However, the very
first word should be lowercase. For example, $msgBody is a better name
then $msgbody, $messageBODY, or $message_body. Single word names
should be kept in lowercase. For example, $path and $data are single
word variables.

◆ Use all capital letters to name variables that are “constant like” — in
other words, variables that do not change within the application. For
example, if you read a variable from a configuration file, the name of the
variable can be in all uppercase. To separate uppercase words, use under-
score character (for example, use $TEMPLATE_DIR instead of $TEMPLATE-
DIR). However, when creating constants it is best to use define()
function. For example, define(PI, 3.14) is preferred over $PI = 3.14.
The defined constant PI cannot be changed once defined whereas $PI can
be changed.

◆ Use verbs such as get, set, add, delete, modify, update, and so forth in
naming your function or method. For example, getSomething(),
setSomething(), and modifySomething() are better function names
than accessSomething(), storeSomething(), and editSomething(),
respectively.

Best Practices for Function/Method
In this section I discuss a set of practices that will improve your function or method
code.

Returning arrays with care
When your function (or method) returns an array, you need to ensure that the
return value is a defined array because the code from which the function is called
is expecting an array. For example, review the following bad code segment.

// BAD

function getData()
{

$stmt = “SELECT ID, myField1, myField2 from myTable”;

$result = $this->dbi->query($stmt);

Chapter 3: PHP Best Practices 43

05 549669 ch03.qxd 4/4/03 9:24 AM Page 43

if ($result != NULL)
{

while($row = $result->fetchRow())
{

$retArray[$row->ID] = $row;
}

}

return $retArray;

}

In this example, the function called getData() returns an array called
$retArray when the SQL statement executed returns one or more rows. The func-
tion works fine if the SQL select statement always returns at least one row.
However, it returns nothing when the SQL statement returns no rows. In such a
case, the following code segment, which calls the function, produces a PHP warn-
ing message:

error_reporting(E_ALL);

$rowObjectArray = $this->getData();

while(list($id, $rowObject) = each($rowObjectArray))
{

// do something here
}

$rowObjectArray causes each() to generate a warning when the
myFunction() method fails to return a real array. Here’s a better version of the
getData() method:

// GOOD

function getData()
{

$retArray = array();

$stmt = “SELECT ID, myField1, myField2 from myTable”;

$result = $this->dbi->query($stmt);

if ($result != null)

44 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 44

{
while($row = $result->fetchRow())
{

$retArray[$row->ID] = $row;
}

}

return $retArray;

}

The second version of getData() function initializes $retArray as an array,
which ensures that functions such as each() do not complain about it.

You can avert PHP warning messages by initializing arrays using array().

Simplifying the function or method
argument list order issue
When a function or method has many arguments, as shown in the following code,
bugs are more likely to appear because of data mismatches in function calls.

// Not So Good

function myFunction($name = null,
$email = null,
$age = null,
$addr1 = null,
$addr2 = null,
$city = null,
$state = null,
$zip = null
)

{

echo “Name = $name\n”;
echo “Email = $email\n”;
echo “Age = $age\n”;
echo “Address 1 = $addr1\n”;

Chapter 3: PHP Best Practices 45

05 549669 ch03.qxd 4/4/03 9:24 AM Page 45

echo “Address 2 = $addr2\n”;
echo “City = $city\n”;
echo “State = $state\n”;
echo “ZIP = $zip\n”;

}

// First call
myFunction($name,

$email,
$age,
$addr1,
$addr2,
$city,
$state,
$zipcode
);

// Second call
myFunction($name,

$email,
$age,
$addr2,
$addr1,
$city,
$state,
$zipcode
);

In this example, the function myFunction() expects a list of arguments. The code
segment also shows two calls to this function. Notice that the second call has
$addr1 and $addr2 misplaced. This type of argument misplacement is very com-
mon and is the cause of many bugs that take a great deal of time to fix.

When you have a function that requires a large number of parameters to be
passed, use an associative array, as shown in the following code segment:

$params = array(
‘NAME’ => $name,
‘EMAIL’ => $email,
‘AGE’ => $age,
‘ADDR1’ => $addr1,
‘ADDR2’ => $addr2,
‘CITY’ => $city,
‘STATE’ => $state,
‘ZIP’ => $zipcode

)

46 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 46

myFunction($params);

function myFunction($params = null)
{

echo “Name = $params[‘NAME’]\n”;
echo “Email = $params[‘EMAIL’]\n”;
echo “Age = $params[‘AGE’]\n”;
echo “Address 1 = $params[‘ADDR1’]\n”;
echo “Address 2 = $params[‘ADDR2’]\n”;
echo “City = $params[‘CITY’]\n”;
echo “State = $params[‘STATE’]\n”;
echo “ZIP = $params[‘ZIP’]\n”;

}

$params is an associative array, which is set up using key=value pairs. The
function is called with only one argument. The order of the key=value does not mat-
ter as long as the right key is used with the right value. This position-independent
way of passing values to the function is much less likely to cause parameter bugs in
your code.

Best Practices for Database
Most applications require database connectivity and, therefore, you need to know
about some best practices that will help you make your code more efficient and
bug-free. Here, I discuss the techniques that relate to relational database access. I
assume that you’re using the DBI class (class.DBI.php), which is part of our appli-
cation framework discussed in Chapter 4. The DBI class is really a database abstrac-
tion layer that allows applications to access a set of database methods used to
perform operations such as connect, query, etc. Since this class hides the database
behind the scene, it provides a very easy way to change database backends from
MySQL to Postgres or vise versa when needed. By changing the DBI class code to
connect to a new database, an application can be easily ported from one database
to another.

Writing good SELECT statements
SELECT is the most commonly used SQL statement that applications use to get data
from databases. Unfortunately, a large number of SELECT statements that you will
find in many applications use it in a way that can cause serious problems. For
example, look at the following code segment:

// Bad SELECT statement
$statement = “SELECT * FROM myTable”;

Chapter 3: PHP Best Practices 47

05 549669 ch03.qxd 4/4/03 9:24 AM Page 47

$result = $dbi->query($statement);
$result->fetchRow();

This SELECT statement gets all the columns (field values) from the named table
(myTable). If the table is changed to have new fields, the SELECT statement will also
get values for the new fields. This is a side effect that can be good or bad.

It is a good side effect only if your code is smart enough to handle the new data.
Most codes are not written to do so. The bad effect could be that your code can
become slower due to additional memory requirements to hold the new data, which
is never used. For example, say that myTable has two fields, ID and NAME. The
example code segment works just fine until the DBA adds a new field called
COMMENTS (large text field) in the table to allow another application to work with
comments. Our example code is adversely affected by this database change because
it now wastes memory loading COMMENTS when there’s no use for this data in our
application. Using named fields in the SELECT statement is the solution.

// Good SELECT statement
$statement = “SELECT ID, NAME FROM myTable”;
$result = $dbi->query($statement);
$result->fetchRow();

Dealing with missing data
When accessing data via SELECT statements, be prepared to handle situations
resulting from no data or missing data. For example:

// Bad
// no data or missing data
$statement = “SELECT myField1 FROM myTable”;
$result = $dbi->query($statement);
$result->fetchRow();

If myTable doesn’t have any data when this code executes, the fetchRow() method
causes PHP to throw an exception. This can be easily avoided by ensuring that the
$result object is not null before calling the fetchRow() method of the $result
object, as the following code shows:

// Good
$statement = “SELECT myField1 FROM myTable”;
$result = $dbi->query($statement);

if ($result != null)
{

$result->fetchRow();
}

48 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 48

Handling SQL action statements
There are several best practices that make using SQL action statements such as
INSERT, UPDATE, and DELETE most effective. Here I will explain those practices.

Quoting and protecting against slashes
Quote database fields that are char or varchar types, and escape for slashes.
Quoting character or varchar fields is important because these data types can have
keywords or punctuation marks that can be interpreted as part of an SQL statement
and thus producing wrong results. Escaping slashes in these data types is also very
important since data stored in these data types can be easily misinterpreted by the
SQL engine. Often I see code segments that are as shown here:

$params[‘FNAME’] = ‘Jennifer’;
$params[‘LNAME’] = ‘Gunchy’;
$params[‘SCHOOL’] = ‘CSUS, Sacramento’;
$params[‘YEAR’] = 4;

$this->myFunction($params);

// BAD
function myFunction($params = null)
{

$values = “‘“ . $params[‘FNAME’] . “‘,”;
$values .= “‘“ . $params[‘LNAME’] . “‘,”;
$values .= “‘“ . $params[‘SCHOOL’] . “‘,”;
$values .= $params[‘YEAR’];

$stmt = “INSERT INTO myTable VALUES($values)”;

$result = $this->dbi->query($stmt);

return ($result == DB_OK) ? TRUE : FALSE;

}

In this example, the myFunction() method is called with $params argument. Some
of the data fields stored in the $params variable are char or varchar fields and,
therefore, hard-coded quotations are used as they are stored in $values. This type
of hard-coded quotation can easily break if the data value include the quotation
character. Here’s a better approach:

Chapter 3: PHP Best Practices 49

05 549669 ch03.qxd 4/4/03 9:24 AM Page 49

// GOOD

function myFunction($params = null)
{

$fields = array(‘FNAME’ => ‘text’,
‘LNAME’ => ‘text’,
‘SCHOOL’ => ‘text’,
‘YEAR’ => ‘number’
);

$fieldList = implode(‘,’, array_keys($fields));

while(list($fieldName, $fieldType) = each($fields))
{

if (strcmp($fieldType, ‘text’))
{

$valueList[] =
$this->dbi->quote(addslashes($params[$fieldName]));

} else {
$valueList[] = $params[$fieldName];

}
}

$values = implode(‘,’, $valueList);

$stmt = “INSERT INTO myTable ($fieldList) VALUES($values)”;

$result = $this->dbi->query($stmt);

return ($result == DB_OK) ? TRUE : FALSE;

}

In this example, an associative array called $fields is used to store field and
field type information. A comma-separated value list called $fieldList is created
using the keys from the $fields array.

A while loop is used to loop through each of the fields in the $fields array and
fields of type ‘text’ are quoted using the quote() method in our DBI class. Before
quoting the field value the char/varchar value is escaped for slashes using the
addslashes() function.

The quoted, slash-escaped char/varchar values are stored in $valueList array.
Similarly, non-quoted numeric values are stored in $valueList.

The comma-separated values are stored in $values by imploding the
$valueList. The INSERT statement is then composed of $fieldList and $values,
which is very clean and free from quote and slash issues.

50 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 50

Returning error condition
When using SQL action statements, you cannot assume that your query is always
successful. For example:

// BAD
$statement = “UPDATE myTable SET myField1 = 100 WHERE ID = 1”;
$result = $dbi->query($statement);

Here the $result object needs to be checked to see if the SQL action operation
was successful. The following code takes care of that:

// GOOD
$statement = “UPDATE myTable SET myField1 = 100 WHERE ID = 1”;
$result = $dbi->query($statement);

return ($result == DB_OK) ? TRUE : FALSE;

This segment returns TRUE if $result is set to DB_OK; otherwise, it returns
FALSE. The DB_OK constant is set in the DB.php package used by class.DBI.php dis-
cussed in Chapter 4. For our discussion, what is important is that you should test
the result of a query to see if database operation was successful or not.

Naming fields in INSERT statements
When inserting data in tables, many developers do not use field names in the
INSERT statement, as the following code shows:

$params[1] = 30;
$params[2] = 500000;

myFunction($params);

// BAD
function myInsertFunction($params = null)
{

$stmt = “INSERT INTO myTable VALUES($params[1], $params[2])”;

$result = $this->dbi->query($stmt);

return ($result == DB_OK) ? TRUE : FALSE;

}

Chapter 3: PHP Best Practices 51

05 549669 ch03.qxd 4/4/03 9:24 AM Page 51

In this example, the INSERT statement is dependent on the ordering of the para-
meters and fields in the database. If the database administrator adds a new field
before any of the existing fields, the INSERT statement might fail. To remove such
a chance, use the following INSERT statement:

// GOOD
function myInsertFunction($params = null)
{

$stmt = “INSERT INTO myTable (AGE, INCOME) VALUES(“
“$params[1], $params[2])”;

$result = $this->dbi->query($stmt);

return ($result == DB_OK) ? TRUE : FALSE;

}

Now the INSERT statement uses field list (AGE, INCOME) to identify which fields
are being inserted in a row.

Efficient update statement
When updating data using the UPDATE statement, you need to create a list of
key=value pairs to set database fields to respective values. Here’s an example of
how not to do this:

// BAD
function myUpdateFunction($params = null)
{

$values = “FNAME = ‘“ . $params[‘FNAME’] . “‘,” .
“LNAME = ‘“ . $params[‘LNAME’] . “‘,” .
“SCHOOL = ‘“ . $params[‘SCHOOL’] . “‘,” .
“YEAR = “ . $params[‘YEAR’];

$stmt = “UPDATE myTable SET $values WHERE ID = $params[‘ID’]”;
$result = $this->dbi->query($stmt);

return ($result == DB_OK) ? TRUE : FALSE;

}

52 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 52

This example is “bad” because the code is not clean or easy to manage if the data-
base field list grows or reduces. Here is the better version of the code:

// GOOD:
function myUpdateFunction($params = null)
{

$fields = array(‘FNAME’ => ‘text’,
‘LNAME’ => ‘text’,
‘SCHOOL’ => ‘text’,
‘YEAR’ => ‘number’
);

while(list($k, $v) = each($fields))
{

if (!strcmp($v, ‘text’))
{

$params[$k] = $this->dbi->quote(addslashes($params[$k]));
}

$valueList[] = $k . ‘=’ . $params[$k];
}

$values = implode(‘,’, $valueList);

$stmt = “UPDATE myTable SET $values WHERE ID = $params[‘ID’]”;

$result = $this->dbi->query($stmt);

return ($result == DB_OK) ? TRUE : FALSE;

}

In this example, the field list is stored in $fields as a field_name=field_type
pair. The string data is first slash-escaped and quoted and all data are stored in
$valueList as field_name=field_value pairs. A comma-separated list called
$values is created from the $valueList. The UPDATE statement then becomes quite
simple and is very readable and easy to maintain. If a new field is added to the
database, you simply update the $fields array; similarly, if a field is removed,
removing it from the $fields array takes care of it all.

Chapter 3: PHP Best Practices 53

05 549669 ch03.qxd 4/4/03 9:24 AM Page 53

Best Practices for User Interface
A user interface (UI) is a big part of the applications that we’re going to design and
develop throughout this book. Here are some very good practices that you should
consider when developing code that has UI.

Avoiding HTML in application code
Don’t use HTML tags in PHP code. HTML tags make the code very unmanageable.
For example:

echo “<html>”;
echo “<head><title>My Document</title></head>”;
echo “<body bgcolor=’#ffffff’>”;
echo “<h1>Hello $user</h1>”;
echo “</body>”;
echo “</html>”;

If the above code is in a PHP script, the HTML can only be changed
by modifying the PHP code itself. This means the person changing the
code needs to know PHP, which means someone with good HTML skill but
no PHP skill cannot change the interface, which is very common. This
is why it is not manageable.

When generating HTML interface for Web application, you should use HTML tem-
plate object. For example, below I show you how to use the PHPLIB Template class
(found in template.inc) to create HTML template objects to display HTML page
where page is external to the code.

$TEMPLATE_DIR = ‘/some/path’;
$MY_TEMPLATE = ‘screen.ihtml’;

$template = new Template($TEMPLATE_DIR);
$template->set_file(‘fh’, $MY_TEMPLATE);
$template->set_block (‘fh’, ‘mainBlock’, ‘main’);
$template->set_var(‘USERNAME’, $user);

$template->parse(‘main’,’mainBlock’, false);
$template->pparse(‘output’, ‘fh’);

This example code does the following:

◆ Assigns a variable called $TEMPLATE_DIR to /some/path and
$MY_TEMPLATE variable to screen.ihtml.

◆ Creates a Template object that points to $MY_TEMPLATE file (shown in
Listing 3-1) in the $TEMPLATE_DIR directory.

54 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 54

◆ Uses the set_block() method to assign the variable name ‘main’ to a
block called mainBlock, which is identified in the template using <!--
BEGIN mainBlock --> and <!-- END mainBlock --> tags.

◆ Uses the set_var() method to replace a template tag called {USERNAME}
with data from $user variable.

◆ Uses the parse() method to parse mainBlock within the template.

◆ Parses the template to insert the contents of the already parsed mainBlock
in the output, and uses the pparse() method to print all the contents of
the template.

Listing 3-1: screen.ihtml

<html>
<head><title>My Document</title></head>

<!-- BEGIN mainBlock -->
<body bgcolor=”#ffffff”>
<h1>Hello {USERNAME} </h1>
</body>
<!-- END mainBlock -->
</html>

Generating HTML combo lists in application code
When using HTML interface, especially Web forms to collect input data from users,
it is often necessary to display drop-down combo list (select) boxes. Ideally, the
PHP code responsible for generating the combo boxes should be free from HTML
tags so that total interface control remains within the HTML template. Here is a
code segment that creates a combo list using PHP but includes HTML tags:

//BAD:

$TEMPLATE_DIR = ‘/some/path’;
$MY_TEMPLATE = ‘bad_screen.ihtml’;

$cmdArray = array(
‘1’ => ‘Add’,
‘2’ => ‘Modify’,
‘3’ => ‘Delete’

);

Chapter 3: PHP Best Practices 55

05 549669 ch03.qxd 4/4/03 9:24 AM Page 55

while(list($cmdID, $cmdName) = each($cmdArray))
{
$cmdOptions .= “<option value=$cmdID>$cmdName</option>”;

}

$template = new Template($TEMPLATE_DIR);
$template->set_file(‘fh’, $MY_TEMPLATE);
$template->set_block (‘fh’, ‘mainBlock’, ‘main’);

$template->set_var(‘USERNAME’, $user);
$template->set_var(‘CMD_OPTIONS’, $cmdOptions);
$template->parse(‘main’,’mainBlock’, FALSE);
$template->pparse(‘output’, ‘fh’);

This example uses bad_screen.ihtml, shown in Listing 3-2, as the HTML interface
file. A while loop is used to create $cmdOptions. Notice that some HTML tags are
embedded in the following line:

$cmdOptions .= “<option value=$cmdID>$cmdName</option>”;

This violates the principle of keeping all HTML out of the code. There are situations in
which it isn’t possible to keep the HTML out, but in creating combo boxes you can.

Listing 3-2: bad_screen.ihtml

<html>
<head><title>My Document</title></head>
<!-- BEGIN mainBlock -->

<body bgcolor=”#ffffff”>
<h1>Hello {USERNAME} </h1>
<form>
<select name=”cmd”>
{CMD_OPTIONS}
</select>
<input type=submit>
</form>
</body>
<!-- END mainBlock -->
</html>

Listing 3-3 shows a modified version of Listing 3-2. Here the combo box (select
list) is shown as an embedded block called optionBlock within the mainBlock in
the template. The <option value=”{CMD_ID}”>{CMD_NAME}</option> line is
looped when the block is populated.

56 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 56

Listing 3-3: good_screen.ihtml

<html>
<head><title>My Document</title></head>
<!-- BEGIN mainBlock -->

<body bgcolor=”#ffffff”>
<h1>Hello {USERNAME} </h1>
<form>
<select name=”cmd”>

<!-- BEGIN optionBlock -->
<option value=”{CMD_ID}”>{CMD_NAME}</option>

<!-- BEGIN optionBlock -->

</select>
<input type=submit>
</form>
</body>
<!-- END mainBlock -->
</html>

To generate the combo box without having any HTML code inside the PHP
application, we modify the last code segment as follows:

$TEMPLATE_DIR = ‘/some/path’;
$MY_TEMPLATE = ‘bad_screen.ihtml’;

$cmdArray = array(
‘1’ => ‘Add’,
‘2’ => ‘Modify’,
‘3’ => ‘Delete’

);

$template = new Template($TEMPLATE_DIR);
$template->set_file(‘fh’, $MY_TEMPLATE);
$template->set_block (‘fh’, ‘mainBlock’, ‘main’);
$template->set_block (‘mainBlock’, ‘optionBlock’, ‘options’);

while(list($cmdID, $cmdName) = each($cmdArray))
{
$template->set_var(‘CMD_ID’, $cmdID);
$template->set_var(‘CMD_NAME’, $cmdName);
$template->parse(‘options’,’optionBlock’, TRUE);

}

Chapter 3: PHP Best Practices 57

05 549669 ch03.qxd 4/4/03 9:24 AM Page 57

$template->set_var(‘USERNAME’, $user);
$template->parse(‘main’,’mainBlock’, FALSE);
$template->pparse(‘output’, ‘fh’);

The embedded block optionBlock is populated using the while loop, which
replaced the CMD_ID, and CMD_NAME inside the loop. The parse() method that is
called to parse the optionBlock has the append flag set to TRUE. In other words,
when the block is parsed, the output of the last parsed block is appended to the cur-
rent one to make the list of options.

Finally, the mainBlock is parsed as usual and the combo box is generated com-
pletely from the interface template, without needing HTML tags in the PHP code.

Reducing template code
When using the Template object to display a user interface, you may think that
many calls to the set_var() method are needed to replace template tags. For
example:

// OK - could be better
$TEMPLATE_DIR = ‘/some/path’;
$MY_TEMPLATE = ‘screen.ihtml’;

$template = new Template($TEMPLATE_DIR);
$template->set_file(‘fh’, $MY_TEMPLATE);
$template->set_block (‘fh’, ‘mainBlock’, ‘main’);

$template->set_var(‘FIRST’, $first);
$template->set_var(‘LAST’, $last);
$template->set_var(‘EMAIL’, $email);
$template->set_var(‘AGE’, $age);
$template->set_var(‘GENDER’, $gender);

$template->parse(‘main’,’mainBlock’, false);
$template->pparse(‘output’, ‘fh’);

If you are assigning a lot of template variables to values like in the previous code
segment, you can reduce the number of set_var() calls by combining all of the
calls into a single call. This will speed up the application since a single call is faster
than many calls to a method. An improved version of this script is shown below.

// BETTER

$TEMPLATE_DIR = ‘/some/path’;
$MY_TEMPLATE = ‘screen.ihtml’;

58 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 58

$template = new Template($TEMPLATE_DIR);
$template->set_file(‘fh’, $MY_TEMPLATE);
$template->set_block (‘fh’, ‘mainBlock’, ‘main’);

$template->set_var(array(
‘FIRST’ => $first,
‘LAST’ => $last,
‘EMAIL’ => $email,
‘AGE’ => $age,
‘GENDER’ => $gender
)

);

$template->parse(‘main’,’mainBlock’, false);
$template->pparse(‘output’, ‘fh’);

In this example, a single instance of set_var() method is used to pass an unnamed
associative array with template tags as keys and appropriate data as values.

Best Practices for Documentation
When you decide to develop software, you should create design and implementa-
tion documentations. Design documentations include block diagrams that describe
the system, flow charts that describe a specific process, class diagrams that show
the class hierarchy, and so on.

Implementation documentation also has flow charts to describe specific imple-
mentation processes. Most importantly, though, you use inline code comments to
describe what your code does.

You can use single-line or multiple comments such as:

<?php

// This is a single-line comment
$myName = ‘Joe Gunchy’;

/*
This is a multi-line comment that can span
over multiple lines.

*/
$mySchool = ‘CSUS’;

?>

Chapter 3: PHP Best Practices 59

05 549669 ch03.qxd 4/4/03 9:24 AM Page 59

All the code for this book is commented, although the inline code com-

ments have been stripped out of the code listings printed in the book to

reduce the number of lines and because the book covers each method in

detail. However, you can get the commented version of the code on

the accompanying CD-ROM and/or on the Web site for the book at

www.evoknow.com/phpbook.php.

Best Practices for Web Security
In this section I will discuss a set of best practices that if practiced will result in bet-
ter security for your Web applications.

Keep authentication information
away from prying eyes
Many Web applications use authentication information to allow restricted access to
the application using username/password or IP addresses. Similarly, all applica-
tions using databases use database access information (host name, username/pass-
word, port, etc.) that should never be revealed to any Web visitors. You should keep
these authentication data away from prying eyes by using one of these methods:

◆ Store authentication data way from the Web document tree. Make your
applications read authentication related files from outside the Web docu-
ment tree so that these files are not browseable via Web. This will require
that your Web server has read access to these files. No other user (other
than the root) should have access to these files.

◆ If you cannot store authentication files outside your Web document tree
for some reason, you need to make sure the authentication files are not
browseable via the Web. This can be done by using file extensions and
restricting these extensions from being served by the Web server.

When using databases with applications always create a limited privilege user by
following your database administration guide. This user should be allowed to only
access the specific database that your application needs access to. You should never
use a privileged database user account to access database from Web applications.
Consult your database documentation for details on how to create limited privilege
database users.

60 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 60

See your errors before someone else does
Often malicious hackers use debugging or error information to take advantage of a
broken application. This is why it is critical that you perform extensive tests on
your Web applications before you deploy it on production servers.

The best way to test and find problems is to have all levels of error reporting
enabled using the error_reporting(E_ALL) function. This function should be
used as the very first line in your application code. For example:

<?php

// Enable all error reporting
error_reporting(E_ALL)

// Your code goes below.

?>

During development you should set error_reporting() to E_ALL, which enables
all types of errors to be reported. There are many error reporting levels. You can
find all about these error reporting levels in http://www.php.net/manual/en/
ref.errorfunc.php#errorfunc.constants

Once you have thoroughly tested your application, you can reduce the error
reporting level or even disable it. However, if you do the latter, make sure you
enable error logging using the error_log() function. You can learn about this
function at http://www.php.net/manual/en/function.error-log.php.

Restrict access to sensitive applications
When you have an application that should be used by only a restricted set of users,
you need to control access to the application from either PHP code or using Web
server access control mechanism. This is covered in great detail in Chapter 22.

Best Practices for Source
Configuration Management
When developing any software, use a version-control system to manage changes.
We used Concurrent Version System (CVS) when developing applications discussed
in this book. CVS allows you to create versions of your software by creating a
source repository from which you check out and check in code changes. CVS main-
tains all version information automatically so that you can retrieve an older

Chapter 3: PHP Best Practices 61

05 549669 ch03.qxd 4/4/03 9:24 AM Page 61

version with a single command. It is also the de-facto version control mechanism
for many large-scale Open Source software.

You can learn more about CVS at www.gnu.org/software/cvs or at
http://www.cvshome.org.

Summary
In this chapter I have discussed various best practices for functions/methods, data-
base, user interface, documentation, security, and version control. Getting used to
these best practices is often very difficult since many programmers are often under
great time pressure to produce workable applications. However, it is very important
to get started with these practices as early in the development as possible so that
they become second nature in future projects. This is particularly true for getting
used to version control tools such as CVS. Many developers find version control as
an “additional task” that does not relate directly to the deadline and simply wait till
the very end to place code in version control. This type of practices often leads to
big code maintenance problem in the long run. The key issue is early adoption of
best practices so that you get used to it from the beginning.

62 Part I: Designing PHP Applications

05 549669 ch03.qxd 4/4/03 9:24 AM Page 62

Developing Intranet Solutions
CHAPTER 4

Architecture of an Intranet Application

CHAPTER 5
Central Authentication System

CHAPTER 6
Central User Management System

CHAPTER 7
Intranet System

CHAPTER 8
Intranet Simple Document Publisher

CHAPTER 9
Intranet Contact Manager

CHAPTER 10
Intranet Calendar Manager

CHAPTER 11
Internet Resource Manager

CHAPTER 12
Online Help System

Part II

06 549669 PP02.qxd 4/4/03 9:24 AM Page 63

06 549669 PP02.qxd 4/4/03 9:24 AM Page 64

Chapter 4

Architecture of an Intranet
Application
INTRANET APPLICATIONS ARE PRIMARILY focused on automating an organization’s
daily business processes. A modern company has many intranet applications that
are available to its employees to help them be more productive and efficient. For
example, a group calendar system or task-tracking system can save a great deal of
time and resources for most companies with more than five employees. This chap-
ter focuses on the underlying architecture of intranet applications and discusses an
open-source framework that enables you to develop intranet PHP applications in a
rapid manner.

Understanding Intranet
Requirements
To develop intranet applications, you need to understand how a typical intranet is
deployed. A company with two employees can have an intranet, but the average
intranet application is deployed in an organization with tens to hundreds of users.
Figure 4-1 shows how an intranet “connects” employees in multiple departments of
a company that uses an intranet application server to manage its daily internal
business functions.

A company generally uses its intranet server to automate interdepartment com-
munication activities such as a shared calendar, shared contact database, document
management, project/task tracking, and so forth.

Before you develop the framework that will enable you to create intranet appli-
cations in PHP, you need to understand the intranet user requirements. Figure 4-2
shows how a single department within an organization appears from an intranet-
requirements point of view.

Users in organizations work in teams. A team usually has a team leader and a
project assignment. The projects are managed by the department head. This type of
hierarchical user base is very common in modern organizations.

65

07 549669 ch04.qxd 4/4/03 9:24 AM Page 65

Figure 4-1: A typical intranet-enabled company.

Figure 4-2: User requirements for a typical intranet-enabled company.

Each intranet application you develop must be able to authenticate and autho-
rize different types of users. For example, an employee vacation management
application has to incorporate the hierarchical chain of command that enables
employee vacation requests to be reviewed and approved first by team leaders and
then by the department head. So far, our intranet application framework has the
following requirements:

◆ Central authentication: Users need to be authenticated to access intranet
applications. There are likely to be many intranet applications within an
organization and therefore user authentication should be done such that
a user logs in only once to access any application. A session should be

Any Department

Department Head

Team

Employee

Project 1

Team Leader

Team

Employee

Project (n)

Team Leader

Marketing

PC

PC PC

Engineering

PC PCPC

PC PC

Sales MIS

PC PCPC

PC PC

Intranet
Server

Firewall

Database
Server

Administration

PC PCPC

PC PC

66 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 66

created that allows all applications to identify an authenticated user.
When a user attempts to access an intranet application without logging in
first, the application should automatically redirect the user to the login
application. When the user is successfully authenticated via the login
application, she should be automatically forwarded back to the applica-
tion she had been attempting to access. The login process should be seam-
less. Similarly, a central, seamless logout facility should be provided to
allow the users to log out from the intranet.

◆ Application-specific authorization: Different types of users exist in an
intranet and, therefore, intranet applications must discriminate when
authorizing users. Employee access to an intranet application will vary.
Because each application will have different requirements for authorizing
the user, the task of authorization should be left to the application itself.

◆ A shared database: Most intranet activity involves collaboration or group
efforts. For example, users working in a team within a project might need
to report the status of the project tasks individually, but the team leader or
department head needs to access the information from the entire team to
make technical or business decisions. A shared database is therefore the
solution to store data.

Based on these requirements, let’s go ahead and build an intranet application
framework.

Building an Intranet Application
Framework
An intranet consists of many applications. It is a good idea to create an application
framework that provides a set of commonly needed objects and services to imple-
ment applications. Typical intranet applications have user authentication require-
ments, database access requirements, user interfaces requirements, and business
logic requirements. Each application’s business logic, which is the work done by the
application, is unique and must be implemented in the application code itself.
However, each application can benefit from using a standard application frame-
work consisting of objects that standardize authentication, database access, user
interface, etc. The framework I will build here will do just that.

Figure 4-3 shows the high-level design diagram for an intranet application that
will use our application framework.

Now let’s discuss the components of this architecture.

Chapter 4: Architecture of an Intranet Application 67

07 549669 ch04.qxd 4/4/03 9:24 AM Page 67

Figure 4-3: High-level architecture diagram of an intranet application
using our framework.

Using an HTML template-based presentation layer
All input and output to and from the application is handled via a template-driven
HTML presentation layer. When the application needs input from the user, it pre-
sents an HTML page generated from an appropriate HTML template. Similarly,
when the application needs to display output, it generates an HTML page by replac-
ing special application-specific tags within the template. This ensures that cosmetic
changes to the input or output interfaces can be done without requiring help from
the application developer. For example, an application that uses the template-based
presentation layer can have its interface modified by an HTML writer or graphics
artist.

Using PHP Application Framework components
The components in the PHP Application Framework (PHPAF) layer implement the
base application by providing the following services:

◆ Database abstraction support: See the “Relational database” section later
in this chapter for details.

◆ Centralized authentication support: All applications defer the login and
logout to the central authentication facility, as discussed earlier in this
chapter.

Relational
Database

Business Logic

Your PHP
Application

PHP Application
Framework

Components

HTML Template-based
Presentation Layer

INPUT OUTPUT

68 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 68

◆ Override authorization support: Each application using the intranet
application defines its own authorization method.

◆ Debugging support: An application needs to be debugged many times
during the development process. Because debugging is a core part of the
development process, the framework includes a built-in debugger. The
current implementation is very simple yet useful.

◆ Internationalized error and status message handling support: Each
application using the framework must use a central error message
and status message repository. Both error and status messages can be
internationalized.

Business logic
Each application has its own business-logic requirements. The business-logic
objects will be given database connectivity from the application framework. This
ensures that database abstraction is maintained.

Relational database
The relational database access is abstracted from the application using an abstrac-
tion layer, which is part of the application framework. This ensures that application
database requirements can change without drastically affecting the application. For
example, an application can be developed with this framework such that it works
with the widely used, high-performance MySQL database and then deployed in an
environment where the database is Oracle. Of course, the developers have to be
careful not to use any vendor-specific features.

Figure 4-4 shows a block diagram of an application that uses the previously
mentioned application framework.

Figure 4-4: A block diagram of an application using the PHP Application Framework.

Application Specific
Error and Status

Messages
(Supports

Internationalization)

Database
Independent
Abstraction

Authentication
(Valid User Credentials)

Authorization
(Application Specific Authorization Requirements)

Application Run()
(Application Specific Driver Code)

Business Logic Objects
(Application Specific Code)

Chapter 4: Architecture of an Intranet Application 69

07 549669 ch04.qxd 4/4/03 9:24 AM Page 69

The application checks for valid user credentials in the authentication phase,
which is already supplied by the framework’s login application for valid users.

The authorization step involves application-specific privilege management. Not
all valid (authenticated) users are likely to have the same privilege based on the
type of application. For example, an Employee Information System (EIS) applica-
tion in an engineering firm can assign different privileges to executive manage-
ment, department heads, team leaders, and engineers. This is why the authorization
code is specific to the instance of the application and should be written by the
application developer and should not be provided by the framework.

When an application has gone through the authentication and authorization
phases, it will run the application. This code will involve invoking application spe-
cific business objects and database interaction.

The application will have database access via the database-independent abstrac-
tion and also will produce status messages and errors using the facilities provided
by the framework.

Figure 4-5 shows a real-world application framework that we will create in this
chapter.

Figure 4-5: A real-world PHP Application Framework.

The core of this framework is the class.PHPApplication.php. This class provides
an abstract PHP application that you can extend to incorporate facilities provided by
the error handler (class.ErrorHandler.php), the debugger (class.Debugger.php),
and the database abstraction (class.DBI.php).

DB.php (from PEAR)

class.PHPApplication.php

class.Debugger.phpclass.ErrorHandler.php

class.DBI.php

Your PHP Application Business
Logic

70 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 70

This framework is provided with the CD-ROM. You don’t need to create it

from scratch. Also note that the database abstraction uses DB.php from the

PEAR.

Now let’s create the classes needed to implement this application framework.

Creating a Database
Abstraction Class
Accessing a database using its own API is common in the PHP world. For example,
most PHP developers use PHP with MySQL and, therefore, they write code that is
specific to the MySQL API found in PHP.

There is nothing wrong with this approach if you know that your PHP applica-
tions will be used only for the MySQL database server. However, if there is a chance
that your applications will be used with other databases such as Oracle, Postgres,
and so forth, you need to avoid MySQL-specific API. A developer who has
abstracted the database API in a level above the vendor-specific API can enjoy the
speed of porting the application to different relational databases. Here, we will cre-
ate a class called class.DBI.php that will implement a database abstraction layer for
our application framework. Listing 4-1 shows class.DBI.php, which implements
the database abstraction using PEAR DB.

See http://pear.php.net/manual/en/core.db.php for details on

PEAR DB, a unified API for accessing SQL-databases.

Listing 4-1: class.DBI.php

<?php

/*

Database abstraction class

Purpose: this class provides database abstraction using the PEAR
DB package.

Continued

Chapter 4: Architecture of an Intranet Application 71

07 549669 ch04.qxd 4/4/03 9:24 AM Page 71

Listing 4-1 (Continued)

*/
define(‘DBI_LOADED’, TRUE);

class DBI {

var $VERSION = “1.0.0”;

function DBI($DB_URL)
{

$this->db_url = $DB_URL;

$this->connect();

if ($this->connected == TRUE)
{

// set default mode for all resultset

$this->dbh->setFetchMode(DB_FETCHMODE_OBJECT);
}

}

function connect()
{

// connect to the database
$status = $this->dbh = DB::connect($this->db_url);

if (DB::isError($status))
{

$this->connected = FALSE;

$this->error = $status->getMessage();

} else {

$this->connected = TRUE;
}

return $this->connected;

}

function isConnected()

72 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 72

{
return $this->connected;

}

function disconnect()
{

if (isset($this->dbh)) {
$this->dbh->disconnect();
return 1;

} else {
return 0;

}
}

function query($statement)
{

$result = $this->dbh->query($statement);

if (DB::isError($result))
{

$this->setError($result->getMessage());

return null;

} else {

return $result;
}

}
function setError($msg = null)
{

global $TABLE_DOES_NOT_EXIST, $TABLE_UNKNOWN_ERROR;

$this->error = $msg;

if (strpos($msg, ‘no such table’))
{

$this->error_type = $TABLE_DOES_NOT_EXIST;

} else {

Continued

Chapter 4: Architecture of an Intranet Application 73

07 549669 ch04.qxd 4/4/03 9:24 AM Page 73

Listing 4-1 (Continued)

$this->error_type = $TABLE_UNKNOWN_ERROR;
}

}

function isError()
{

return (!empty($this->error)) ? 1 : 0;
}

function isErrorType($type = null)
{

return ($this->error_type == $type) ? 1 : 0;
}

function getError()
{

return $this->error;
}

function quote($str)
{

return “‘“ . $str . “‘“;
}

function apiVersion()
{

return $VERSION;
}

}
?>

Here are the functions the DBI class implements:

◆ DBI(): This is the constructor method, which creates the instances of the
DBI object. For example, here is a script called test_dbi.php that creates a
DBI object.

<?php

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change the

74 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 74

// setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

// If you have installed PHPLIB in a different
// directory than %DocumentRoot%/phplib, change
// the setting below.
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// If you have installed framework directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;

// Create a path consisting of the PEAR,
// PHPLIB and our application framework
// path ($APP_FRAMEWORK_DIR)
$PATH = $PEAR_DIR . ‘:’ .

$PHPLIB_DIR . ‘:’ .
$APP_FRAMEWORK_DIR;

// Insert the path in the PHP include_path so that PHP
// looks for our PEAR, PHPLIB and application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PATH . ‘:’ .
ini_get(‘include_path’));

// Now load the DB.php class from PEAR
require_once ‘DB.php’;

// Now load our DBI class from application framework
// directory
require_once(‘class.DBI.php’);

// Set the database URL to point to a MySQL
// database. In this example, the database is
// pointing to a MySQL database called auth on
// the localhost server, which requires username
// (root) and password (foobar) to login
$DB_URL = ‘mysql://root:foobar@localhost/auth’;

// Create a DBI object using our DBI class
// Use the database URL to initialize the object
// and make connection to the database
$dbi = new DBI($DB_URL);

Chapter 4: Architecture of an Intranet Application 75

07 549669 ch04.qxd 4/4/03 9:24 AM Page 75

// Dump the contents of the DBI object to
// see what it contains.
echo “<pre>”;
print_r($dbi);
echo “</pre>”;

?>

Here, $dbi is an instance of the DBI object created from class.DBI.php.
The constructor method has to be passed a database URL which has the
following syntax:

database_type://username:password↓tabase_host/database_name

The $DB_URL variable was set to create a database URL that pointed to a
MySQL database (mysql) named mydb on host called localhost The data-
base can be accessed using the root user account and foobar password.

The DBI() method sets the DB URL passed to itself as db_url member
variable and calls the connect() method to connect to the given data-
base. The constructor sets the fetch mode to DB_FETCHMODE_OBJECT,
which allows us to fetch database rows as objects.

◆ connect(): By default, the DBI() constructor method calls the connect()
function directly to establish the connection, so you don’t need to. con-
nect() connects to the database specified in db_url member variable of
the object. It sets a member variable dbh to the database handle object
created by the DB::connect() method, which is found in the PEAR DB
package. connect also sets a member variable called connected to
Boolean TRUE or FALSE and returns that value.

◆ disconnect(): The disconnect() function disconnects the DBI object
from the database.

The terminate() function in PHPApplication class (class.
PHPApplication.php) calls the disconnect() function if the applica-

tion is connected to a database. See terminate() function in

PHPApplication class for details.

◆ query(): This function performs a SQL query on the connected database.
The result of the query is stored in a result object called $result. If the
query returns SQL error(s), a member variable called $this->dbi->error
is set to the error message and null is returned.

76 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 76

If the query is successful, it returns the result object. The result object can
be used to fetch rows. For example, the test_query.php script tries to fetch
data from a table called PROD_TBL using a database URL such as
mysql://root:foobar@localhost/products.

<?php

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change the
// setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

// If you have installed PHPLIB in a different
// directory than %DocumentRoot%/phplib, change
// the setting below.
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// If you have installed framework directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;

// Create a path consisting of the PEAR,
// PHPLIB and our application framework
// path ($APP_FRAMEWORK_DIR)
$PATH = $PEAR_DIR . ‘:’ .

$PHPLIB_DIR . ‘:’ .
$APP_FRAMEWORK_DIR;

// Insert the path in the PHP include_path so that PHP
// looks for our PEAR, PHPLIB and application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PATH . ‘:’ .
ini_get(‘include_path’));

// Now load the DB.php class from PEAR
require_once ‘DB.php’;

// Now load our DBI class from application framework
require_once(‘class.DBI.php’);

Chapter 4: Architecture of an Intranet Application 77

07 549669 ch04.qxd 4/4/03 9:24 AM Page 77

// Setup the database URL
$DB_URL = ‘mysql://root:foobar@localhost/products’;

// Create a DBI object that connects to the
// database URL
$dbi = new DBI($DB_URL);

if (! $dbi->isConnected())
{

echo “Connection failed for $DB_URL
”;
exit;

}

// Create a SQL statement to fetch data
$statement = ‘SELECT ID, NAME FROM PROD_TBL’;

// Execute the statement using DBI query method
$result = $dbi->query($statement);

// If the result of query is NULL then show
// database error message
if ($result == NULL)
{

echo “Database error:” . $dbi->getError() . “\n”;

// Else check if there are no data available or not
} else if (! $result->numRows()){

echo “No rows found.”;

// Now data is available so fetch and print data
} else {

echo “<pre>ID\tNAME
”;

while ($row = $result->fetchRow())
{

echo $row->ID, “\t”, $row->NAME, “
”;
}
echo “</pre>”;

}

?>

78 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 78

The SQL statement SELECT ID, NAME FROM PROD_TBL is stored in
$statement variable and passed to the DBI::query() method. The result
is tested first for null. If the result is null, the database error is printed
using the DBI::getError() method.

If there are no database errors, the next check is made to see if there are
any rows using the numRow() method from the $result object. If there
are no rows, an appropriate message is printed.

If there are data in the returned $result object, the result is printed in a
loop using the fetchRow() method.

The row data is fetched in $row object. The $row->DATA_FIELD method is
used to get the data for each field. For example, to retrieve the NAME field
data, the $row->NAME value is accessed.

◆ quote(): This is a utility function that puts a pair of single quotes around
a string to protect the string from being passed without quotation. Here’s
an example in which the $name field is single-quoted using $this->dbi-
>quote($name) call:

<?php

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change the
// setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

// If you have installed PHPLIB in a different
// directory than %DocumentRoot%/phplib, change
// the setting below.
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// If you have installed framework directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;

// Create a path consisting of the PEAR,
// PHPLIB and our application framework
// path ($APP_FRAMEWORK_DIR)
$PATH = $PEAR_DIR . ‘:’ .

$PHPLIB_DIR . ‘:’ .
$APP_FRAMEWORK_DIR;

Chapter 4: Architecture of an Intranet Application 79

07 549669 ch04.qxd 4/4/03 9:24 AM Page 79

// Insert the path in the PHP include_path so that PHP
// looks for our PEAR, PHPLIB and application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PATH . ‘:’ .
ini_get(‘include_path’));

// Now load the DB.php class from PEAR
require_once ‘DB.php’;

// Now load our DBI class from application framework
require_once(‘class.DBI.php’);

// Setup the database URL
$DB_URL = ‘mysql://root:foobar@localhost/foobar’;

// Create a DBI object that connects to the
// database URL
$dbi = new DBI($DB_URL);

if (! $dbi->isConnected())
{

echo “Connection failed for $DB_URL
”;
exit;

}

$id = 100;
$name = “Joe Gunchy”;

$name = $dbi->quote($name);

$statement = “INSERT INTO PROD_TBL (ID,NAME) “ .
“VALUES($id, $name)”;

$result = $dbi->query($statement);

if ($result == NULL)
{

echo “Database error:” . $dbi->getError() . “
\n”;

} else {

echo “Added $name in database.
\n”;
}

?>

80 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 80

◆ apiVersion(): This is a utility method that returns the version number of
the DBI object. The DBI abstraction class enables you to connect to any
database and perform any SQL query, such as SELECT, INSERT, UPDATE,
DELETE, and so forth. Because it hides the database vendor-specific details
from your application, porting to other databases become a much easier
task.

Now let’s look at how we can develop an error handler class.

Creating an Error Handler Class
Every application needs to display error messages. In the old days, error messages
were usually hard-coded in the executable programs and were very difficult to
understand, let alone modify!

Now, in the days of Web interface, we should not resort to the old way of show-
ing hard-coded error messaging because the application can be used in so many
parts of the world. Error messages written in English are just not friendly enough
for the world in this Internet age. So applications that have internationalizable
error message support will have broader reach.

Listing 4-2 shows an error message handler, which loads and displays error mes-
sages in the application’s default language. Because an application’s default lan-
guage can be changed in the configuration file, it becomes very easy to display
error messages in different languages.

Listing 4-2: class.ErrorHandler.php

<?php
/*
* CVS ID: Id
*/
/*
* Centalizes all error messages.
* Supports internationalization of error messages.
*
* @author EVOKNOW, Inc. <php@evoknow.com>
* @access public
*/

define(‘ERROR_HANDLER_LOADED’, TRUE);
class ErrorHandler
{

function ErrorHandler($params = null)
{

global $DEFAULT_LANGUAGE;
$this->language = $DEFAULT_LANGUAGE;

Continued

Chapter 4: Architecture of an Intranet Application 81

07 549669 ch04.qxd 4/4/03 9:24 AM Page 81

Listing 4-2 (Continued)

$this->caller_class = (!empty($params[‘caller’])) ? $params[‘caller’] :
null;

$this->error_message = array();
//error_reporting(E_ERROR | E_WARNING | E_NOTICE);
$this->load_error_code();

}

function alert($code = null, $flag = null)
{

$msg = $this->get_error_message($code);
if (!strlen($msg))
{

$msg = $code;
}
if ($flag == null)
{

echo “<script>alert(‘$msg’);history.go(-1);</script>”;
} else if (!strcmp($flag,’close’)){

echo “<script>alert(‘$msg’);window.close();</script>”;
} else {

echo “<script>alert(‘$msg’);</script>”;
}

}
function get_error_message($code = null)
{

if (isset($code))
{

if (is_array($code))
{

$out = array();
foreach ($code as $entry)
{

array_push($out, $this->error_message[$entry]);
}
return $out;

} else {
return (! empty($this->error_message[$code])) ? $this-

>error_message[$code] : null;
}

} else {
return (! empty($this->error_message[‘MISSING’])) ? $this-

>error_message[‘MISSING’] : null;
}

82 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 82

}
function load_error_code()
{

global $ERRORS;
if (empty($ERRORS[$this->language]))
{

return FALSE;
}
while (list($key, $value) = each ($ERRORS[$this->language])) {

$this->error_message[$key] = $value;
}
return TRUE;

}
}

?>

The class.ErrorHandler.php class assumes that the application has all its error
messages defined in an application-specific configuration file and all error mes-
sages are stored in a multidimensional array called $ERRORS. For example:

<?php

// US English
$ERRORS[‘US’][‘SAMPLE_ERR_CODE’] = “This is an error message.”;

// Spanish
$ERRORS[‘ES’][‘SAMPLE_ERR_CODE’] = “Esto es un mensaje de error.”;

//German
$ERRORS[‘DE’][‘SAMPLE_ERR_CODE’] = “Dieses ist eine Fehlermeldung.”;

?>

If this code is stored in appname.errors file and loaded by an application using
require_once(‘appname.errors’), then the ErrorHandler class can print the
SAMPLE_ERR_CODE error message in any of the three languages, depending on the
default language settings.

You can translate your error messages in multiple languages using

Language Translation Tools provided by Google at http://translate.
google.com/translate_t. Be aware that not all automatic translations

are perfect.

Chapter 4: Architecture of an Intranet Application 83

07 549669 ch04.qxd 4/4/03 9:24 AM Page 83

You can set an application’s default language using the $DEFAULT_LANGUAGE
variable in a configuration file for your application. For example,

<?php

// appname.conf

// Default language for
$DEFAULT_LANGUAGE = ‘US’;

?>

If this configuration is loaded by an application using the ErrorHandler class, all
error messages will be displayed in U.S. English.

ErrorHandler() is the constructor function for the class.ErrorHandler.php.
This function sets the default language of the error handler to what is set in the
application configuration as global $DEFAULT_LANGUAGE variable.

This method can be passed an associative array as a parameter. If the parameter
array has a key=value pair called caller=class_name, then it sets the member
variable called caller_class to the value.

The constructor also initializes a member array called error_message and loads
the error code for the default language by calling the load_error_code() method.

The error handler class ErrorHandler is automatically invoked by the
PHPApplication class so you don’t need to create an error handler manually in
your application code.

Now let’s look at the other functions available in ErrorHandler class.

◆ alert(): This function displays an internationalized error message using
a simple JavaScript pop-up alert dialog box. It is called with the error
code. The get_error_message() method is used to retrieve the appropri-
ate error message in default application language from the application’s
error configuration file.

◆ get_error_message(): This function retrieves the error messages for
given error code. If an array of error codes is supplied as parameter, the
function returns an array of error messages. If no error code is supplied,
the function returns a default error message using the MISSING error code.

◆ load_error_code(): This function loads the application’s error code in
from the global $ERRORS array to its own member array variable
error_message. This function is called from the constructor method and
does not need to be called manually, unless you want to reload error mes-
sages from $ERRORS.

84 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 84

Creating a Built-In Debugger Class
When developing applications, each developer uses at least some form of debug-
ging. Although PHP-supported Integrated Development Environments (IDEs) are
becoming available, they’re still not the primary development tools for most PHP
developers, who are still using echo, print, and printf functions to display
debugging information during development.

The debugging class called class.Debugger.php is a bit more advanced than
the standard echo, print, and printf messages.

It provides a set of facilities that include

◆ Color-coding debug messages

◆ Automatically printing debug line numbers

◆ Optionally buffering debug messages

◆ Prefixing debug messages with a given tag to make it easy to identify
messages in a large application

Listing 4-3 shows the debugger class that is part of our application framework.
It can be used to perform basis application debugging.

Listing 4-3: class.Debugger.php

<?php

/*
* CVS ID: Id
*/

define(‘DEBUGGER_LOADED’, TRUE);
class Debugger {

var $myTextColor = ‘red’;

function Debugger($params = null)
{

// Debugger constructor method
$this->color = $params[‘color’];
$this->prefix = $params[‘prefix’];
$this->line = 0;
$this->buffer_str = null;
$this->buffer = $params[‘buffer’];
$this->banner_printed = FALSE;

Continued

Chapter 4: Architecture of an Intranet Application 85

07 549669 ch04.qxd 4/4/03 9:24 AM Page 85

Listing 4-3 (Continued)

}

function print_banner()
{

if ($this->banner_printed == TRUE)
{

return 0;
}

$out = “

myTextColor’>” .
“Debugger started for $this->prefix” .
“
<hr>”;

if ($this->buffer == TRUE){
$this->buffer_str .= $out;

} else {
echo $out;
$this->banner_printed = TRUE;

}

return 1;
}

function write($msg)
{

$out = sprintf(“%03d ” .
“%s
\n”,
$this->myTextColor,
$this->line++,
$this->color,
$msg);

if ($this->buffer == TRUE)
{

$this->buffer_str .= $out;
} else {

echo $out;
}

}

86 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 86

function debug_array($hash = null)
{

while(list($k, $v) = each($hash))
{
$this->write(“$k = $v”);

}
}

function set_buffer()
{

$this->buffer = TRUE;
}

function reset_buffer()
{

$this->buffer = FALSE;
$this->buffer_str = null;

}

function flush_buffer()
{

$this->buffer = FALSE;
$this->print_banner();
echo $this->buffer_str;

}

}

?>

The debugger class has the following methods:

◆ Debugger(): This is the constructor function for the debugger class
(class.Debugger.php). This function initializes the color, prefix, line, and
buffer_str, banner_printed member variables. The color is used to
display the debug information in a given color. The prefix variable is used
to prefix each debug message displayed, which allows for easier identifi-
cation of messages.

The line variable is initialized to zero, which is automatically incremented
to help locate debug information quickly. The buffer_str variable is used
to store buffered debug information. The banner_printed variable, which

Chapter 4: Architecture of an Intranet Application 87

07 549669 ch04.qxd 4/4/03 9:24 AM Page 87

controls the banner printing, is set to FALSE. The debugger can be invoked
in an application called test_debugger1.php as follows:

<?php

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed framewirk directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;

// Insert the path in the PHP include_path so that PHP
// looks for our PEAR, PHPLIB and application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$APP_FRAMEWORK_DIR . ‘:’ .
ini_get(‘include_path’));

// Now load our Debugger class from application framework
require_once(‘class.Debugger.php’);

$myDebugger = new Debugger(array(
‘color’ => ‘red’,
‘prefix’ => ‘MAIN’,
‘buffer’ => FALSE)
);

// Define an array of fruits
$fruits = array(‘apple’, ‘orange’, ‘banana’);

// Show the array contents
$myDebugger->debug_array($fruits);

?>

In this example, a new Debugger object called $myDebugger is created,
which will print debug messages in red color and use ‘MAIN’ as the prefix
for each message. The buffering of debug messages is disabled as well.

◆ print_banner(): This function prints a banner message as follows:

Debugger started for PREFIX

The PREFIX is set when the object is created.

88 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 88

◆ write(): This function displays a debug message using the chosen color
and automatically prints the debug message line number. If debug buffer-
ing is on, then the message is written to the buffer (buffer_str).

◆ debug_array(): This function allows you to debug an associative array. It
prints the contents of the associative array parameter using the write()
method.

◆ set_buffer(): This function sets the buffering of debug messages.

◆ reset_buffer(): This function resets the buffering of debug messages.

◆ flush_buffer(): This function prints the buffer content along with the
debug banner.

Now let’s look at how an application called test_debugger2.php can use this
debugging facility:

<?php

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed framewirk directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;

// Insert the path in the PHP include_path so that PHP
// looks for our PEAR, PHPLIB and application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$APP_FRAMEWORK_DIR . ‘:’ .
ini_get(‘include_path’));

// Now load our Debugger class from application framework
require_once(‘class.Debugger.php’);

// Create a variable
$name = ‘M. J. Kabir’;

$myDebugger = new Debugger(array(
‘color’ => ‘blue’,
‘prefix’ => ‘MAIN’,
‘buffer’ => 0)
);

Chapter 4: Architecture of an Intranet Application 89

07 549669 ch04.qxd 4/4/03 9:24 AM Page 89

// Write the variable out using debugger write() method
$myDebugger->write(“Name = $name”);
?>

This will print a message such as the following:

000
Name = M. J. Kabir

Buffering debug messages enables you to print all debug messages together,
which is often very beneficial in identifying a flow sequence. For example, here an
application called test_debugger3.php buffers debugging information and prints
the information when the buffer is flushed using flush_buffer() method found in
the Debugger class.

<?php
// Turn on all error reporting
error_reporting(E_ALL);
// If you have installed framewirk directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
// Insert the path in the PHP include_path so that PHP
// looks for our PEAR, PHPLIB and application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$APP_FRAMEWORK_DIR . ‘:’ .
ini_get(‘include_path’));

// Now load our Debugger class from application framework
require_once(‘class.Debugger.php’);
// Create a variable
$name = ‘M. J. Kabir’;
$email = ‘kabir@evoknow.com’;
$myDebugger = new Debugger(array(

‘color’ => ‘blue’,
‘prefix’ => ‘MAIN’,
‘buffer’ => TRUE)
);

$myDebugger->write(“Name = $name”);
$myDebugger->write(“Email = $email”);
echo “This will print before debug messages.\n\n”;
$myDebugger->flush_buffer();
?>

90 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 90

In this example, the first two debug messages (“Name = $name” and “Email =
$email”) will be printed after the “This will print before debug messages.
\n\n” message.

In the next section, we look at how we can incorporate all of these classes to cre-
ate an abstract PHP application class.

Creating an Abstract
Application Class
The code in Listing 4-4 uses class.DBI.php, class.ErrorHandler.php, and
class.Debugger.php to create an abstract PHP application class.

Listing 4-4: class.PHPApplication.php

<?php
/*
*
* PHPApplication class
*
* @author <php@evoknow.com>
* @access public
*
* Version 1.0.1
*/

if (defined(“DEBUGGER_LOADED”) && ! empty($DEBUGGER_CLASS))
{

include_once $DEBUGGER_CLASS;
}

//require_once ‘lib.session_handler.php’;

class PHPApplication {

function PHPApplication($param = null)
{

global $ON, $OFF, $TEMPLATE_DIR;

Continued

Chapter 4: Architecture of an Intranet Application 91

07 549669 ch04.qxd 4/4/03 9:24 AM Page 91

Listing 4-4 (Continued)

global $MESSAGES, $DEFAULT_LANGUAGE,
$REL_APP_PATH,
$REL_TEMPLATE_DIR;

// initialize application
$this->app_name = $this->setDefault($param[‘app_name’], null);
$this->app_version = $this->setDefault($param[‘app_version’],

null);
$this->app_type = $this->setDefault($param[‘app_type’], null);
$this->app_db_url = $this->setDefault($param[‘app_db_url’],

null);
$this->debug_mode= $this->setDefault($param[‘app_debugger’], null);

$this->auto_connect = $this->setDefault($param[‘app_auto_connect’],
TRUE);

$this->auto_chk_session = $this-
>setDefault($param[‘app_auto_chk_session’], TRUE);

$this->auto_authorize = $this-
>setDefault($param[‘app_auto_authorize’], TRUE);

$this->session_ok = $this-
>setDefault($param[‘app_auto_authorize’], FALSE);

$this->error = array();
$this->authorized= FALSE;
$this->language = $DEFAULT_LANGUAGE;
$this->base_url = sprintf(“%s%s”, $this->get_server(),

$REL_TEMPLATE_DIR);
$this->app_path = $REL_APP_PATH;
$this->template_dir = $TEMPLATE_DIR;
$this->messages = $MESSAGES;

// If debuggger is ON then create a debugger object

if (defined(“DEBUGGER_LOADED”) && $this->debug_mode == $ON)
{

if (empty($param[‘debug_color’]))
{

$param[‘debug_color’] = ‘red’;
}
$this->debugger = new Debugger(array(‘color’ =>

$param[‘debug_color’],
‘prefix’ => $this->app_name,
‘buffer’ => $OFF));

}

92 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 92

// load error handler
$this->has_error = null;

$this->set_error_handler();

// start session

if (strstr($this->get_type(), ‘WEB’))
{

session_start();

$this->user_id = (! empty($_SESSION[“SESSION_USER_ID”])) ?
$_SESSION[“SESSION_USER_ID”] : null;

$this->user_name = (! empty($_SESSION[“SESSION_USERNAME”])) ?
$_SESSION[“SESSION_USERNAME”]: null;;

$this->user_email = (! empty($_SESSION[“SESSION_USERNAME”])) ?
$_SESSION[“SESSION_USERNAME”]: null;;

$this->set_url();

if ($this->auto_chk_session) $this->check_session();

if (! empty($this->app_db_url) && $this->auto_connect && ! $this-
>connect())

{
$this->alert(‘APP_FAILED’);

}

if ($this->auto_authorize && ! $this->authorize())
{

$this->alert(‘UNAUTHORIZED_ACCESS’);
}

}
}

function getEMAIL()
{

return $this->user_email;
}

Continued

Chapter 4: Architecture of an Intranet Application 93

07 549669 ch04.qxd 4/4/03 9:24 AM Page 93

Listing 4-4 (Continued)

function getNAME()
{

list($name, $host) = explode(‘’, $this->getEMAIL());
return ucwords($name);

}

function check_session()
{

if ($this->session_ok == TRUE)
{

return TRUE;
}

if (!empty($this->user_name))
{

$this->session_ok = TRUE;

} else {

$this->session_ok = FALSE;

$this->reauthenticate();
}

return $this->session_ok;
}

function reauthenticate()
{

global $AUTHENTICATION_URL;
header(“Location: $AUTHENTICATION_URL?url=$this->self_url”);

}

function getBaseURL()
{

return $this->base_url;
}

94 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 94

function get_server()
{

$this->set_url();
return $this->server;

}

function getAppPath()
{

return $this->app_path;
}

function getFQAP()
{

// get fully qualified application path

return sprintf(“%s%s”,$this->server, $this->app_path);
}

function getFQAN($thisApp = null)
{

return sprintf(“%s/%s”, $this->getFQAP(), $thisApp);
}

function getTemplateDir()
{

return $this->template_dir;
}

function set_url()
{

$row_protocol = $this->getEnvironment(‘SERVER_PROTOCOL’);

$port = $this->getEnvironment(‘SERVER_PORT’);

if ($port == 80)
{

$port = null;
} else {

$port = ‘:’ . $port;
}

$protocol = strtolower(substr($row_protocol,0,
strpos($row_protocol,’/’)));

Continued

Chapter 4: Architecture of an Intranet Application 95

07 549669 ch04.qxd 4/4/03 9:24 AM Page 95

Listing 4-4 (Continued)

$this->server = sprintf(“%s://%s%s”,
$protocol,
$this->getEnvironment(‘HTTP_HOST’),
$port);

$this->self_url = sprintf(“%s://%s%s%s”, $protocol,
$this->getEnvironment(‘HTTP_HOST’),
$port,
$this->getEnvironment(‘REQUEST_URI’));

}

function getServer()
{

return $this->server;
}

function terminate()
{

if (isset($this->dbi))
{

if ($this->dbi->connected) {
$this->dbi->disconnect();

}
}
//Asif Changed
session_destroy();
exit;

}

function authorize($username = null)
{

// override this method
return FALSE;

}

function set_error_handler()
{

// create error handler
if (defined(“ERROR_HANDLER_LOADED”))

$this->errHandler = new ErrorHandler(

96 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 96

array (‘name’ => $this->app_name));
}

function getErrorMessage($code)
{

return $this->errHandler->error_message[$code];
}

function show_popup($code)
{

return $this->errHandler->alert($code, 0);
}

function getMessage($code = null, $hash = null)
{

$msg = $this->messages[$this->language][$code];

if (! empty($hash))
{

foreach ($hash as $key => $value)
{

$key = ‘/{‘ . $key . ‘}/’;
$msg = preg_replace($key, $value, $msg);

}
}

return $msg;
}

function alert($code = null, $flag = null)
{

return (defined(“ERROR_HANDLER_LOADED”)) ?
$this->errHandler->alert($code, $flag) : false;

}

function buffer_debugging()
{

global $ON;

if (defined(“DEBUGGER_LOADED”) && $this->debug_mode == $ON)
{

$this->debugger->set_buffer();
}

}

Continued

Chapter 4: Architecture of an Intranet Application 97

07 549669 ch04.qxd 4/4/03 9:24 AM Page 97

Listing 4-4 (Continued)

function dump_debuginfo()
{

global $ON;

if (defined(“DEBUGGER_LOADED”) && $this->debug_mode == $ON)
{

$this->debugger->flush_buffer();
}

}

function debug($msg)
{

global $ON;
if ($this->debug_mode == $ON) {

$this->debugger->write($msg);
}

}

function run()
{

// run the application
$this->writeln(“You need to override this method.”);

}

function connect($db_url = null)
{

if (empty($db_url))
{

$db_url = $this->app_db_url;
}

if (defined(‘DBI_LOADED’) && ! empty($this->app_db_url))
{
$this->dbi = new DBI($db_url);
return $this->dbi->connected;

}

return FALSE;

}

function disconnect()
{

$this->dbi->disconnect();
$this->dbi->connected = FALSE;

98 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 98

return $this->dbi->connected;
}

function get_error_message($code = null)
{

return $this->errHandler->get_error_message($code);

}

function show_debugger_banner()
{

global $ON;

if ($this->debug_mode == $ON)
{

$this->debugger->print_banner();
}

}

function get_version()
{

// return version
return $this->app_version;

}

function get_name()
{

// return name
return $this->app_name;

}

function get_type()
{

// return type
return $this->app_type;

}

function set_error($err = null)
{

// set error condition
if (isset($err))
{

array_push($this->error, $err);
$this->has_error = TRUE;

Continued

Chapter 4: Architecture of an Intranet Application 99

07 549669 ch04.qxd 4/4/03 9:24 AM Page 99

Listing 4-4 (Continued)

return 1;
} else {

return 0;
}

}

function has_error()
{

return $this->has_error;
}

function reset_error()
{

$this->has_error = FALSE;
}

function get_error()
{

// return error condition
return array_pop($this->error);

}

function get_error_array()
{

return $this->error;
}

function dump_array($a)
{

if (strstr($this->get_type(), ‘WEB’))
{

echo ‘<pre>’;
print_r($a);
echo ‘</pre>’;

} else {
print_r($a);

}

}

function dump()
{

if (strstr($this->get_type(), ‘WEB’))

100 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 100

{
echo ‘<pre>’;
print_r($this);
echo ‘</pre>’;

} else {
print_r($this);

}

}

function checkRequiredFields($fieldType = null, $fieldData = null,
$errorCode = null)

{
$err = array();

while(list($field, $func) = each ($fieldType))
{

$ok = $this->$func($fieldData[$field]);

if (! $ok)
{

$this->alert($errorCode{$field});
}

}
return $err;

}

function number($num = null)
{

if (is_array($num))
{

foreach ($num as $i)
{

if (! is_numeric($i))
{

return 0;

}

}

return 1;

Continued

Chapter 4: Architecture of an Intranet Application 101

07 549669 ch04.qxd 4/4/03 9:24 AM Page 101

Listing 4-4 (Continued)

} else if (is_numeric($num))
{

return 1;
} else {

return 0;
}

}

function name($name = null)
{

if (!strlen($name) || is_numeric($name))
{
return 0;

} else {
return 1;

}
}

function email($email = null)
{

if (strlen($email) < 5 || ! strpos($email,’’))
{

return 0;
} else {

return 1;
}

}

function currency($amount = null)
{

return 1;
}

function month($mm = null)
{

if ($mm >=1 && $mm <=12)
{

return 1;
} else {

return 0;
}

}

102 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 102

// ASIF what is thie method doing in this class???
function comboOption($optVal = null)
{

if ($optVal != 0)
{
return 1;

}else {
return 0;

}

}

function day($day = null)
{

if ($day >=1 && $day <=31)
{

return 1;
} else {

return 0;
}

}

function year($year = null)
{

return ($this->number($year));
}

function one_zero_flag($flag = null)
{

if ($flag == 1 || $flag == 0)
{

return 1;

} else {

return 1;
}

}

function plain_text($text = null)
{

return 1;
}

Continued

Chapter 4: Architecture of an Intranet Application 103

07 549669 ch04.qxd 4/4/03 9:24 AM Page 103

Listing 4-4 (Continued)

function debug_array($hash = null)
{

$this->debugger->debug_array($hash);
}

function writeln($msg)
{

// print
global $WWW_NEWLINE;
global $NEWLINE;
echo $msg ,(strstr($this->app_type, ‘WEB’)) ? $WWW_NEWLINE : $NEWLINE;

}

function show_status($msg = null,$returnURL = null)
{

global $STATUS_TEMPLATE;
$template = new Template($this->template_dir);
$template->set_file(‘fh’, $STATUS_TEMPLATE);
$template->set_block(‘fh’, ‘mainBlock’, ‘mblock’);
$template->set_var(‘STATUS_MESSAGE’, $msg);

if (!preg_match(‘/^http:/’, $returnURL) && (!preg_match(‘/^\//’,
$returnURL)))

{
$appPath = sprintf(“%s/%s”, $this->app_path, $returnURL);

} else {

$appPath = $returnURL;
}

$template->set_var(‘RETURN_URL’, $appPath);

$template->set_var(‘BASE_URL’, $this->base_url);
$template->parse(‘mblock’, ‘mainBlock’);
$template->pparse(‘output’, ‘fh’);

}

function set_escapedVar($hash)
{

while(list($key, $value) = each ($hash))
{

104 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 104

$this->escapedVarHash{$key} = preg_replace(“/\s/”,”+”,$value);
}

}

function get_escapedVar($key)
{

return $this->escapedVarHash{$key};
}

function setUID($uid = null)
{

$this->user_id = $uid;
}

function getUID()
{

return $this->user_id;
}

//To Kabir: I added this -- Asif
function getUserName()
{

return $this->user_name;
}

function emptyError($field, $errCode)
{
if (empty($field))
{

$this->alert($errCode);
}

}

function getRequestField($field, $default = null)
{

return (! empty($_REQUEST[$field])) ? $_REQUEST[$field] : $default;
}

function getSessionField($field, $default = null)
{

return (! empty($_SESSION[$field])) ? $_SESSION[$field] : $default;
}

Continued

Chapter 4: Architecture of an Intranet Application 105

07 549669 ch04.qxd 4/4/03 9:24 AM Page 105

Listing 4-4 (Continued)

function setDefault($value, $default)
{

return (isset($value)) ? $value : $default;
}

function fileextension($filename)
{

return substr(basename($filename), strrpos(basename($filename), “.”) +
1);

}

function outputTemplate(&$t)
{

$t->parse(‘main’, ‘mainBlock’, false);
return $t->parse(‘output’, ‘fh’);

}

function showScreen($templateFile = null, $func = null, $app_name)
{

$menuTemplate = new Template($this->getTemplateDir());

$this->doCommonTemplateWork($menuTemplate, $templateFile, $app_name);

if ($func != null)
{

$status = $this->$func($menuTemplate);
}

if ($status)
{

return $this->outputTemplate($menuTemplate);

} else {

return null;
}

}

function doCommonTemplateWork(&$t, $templateFile, $app_name)
{

106 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 106

$t->set_file(‘fh’, $templateFile);

$t->set_block(‘fh’,’mainBlock’, ‘main’);

$t->set_var(array(
‘APP_PATH’ => $this->getAppPath(),
‘APP_NAME’ => $app_name,
‘BASE_URL’ => $this->getBaseURL()
)

);
}

function getEnvironment($key)
{

return $_SERVER[$key];
}

function showPage($contents = null)
{

global $THEME_TEMPLATE;
global $THEME_TEMPLATE_DIR, $REL_TEMPLATE_DIR;
global $REL_TEMPLATE_DIR;
global $PHOTO_DIR, $DEFAULT_PHOTO, $REL_PHOTO_DIR;

$themeObj = new Theme($this->dbi, null,’home’);

$this->themeObj = $themeObj;
$this->theme = $themeObj->getUserTheme($this->getUID());

$themeTemplate = new Template($THEME_TEMPLATE_DIR);

$themeTemplate->set_file(‘fh’, $THEME_TEMPLATE[$this->theme]);
$themeTemplate->set_block(‘fh’, ‘mmainBlock’, ‘mmblock’);
$themeTemplate->set_block(‘mmainBlock’, ‘contentBlock’, ‘cnblock’);
$themeTemplate->set_block(‘mmainBlock’, ‘printBlock’, ‘prnblock’);
$themeTemplate->set_var(‘printBlock’, ‘ ’);
$themeTemplate->parse(‘prnblock’, ‘printBlock’,false);
$themeTemplate->set_block(‘mmainBlock’, ‘pageBlock’, ‘pblock’);
$themeTemplate->set_var(‘pblock’, null);
$photoFile = sprintf(“%s/photo%003d.jpg”,$PHOTO_DIR, $this->getUID());
$defaultPhoto = sprintf(“%s/%s”,$REL_PHOTO_DIR,$DEFAULT_PHOTO);
$userPhoto = sprintf(“%s/photo%003d.jpg”,$REL_PHOTO_DIR,$this->getUID());
$photo = file_exists($photoFile) ? $userPhoto : $defaultPhoto;

Continued

Chapter 4: Architecture of an Intranet Application 107

07 549669 ch04.qxd 4/4/03 9:24 AM Page 107

Listing 4-4 (Continued)

$themeTemplate->set_var(‘PHOTO’, $photo);
$themeTemplate->set_var(‘TEMPLATE_DIR’, $REL_TEMPLATE_DIR);
$themeDir = $THEME_TEMPLATE_DIR . ‘/’ . dirname($THEME_TEMPLATE[$this-

>theme]);
$leftNavigation = $this->themeObj->getLeftNavigation($themeDir);
$themeTemplate->set_var(‘LEFT_NAVIGATION’, $leftNavigation);

$themeTemplate->set_var(‘SERVER_NAME’, $this->get_server());
$themeTemplate->set_var(‘BASE_HREF’, $REL_TEMPLATE_DIR);
$themeTemplate->set_var(‘CONTENT_BLOCK’, $contents);
$themeTemplate->parse(‘cnblock’, ‘contentBlock’);
$themeTemplate->parse(‘mmblock’, ‘mmainBlock’);
$themeTemplate->pparse(‘output’, ‘fh’);

}

}

?>

The methods in the class.PHPApplication.php class, which implements the base
application in our framework, are discussed in detail in Table 4-1.

TABLE 4-1 METHODS IN CLASS.PHPAPPLICATION.PHP

Function Description

PHPApplication() The constructor function for PHPApplication
(class.PHPApplication.php) class. Sets app_name,
app_version, app_type, debug_mode, error,
authorized, and has_error member variables.

If debug_mode is set to $ON (1), a debugger object
called debugger is created. It also creates an error
handler from ErrorHandler class.

The constructor starts the session using
session_start(), and also sets self_url by calling
set_url().

check_session() Checks if the session username variable is set, or calls the
reauthenticate() function method.

108 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 108

Function Description

reauthenticate() Redirects the application user to the authentication
application pointed by the global
$AUTHENTICATION_URL variable.

set_url() Creates a URL that points to the application itself.

terminate() Terminates the application. If the application is connected
to a database, the database connection is first closed and
then the application session is destroyed.

authorize() A blank authorized function method that should be
overridden by the application. The abstract application
object cannot authorize access to the application itself.

set_error_handler() Creates an error handler object and stores the object in
errHandler member variable.

alert() Calls the alert function method from the
ErrorHandler class.

get_error_message() Gets the error message from the ErrorHandler class.

show_debugger_banner() Displays the debug banner if debugging is enabled. (The
banner display is done by the debugger class.)

buffer_debugging() Sets the debug message buffering in the built-in
Debugger object if the debugging is turned on.

dump_debuginfo() Flushes the debug buffer if debugging was turned on.

debug() Provides a wrapper for the write() method in the built-
in debugger.

run() Should be overridden by the instance of the
PHPApplication to run it.

connect() Creates a DBI object and connects the application to the
desired relational database.

disconnect() Disconnects the application from the database.

get_error_message() Returns the error message for a given error code (calls the
get_error_message of the ErrorHandler).

show_debugger_banner() Prints the debugger banner if debugging is turned on.

buffer_debugging() Enables you to buffer debugging so that it can be printed
later.

Continued

Chapter 4: Architecture of an Intranet Application 109

07 549669 ch04.qxd 4/4/03 9:24 AM Page 109

TABLE 4-1 METHODS IN CLASS.PHPAPPLICATION.PHP (Continued)

Function Description

dump_debuginfo() Dumps all debug information if it was buffered in the
built-in debugger object.

debug() Writes the debug message using the debugger object’s
write() function method.

run() A dummy function method that must be overridden by
each application to run the application. An application
usually has its business logic driver in this method.

connect() Creates a DBI object and connects the application to a
given database. The database URL is passed as a
parameter, and the DBI object is stored as a member
variable called dbi in the PHPApplication class.

disconnect() Disconnects the database connection for the application
by calling the DBI disconnect()method.

get_version() Returns the version of the application. The version is
supplied as a parameter during PHPApplication object
creation.

get_name() Returns the name of the application (supplied as a
parameter during PHPApplication object creation).

get_type() Returns the type of the application (supplied as a
parameter during PHPApplication object creation).

set_error() Sets error code for the application and also sets the
has_error flag to TRUE. (When used to set error code,
the error codes are stored in an array called error.)

When application needs to generate an error message,
you use this function method to set the error code first,
and then call get_error_message().

has_error() Returns TRUE if the application has error(s); otherwise it
returns FALSE.

reset_error() Resets has_error flag to FALSE.

get_error() Returns an error code from the error array.

get_error_array() Returns the entire error code array. You can get the error
code array and use the get_error_message() method
to return the appropriate error messages.

110 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 110

Function Description

dump() Prints the entire application object without the methods.
This is a very powerful debugging feature.

checkRequiredFields() Performs minimal required field type validation.

number() Returns 1 if the parameter is a number or a number
array; otherwise, it returns 0.

name() Returns 1 if the parameter is not empty and not a
number; otherwise, it returns 0.

email() Returns 1 if the parameter is an e-mail address;
otherwise, it returns 0.

currency() Returns 1 if the parameter is a currency number;
otherwise, it returns 0.

month() Returns 1 if the parameter is a number between 1 and
12; otherwise, it returns 0.

day() Returns 1 if the parameter is a number between 1 and
31; otherwise, it returns 0.

year() Returns 1 if the parameter is a number; otherwise, it
returns 0.

one_zero_flag() Returns 1 if the parameter is either 1 or 0; otherwise, it
returns 0.

plain_text() Returns 1 if the parameter is plain text; otherwise, it
returns 0.

debug_array() Enables you to print out key=value from an associative array.

writeln() Prints a message with either ‘
’ or ‘\n’ at the end,
depending on application type. For example, when the
application type is set to WEB, it uses ‘
’ to end the
message, and when the application type is set to
anything else, it uses the new line character instead.

show_status() Displays a status message screen using an HTML
template. It requires global variables called
$TEMPLATE_DIR and $STATUS_TEMPLATE to be set to
template directory and HTML status template file name.

It is called with two parameters: $msg and $returnURL.
The $msg variable is used to display the actual message
and the $returnURL is used to create a link back to the
application that displays the status screen.

Chapter 4: Architecture of an Intranet Application 111

07 549669 ch04.qxd 4/4/03 9:24 AM Page 111

The checkRequiredFields() takes three associative arrays as parameters: field
type array, field data array, and corresponding error code array. For example:

$fieldType = array(‘mm’ => ‘month’,
‘dd’ => ‘day’,
‘yy’=> ‘year’

);

reset($fieldType);

$errCode = array();

while (list($k, $v) = each($fieldType))
{

$fields{$k} = (! empty($_REQUEST[$k])) ? $_REQUEST[$k] : null;

$errCode{$k} = ‘MISSING_’ . strtoupper($k) ;
}

// Check required fields
$err = $this->checkRequiredFields($fieldType, $fields, $errCode);

$this->dump_array($err);

In this code segment, the $fieldType is an associative array with three ele-
ments: mm, dd, and yy. This array defines which field is what type of data and then
an $errCode array is created in the loop to set each field-specific error code. For
example, for the $_REQUEST[‘mm’] field, the error code is MISSING_START_MM.
Next the checkRequiredFields() method is called to check each field for type and
minimal range validation. The range validation is limited to type. For example,
$_REQUEST[‘mm’] field is set to type month so the value of this variable must not
be out of the 1 to 12 range. Similarly, the $_REQUEST[‘dd’] variable is set to type
day and, therefore, the valid range of values for this variable is between 1 and 31.

Now let’s take a look at an example application that uses this framework.

112 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 112

Creating a Sample Application
Before you can create an application that uses the framework discussed in this
chapter, you need to install the framework on your Web server running PHP. From
the CDROM, copy the framework.tar.gz file which is stored in author’s folder under
CH4 directory. Extract the source code into %DocumentRoot% directory which will
create framework directory. Make sure your Web server has read and execution per-
mission for files in this directory.

Listing 4-5 shows a sample application called sample.php that uses the frame-
work we just developed.

Listing 4-5: sample.php

<?php
// Turn on all error reporting
error_reporting(E_ALL);

require_once ‘sample.conf’;
require_once ‘sample.errors’;
require_once ‘sample.messages’;

$thisApp = new sampleApp(
array(

‘app_name’=> ‘Sample Application’,
‘app_version’ => ‘1.0.0’,
‘app_type’ => ‘WEB’,
‘app_db_url’ =>
$GLOBALS[‘SAMPLE_DB_URL’],
‘app_auto_authorize’ => FALSE,
‘app_auto_chk_session’ => FALSE,
‘app_auto_connect’ => FALSE,
‘app_type’ => ‘WEB’,
‘app_debugger’ => $ON
)

);

$thisApp->buffer_debugging();
$thisApp->debug(“This is $thisApp->app_name application”);
$thisApp->run();
$thisApp->dump_debuginfo();

?>

Chapter 4: Architecture of an Intranet Application 113

07 549669 ch04.qxd 4/4/03 9:24 AM Page 113

First, this application loads the sample.conf file shown in Listing 4-6.

Listing 4-6: sample.conf

<?php
// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change the
// setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

// If you have installed PHPLIB in a different
// directory than %DocumentRoot%/phplib, change
// the setting below.
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// If you have installed framewirk directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;

// Relative URL to login script
$AUTHENTICATION_URL=’/login/login.php’;

//Default language
$DEFAULT_LANGUAGE = ‘US’;

// Create a path consisting of the PEAR,
// PHPLIB and our application framework
// path ($APP_FRAMEWORK_DIR)
$PATH = $PEAR_DIR . ‘:’ .

$PHPLIB_DIR . ‘:’ .
$APP_FRAMEWORK_DIR;

// Insert the path in the PHP include_path so that PHP
// looks for our PEAR, PHPLIB and application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PATH . ‘:’ .
ini_get(‘include_path’));

114 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 114

// Now load the DB.php class from PEAR
require_once ‘DB.php’;

// Now load our DBI class from application framework

require_once $APP_FRAMEWORK_DIR . ‘/’ . ‘constants.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $DEBUGGER_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $APPLICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $ERROR_HANDLER_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $AUTHENTICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $DBI_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $USER_CLASS;
require_once $TEMPLATE_CLASS;

// Load the Sample Application class
require_once ‘class.sampleApp.php’;
// Setup the database URL
$SAMPLE_DB_URL = ‘mysql://root:foobar@localhost/testdb’;

?>

This configuration file sets the path for the framework classes using
$APP_FRAMEWORK_DIR. It sets the application name using $APPLICATION_NAME, the
default language using $DEFAULT_LANGUAGE, the application’s database URL using
$SAMPLE_DB_URL, the application’s authenticator URL using $AUTHENTICATION_URL.

The configuration file also sets the include path for PHP to include application
framework path, PHPLIB, and PEAR path needed to load various classes. The
classes needed to run the application are loaded using :require_once() function.

The sample application shown in Listing 4-5 then loads the sample.errors con-
figuration shown in Listing 4-7.

Listing 4-7: sample.errors

<?php

// Errors for Sample appliction

$ERRORS[‘US’][‘UNAUTHORIZED_ACCESS’] = “Unauthorized access.”;
$ERRORS[‘US’][‘MISSING’] = “Missing or invalid.”;

?>

Chapter 4: Architecture of an Intranet Application 115

07 549669 ch04.qxd 4/4/03 9:24 AM Page 115

This configuration file creates a multidimensional array called $ERRORS and sets
two error codes to appropriate error messages in U.S. English. If the sample appli-
cation is to be used in a different language region, say in Spain, then this file can
be modified to create the ES (shorthand for Spanish) language-specific errors by
replacing US as ES and also translating the actual error messages.

When internationalizing the error messages, the error code such as

UNAUTHORIZED_ACCESS should not be translated because that code name

is the key to locate the “Unauthorized access” error message. Only the error

message should be translated, and the appropriate language identifier

needs to be set.

The sample application then loads the sample.messages file, which is shown in
Listing 4-8.

Listing 4-8: sample.messages

<?php
$MESSAGES[‘US’][‘APP_FAILED’] = “Application Failed.”;
$MESSAGES[‘US’][‘DEFAULT_MSG’] = “Hello World”;

?>

Like the error message files, this file loads a multidimensional array called
$MESSAGES with language support for each message.

The sample.conf file also loads the constants.php file, which defines a set of
constants needed by the framework classes. The same sample configuration file also
loads the framework classes along with a class called class.sampleApp.php,
which is shown in Listing 4-9.

This class extends the PHPApplication class and overrides the run() and
authorize() function. It implements another function called doSomething(),
which is specific to itself. We will discuss the details of this class in the next sec-
tion. Now let’s look at the rest of the sample.php code.

Once the class.sampleApp.php class is loaded, the session is automatically
started by the sampleApp object, which extends the PHPApplication object.

Next the application creates an instance of the sampleApp object called
$thisApp. This is the application object. The application name, version, type, and
debugger ON or OFF flag are set when creating this object.

116 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 116

After the $thisApp object has been created, the sample application enables
debug message buffering by calling the buffer_debugging() method in class.
PHPApplication.php class.

It then calls the run() function, which has been overridden in class.
sampleApp.php. This is the main function that runs the application.

After the application has run, more debugging information is buffered and the
debug information is dumped:

$thisApp->buffer_debugging();
$thisApp->run();
$thisApp->debug(“Version : “ . $thisApp->get_version());
$thisApp->dump_debuginfo();

Figure 4-6 shows what is displayed when the sample.php application is run
after a user has already logged in.

Figure 4-6: Output of the sample application with debugging turned on.

You have to have the application framework created in this chapter installed

on your system and at least one user created to run this application.To learn

about how to create a user, see Chapter 5.

Chapter 4: Architecture of an Intranet Application 117

07 549669 ch04.qxd 4/4/03 9:24 AM Page 117

Figure 4-7 shows the application with the debug flag turned off.

Figure 4-7: Output of the sample application with debugging turned off.

Listing 4-9 shows the class.sampleApp.php, which extends the PHPApplication
class from our framework.

Listing 4-9: class.sampleApp.php

<?php

class sampleApp extends PHPApplication {

function run()
{

// At this point user is authorized
// Start business logic driver
$this->debug(“Real application code starts here.”);
$this->debug(“Call application specific function here.”);
$this->doSomething();

}

function authorize($email = null)
{

return TRUE;
}

function doSomething()
{

global $MESSAGES, $DEFAULT_LANGUAGE;

118 Part II: Developing Intranet Solutions

07 549669 ch04.qxd 4/4/03 9:24 AM Page 118

$this->debug(“Started doSomething()”);
echo $MESSAGES[$DEFAULT_LANGUAGE][‘DEFAULT_MSG’];
$this->debug(“Finished doSomething()”);

}
} // Class

?>

This sampleApp class has only three functions: run(), authorize(), and
doSomething(). The run() function overrides the abstract run() method provided in
class.PHPApplication.php and it is automatically called when the application is run.
Therefore, sampleApp run() method is needed to application logic in sample.php.

In the example, the authorization check always returns TRUE, because this isn’t a
real-world application and the run() function calls the doSomething() function,
which simply prints a set of debug messages along with a status message. Notice
that although the application status message $MESSAGES[$DEFAULT_LANGUAGE]
[‘DEFAULT_MSG’] is internationalized, the debug messages are in English.

As you can see the application framework makes writing new applications quite
easy; development time is greatly reduced, because you can build onto the frame-
work instead of starting from scratch every time.

Summary
In this chapter I have shown you how to develop a complete application framework
consisting of a few object-oriented classes. These classes provide a set of facilities
for writing applications that use a standard approach to writing PHP applications
for both intranet and the Web.

The application framework developed in this chapter allows you to develop a
new application by simply extending the primary class, PHPApplication class, of
the framework. Immediately your application inherits all the benefits of the new
framework, which includes a database abstraction, an error handler, and a debug-
ging facility.

This application framework is used throughout the rest of the book for develop-
ing most of the applications discussed in this book. The latest version of this frame-
work is always available from http://www.evoknow.com/phpbook/.

Chapter 4: Architecture of an Intranet Application 119

07 549669 ch04.qxd 4/4/03 9:24 AM Page 119

07 549669 ch04.qxd 4/4/03 9:24 AM Page 120

Chapter 5

Central Authentication
System
IN THIS CHAPTER

◆ How central authentication works

◆ How to create central login application

◆ How to create central logout application

◆ How to create central authentication database

◆ How to test central login and logout

◆ How to make persistent logins in Web server farms

A CENTRAL AUTHENTICATION SYSTEM consists of two applications: login and logout.
The login application allows users to login and the logout application is used to ter-
minate the login session. This chapter shows you how to build and implement such
a system.

How the System Works
First, let’s take a look at how such a system will work with any of your PHP
Application Framework–based applications. Figure 5-1 shows a partial flow dia-
gram for a PHP application that requires authentication and authorization.

When such an application starts up, it checks to see if the user is already authen-
ticated. This is done by checking for the existence of a user session. If such a user
session is found, the user is authenticated and the application then performs the
authorization check itself. If the user is not authenticated already, she is automati-
cally redirected to the authentication system. Similarly, in the authorization phase,
if the user is found to be incapable of running the application due to lack of privi-
lege, she is redirected to the authentication system.

In our PHP Application Framework (PHPAF) model, the authentication applica-
tion is called login.php. Figure 5-2 shows how this application works.

121

08 549669 ch05.qxd 4/4/03 9:24 AM Page 121

Figure 5-1: How an application works with the authentication system.

Figure 5-2: How the login application works.

Start

Is valid
user?

Get User
Credentials

Create User Session
Data

Too many
Attempts?

Count
Attempts

login.php

Yes Yes

No

Warn user
about abuse

Redirect the user to
the originating

application

No

Start
Any PHP Application

Yes Yes

NoNo

Is user
authenticated?

Is user authorized
to access this
application?

Do application
specific tasks

Redirect the user to login application

122 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 122

The login application gets the user credentials (username and password) from the
GUI and checks the validity of the credentials with a user table in the authentica-
tion database. If the user has supplied valid credentials, a user session is created
and the user is directed to the application that made the login request.

A user is given a set number of chances to log in, and if she doesn’t succeed in
providing valid credentials, the login application automatically directs the user to
an HTML page which should warn the user about abuse.

Like the login application, the central logout application can be linked from any
application interface to allow a user to immediately log out. The logout application
works as shown in Figure 5-3.

Figure 5-3: How the logout application works.

The logout application checks if the user is really logged in. If she is logged in, the
user session is removed, and if she isn’t, a “Not Logged In” message is displayed.

The class level architecture of the central authentication system is shown in
Figure 5-4.

Here you can see that the login.php application uses a class called class.
Authentication.php and a framework class called class.PHPApplication.php to
implement its services. The latter class provides database access to the login appli-
cation via another framework class called class.DBI.php. Both of these framework
classes have been developed in Chapter 4. The session management aspect of login
and logout is provided by PHP’s built-in session functionality.

Similarly, the logout application uses the class.PHPApplication to implement its
logout service.

Start

Is user
logged in?

No

Yes

Terminate session

Show "not
logged in"

logout.php

Chapter 5: Central Authentication System 123

08 549669 ch05.qxd 4/4/03 9:24 AM Page 123

In the rest of the chapter we will create necessary classes and develop the
login/logout applications to implement the above-mentioned central authentica-
tion system.

Figure 5-4: Class Level Architecture of the central authentication system.

Creating an Authentication Class
Listing 5-1 shows the authentication class called class.Authentication.php,
which will implement the central authentication system.

Listing 5-1: class.Authentication.php

<?php

/*
*
* Application class
*
* @author EVOKNOW, Inc. <php@evoknow.com>
* @access public
* CVS ID: Id
*/

include_once $DEBUGGER_CLASS;

class Authentication {

function Authentication($email = null, $password = null, $db_url = null)
{

class.Authentication.php class.PHPApplication.php

class.DBI.php

Central User
Database

Session
Files

Session
Database

Session API

login.php

Redirected authentication request
from applications using the PHP
Application Framework

logout.php

Authenticated requests redirected
to the originating applications

Redirected requests for logout

Successful logouts redirected to
home URL

124 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 124

global $AUTH_DB_TBL;

$this->status = FALSE;
$this->email = $email;
$this->password = $password;
$this->auth_tbl = $AUTH_DB_TBL;

$this->db_url = ($db_url == null) ? null : $db_url;

if ($db_url == null)
{

global $AUTH_DB_TYPE, $AUTH_DB_NAME;
global $AUTH_DB_USERNAME, $AUTH_DB_PASSWD;
global $AUTH_DB_HOST;

$this->db_url = sprintf(“%s://%s:%s@%s/%s”,$AUTH_DB_TYPE,
$AUTH_DB_USERNAME,
$AUTH_DB_PASSWD,
$AUTH_DB_HOST,
$AUTH_DB_NAME);

}

$this->status = FALSE;
}

function authenticate()
{

$dbi = new DBI($this->db_url);

$query = “SELECT USER_ID, PASSWORD from “ . $this->auth_tbl;
$query .= “ WHERE EMAIL = ‘“ . $this->email . “‘ AND ACTIVE = ‘1’”;

$result = $dbi->query($query);

if ($result != null)
{

$row = $result->fetchRow();

$salt = substr($row->PASSWORD,0,2);
if (crypt($this->password, $salt) == $row->PASSWORD)
{

Continued

Chapter 5: Central Authentication System 125

08 549669 ch05.qxd 4/4/03 9:24 AM Page 125

Listing 5-1 (Continued)

$this->status = TRUE;
$this->user_id = $row->USER_ID;

} else {
$this->status = FALSE;

}
}

$dbi->disconnect();

return $this->status;
}

function getUID()
{

return $this->user_id;
}

}

?>

The following are the functions in this class:

◆ Authentication(): This is the constructor method, which sets the default
values of the authentication object. First it sets the status variable to
FALSE to signify that authentication is not successful yet. The e-mail vari-
able is set to the e-mail address supplied as part of the parameter. (The
authentication system uses e-mail address as the username and, therefore,
it is a required item in the user-supplied credential.) The password para-
meter is stored in the password variable.

The function also sets the auth_tbl and db_url variables to authentica-
tion table name and the fully qualified database name of the central
authentication database.

◆ authenticate(): This function performs the authentication. It retrieves
active UID and PASSWORD fields for the given e-mail address. If the user
account has been deactivated (ACTIVE = 0), then the method returns
default authentication status (FALSE), and if the user account is active and
the encrypted version of the given password matches the stored crypto-
graphic password, then the method returns TRUE status, which indicates
successful authentication.

126 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 126

Now using this class (class.Authentication.php) and our existing application
framework, let’s create central login and logout applications.

Creating the Central Login
Application
The purpose of the login application is to present a username and password entry
interface using an HTML template, and then to authenticate the user.

If the user is successfully authenticated by the class.Authentication.php
object, the login application creates the session data necessary to let other applica-
tions know that the user is already authenticated and has valid credentials.

If the user doesn’t supply valid credentials, the login application should allow the
user to try a few times (say three times) and, if she fails after retrying for a config-
urable number of times, then she is taken to an HTML page showing a warning about
potential abuse of the system. This is to stop non-users from abusing the system.

Valid users who have forgotten their passwords can run another login

helper application to send new passwords via e-mail.This helper application

is discussed in Chapter 6.

Listing 5-2 shows the login application login.php, which implements these
features.

Listing 5-2: login.php

<?php

require_once “login.conf”;
require_once “login.errors”;

/*
Session variables must be defined before session_start()
method is called

*/

$count = 0;

class loginApp extends PHPApplication {

Continued

Chapter 5: Central Authentication System 127

08 549669 ch05.qxd 4/4/03 9:24 AM Page 127

Listing 5-2 (Continued)

function run()
{

global $MIN_USERNAME_SIZE, $MIN_PASSWORD_SIZE, $MAX_ATTEMPTS;
global $WARNING_URL, $APP_MENU;

$email = $this->getRequestField(‘email’);
$password = $this->getRequestField(‘password’) ;
$url = $this->getRequestField(‘url’);

$emailLen = strlen($email);
$passwdLen = strlen($password);

$this->debug(“Login attempts : “ . $this-
>getSessionField(‘SESSION_ATTEMPTS’));

if ($this->is_authenticated())
{

// return to caller HTTP_REFERRER
$this->debug(“User already authenticated.”);
$this->debug(“Redirecting to $url.”);
$url = (isset($url)) ? $url : $this->getServer();
header(“Location: $url”);

} else if (strlen($email) < $MIN_USERNAME_SIZE ||
strlen($password) < $MIN_PASSWORD_SIZE) {

// display the login interface
$this->debug(“Invalid Email or password.”);
$this->display_login();
$_SESSION[“SESSION_ATTEMPTS”] = $this-

>getSessionField(“SESSION_ATTEMPTS”) + 1;

} else {

// Prepare the email with domain name
if (!strpos($email, ‘’))
{

$hostname = explode(‘.’, $_SERVER[‘SERVER_NAME’]);

if (sizeof($hostname) > 1)
{

$email .= ‘’ . $hostname[1] . ‘.’ . $hostname[2];
}

}

128 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 128

// authenticate user

$this->debug(“Authenticate user: $email with password $password”);

if ($this->authenticate($email, $password))
{

$this->debug(“User is successfully authenticated.”);
$_SESSION[“SESSION_USERNAME”] = $email;
$_SESSION[“SESSION_PASSWORD”] = $password;
$_SESSION[“SESSION_USER_ID”] = $this->getUID();

if (empty($url))
{

$url = $APP_MENU;
}

// Log user activity
$thisUser = new User($this->dbi, $this->getUID());
$thisUser->logActivity(LOGIN);

$this->debug(“Location $url”);
header(“Location: $url”);

$this->debug(“Redirect user to caller application at url =
$url.”);

} else {
$this->debug(“User failed authentication.”);
$this->display_login();
$_SESSION[“SESSION_ATTEMPTS”] = $this-

>getSessionField(“SESSION_ATTEMPTS”) + 1;
}

}
}

function warn()
{

global $WARNING_URL;
$this->debug(“Came to warn the user $WARNING_URL”);
header(“Location: $WARNING_URL”);

}

function display_login()
{

Continued

Chapter 5: Central Authentication System 129

08 549669 ch05.qxd 4/4/03 9:24 AM Page 129

Listing 5-2 (Continued)

global $TEMPLATE_DIR;
global $LOGIN_TEMPLATE;
global $MAX_ATTEMPTS;
global $REL_TEMPLATE_DIR;
global $email, $url;
global $PHP_SELF,

$FORGOTTEN_PASSWORD_APP;

$url = $this->getRequestField(‘url’);

if ($this->getSessionField(“SESSION_ATTEMPTS”) > $MAX_ATTEMPTS)
{

$this->warn();
}

$this->debug(“Display login dialog box”);
$template = new Template($TEMPLATE_DIR);
$template->set_file(‘fh’, $LOGIN_TEMPLATE);
$template->set_block(‘fh’, “mainBlock”);
$template->set_var(‘SELF_PATH’, $PHP_SELF);
$template->set_var(‘ATTEMPT’, $this-

>getSessionField(“SESSION_ATTEMPTS”));
$template->set_var(‘TODAY’, date(“M-d-Y h:i:s a”));
$template->set_var(‘TODAY_TS’, time());
$template->set_var(‘USERNAME’, $email);
$template->set_var(‘REDIRECT_URL’, $url);
$template->set_var(‘FORGOTTEN_PASSWORD_APP’, $FORGOTTEN_PASSWORD_APP);
$template->parse(“fh”, “mainBlock”);
$template->set_var(‘BASE_URL’, sprintf(“%s”,$this->base_url));
$template->pparse(“output”, “fh”);
return 1;

}

function is_authenticated()
{

return (!empty($_SESSION[“SESSION_USERNAME”])) ? TRUE : FALSE;
}

function authenticate($user = null, $passwd = null)
{

$authObj = new Authentication($user, $passwd, $this->app_db_url);

130 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 130

if ($authObj->authenticate())
{

$uid = $authObj->getUID();
$this->debug(“Setting user id to $uid”);
$this->setUID($uid);
return TRUE;

}

return FALSE;
}

}

global $AUTH_DB_URL;

$thisApp = new loginApp(
array(

‘app_name’ => $APPLICATION_NAME,
‘app_version’ => ‘1.0.0’,
‘app_type’ => ‘WEB’,
‘app_db_url’ => $AUTH_DB_URL,
‘app_auto_authorize’ => FALSE,
‘app_auto_chk_session’ => FALSE,
‘app_auto_connect’ => TRUE,
‘app_type’ => ‘WEB’,
‘app_debugger’ => $OFF
)

);

$thisApp->buffer_debugging();
$thisApp->debug(“This is $thisApp->app_name application”);
$thisApp->run();
$thisApp->dump_debuginfo();

?>

Figure 5-5 shows the flow diagram of login.php. When the login application is
run, it goes through the following steps:

1. It determines if the user is already authenticated. It calls the is_authen-
ticated() method to determine if the user has a session already. If the
user has a session, the is_authenticated() method returns TRUE or else
FALSE.

2. If the user is authenticated already, the user is redirected to the applica-
tion that called the login application.

Chapter 5: Central Authentication System 131

08 549669 ch05.qxd 4/4/03 9:24 AM Page 131

3. If the user is not already authenticated, the login.php application deter-
mines whether the user supplied a username (e-mail address) and whether
the password passes the minimum-size test. If either the username (e-mail
address) or password does not pass the test, the login attempt is counted
and the login menu or the warning page is displayed according to the
allowed number of login attempts per login.conf file.

Figure 5-5: A flow diagram of the login.php application.

Start

Stop

No

No

No

Yes

Yes

Yes Is user already
authenticated?

User supplied
valid size email and

password?

Authentication
Successful?

Authenticate user using given
username and password

Create session and redirect user
to the caller application

Redirect user to the
referring URL

Count login attempts
and display login

menu or warning page

132 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 132

4. If the user credentials (username and password) passes the minimum-size
test, the actual authentication is done using the user record stored in the
authentication database via the authenticate() method found in the
class.Authentication.php object.

5. If the authenticate() method returns TRUE, the user is valid and a ses-
sion variable called SESSION_USERNAME is registered with the supplied
username (e-mail address).

6. If the authenticate() method returns FALSE, the user login attempt is
counted and the login menu or the warning page is displayed according to
the allowed number of login attempts per login.conf file.

Now that you know how login.php works, let’s take a look at what configura-
tion it gets from login.conf as shown in Listing 5-3.

Listing 5-3: login.conf

<?php
// login.conf

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed framework directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$PEAR =$_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’;
$PHPLIB =$_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// Insert the path in the PHP include_path so that PHP
// looks for PEAR, PHPLIB and our application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PEAR . ‘:’ .
$PHPLIB . ‘:’ .
$APP_FRAMEWORK_DIR . ‘:’ .
ini_get(‘include_path’));

$PHP_SELF = $_SERVER[“PHP_SELF”];

$LOGIN_TEMPLATE = ‘login.html’;

$APPLICATION_NAME = ‘LOGIN’;
$DEFAULT_LANGUAGE = ‘US’;

Continued

Chapter 5: Central Authentication System 133

08 549669 ch05.qxd 4/4/03 9:24 AM Page 133

Listing 5-3 (Continued)

$AUTH_DB_URL = ‘mysql://root:foobar@localhost/auth’;
$ACTIVITY_LOG_TBL = ‘ACTIVITY’;
$AUTH_DB_TBL = ‘users’;

$MIN_USERNAME_SIZE= 5;
$MIN_PASSWORD_SIZE= 8;
$MAX_ATTEMPTS = 5;
$FORGOTTEN_PASSWORD_APP = ‘/user_mngr/apps/user_mngr_forgotten_pwd.php’;

$APP_MENU = ‘/’;

$TEMPLATE_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/login/templates’;
$REL_TEMPLATE_DIR = ‘/login/templates/’;
$WARNING_URL = $TEMPLATE_DIR . ‘/warning.html’;

require_once “login.errors”;
require_once “login.messages”;
require_once ‘DB.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . ‘constants.php’;

require_once $APP_FRAMEWORK_DIR . ‘/’ . $DEBUGGER_CLASS;

require_once $APP_FRAMEWORK_DIR . ‘/’ . $APPLICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $ERROR_HANDLER_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $AUTHENTICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $DBI_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $USER_CLASS;
require_once $TEMPLATE_CLASS;

?>

The configuration details are explained in Table 5-1.

TABLE 5-1 LOGIN.CONF EXPLANATIONS

Variable Description

$APP_FRAMEWORK_DIR Sets the framework directory to
%DocumentRoot%framework.

$TEMPLATE_DIR Sets /evoknow/intranet/php/login/templates
(same as $APP_FRAMEWORK_DIR).

134 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 134

Variable Description

$LOGIN_TEMPLATE Sets the name of the login menu file to login.ihtml.
This file has to be stored in /evoknow/intranet/php/
login/templates/login.ihtml.

$APPLICATION_NAME Sets the name of the application to LOGIN.

$DEFAULT_LANGUAGE Sets the default language of the application to US.

$AUTH_DB_TYPE Sets the database type to mysql.

$AUTH_DB_HOST Sets the database server location to localhost.

$AUTH_DB_NAME Sets the authentication database name to auth, which
must have the table specified by $AUTH_DB_TBL fields.

$AUTH_DB_TBL Sets the name of the user information table to users.

$AUTH_DB_USERNAME Sets the username required to access the database. Since
sensitive database information is stored in login.conf file
make sure either store it outside the Web document tree
or use Apache configuration that disallows Web visitors
from retrieving .conf files. See Chapter 22 for details.

$AUTH_DB_PASSWD Sets the password required to access the database. Since
sensitive database information is stored in login.conf file
make sure either store it outside the Web document tree
or use Apache configuration that disallows Web visitors
from retrieving .conf files. See Chapter 22 for details.

$MIN_USERNAME_SIZE Sets the minimum username size to 5. Usernames smaller
than five characters can be guessed too easily and
therefore at least five character name is preferred.

$MIN_PASSWORD_SIZE

$MAX_ATTEMPTS Sets the maximum number of tries to 3.

$WARNING_URL Sets the warning page URL to
/php/login/templates/warning.html.

$DEFAULT_DOMAIN Sets the default name to evoknow.com.

$APP_MENU Sets the name of the application menu to
/php/menu.php. If the login application was directly
called, the successfully authenticated user is redirected to
this menu.

Chapter 5: Central Authentication System 135

08 549669 ch05.qxd 4/4/03 9:24 AM Page 135

All the error messages that the login.php application generates are taken from
the login.errors file shown in Listing 5-4.

Listing 5-4: login.errors

<?php

// Errors for Login application

$ERRORS[‘US’][‘MISSING_CODE’] = “No error message found”;
$ERRORS[‘US’][‘INVALID_DATA’] = “Invalid data.”;

?>

The login.php application displays the login menu using the login.ihtml file,
which is shown in Listing 5-5. The $LOGIN_TEMPLATE is set to point to
login.ihtml in the login.conf file.

Listing 5-5: login.ihtml

<html>
<head><title>Login</title></head>
<body>
<!-- BEGIN mainBlock -->
<center>
<form action=”{SELF_PATH}” method=”POST”>
<table border=0 cellpadding=3 cellspacing=0 width=30%>
<tr>

<td bgcolor=”#cccccc” colspan=2>Login</td>
</tr>

<tr>
<td>Email</td>
<td><input type=text

name=”email”
value=”{USERNAME}”
size=30
maxsize=50>

</td>
</tr>

<tr>
<td>Password</td>
<td><input type=password name=”password” size=30 maxsize=50></td>

</tr>

<tr>
<td align=center colspan=2>

136 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 136

<input type=submit value=”Login”>

<input type=reset value=”Reset”>
</td>

</tr>

</table>

<input type=hidden name=”url”
value=”{REDIRECT_URL}”>

</form>

Login attempt {ATTEMPT}.
</center>
<!-- END mainBlock -->
</body>
</html>

The login.ihtml template has a set of template tag variables that are replaced
by the login.php application. These template tag variables are explained in Table
5-2.

TABLE 5-2 TEMPLATE TAG VARIABLES IN LOGIN TEMPLATE

Template Tag Explanation

{SELF_PATH} Set as a form action. The login application replaces this with the
relative path to the login application itself. This allows the login
menu form to be submitted to the login application itself.

{USERNAME} Replaced with the username previously entered when the user
failed to successfully authenticate the first time. This saves the
user from having to type the username again and again when
she doesn’t remember the password correctly. This is a user-
friendly feature.

{REDIRECT_URL} Set to the URL of the application that redirected the user to the
login application.

{ATTEMPT} Displays the number of login attempts the user has made.

When the login attempts exceed the number of attempts set in the
$MAX_ATTEMPTS variable in the login.conf file, the user is redirected to the
$WARNING_URL page, which is shown in Listing 5-6.

Chapter 5: Central Authentication System 137

08 549669 ch05.qxd 4/4/03 9:24 AM Page 137

Listing 5-6: warning.html

<html>
<head>
<title>Invalid Login Attempts</title>
</head>
<body>
<h1>Excessive Invalid Login Attempts</h1>
<hr>
You have attempted to login too many times.
</body>
</html>

The warning page can be any page. For example, you can set

$WARNING_URL to your privacy or network usage policy page to alert the

user of your policies on resource usage.

Creating the Central Logout
Application
The central logout application terminates the user session. A flowchart of such an
application is shown in Figure 5-6.

Figure 5-6: A flowchart for the logout application.

Start

Stop

Yes

No Is user already
authenticated?

Logout the user by terminating the
session and redirect the user to the

home URL.

Show alert message
stating that user is

not logged in.

138 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 138

The logout application checks to see whether the user is logged in. If the user is
not logged in, she is warned of her status. If the user is logged in, her session is ter-
minated and the user is redirected to a home URL. Listing 5-7 implements this flow-
chart in logout.php.

Listing 5-7: logout.php

<?php

require_once “login.conf”;
require_once “login.errors”;

/*
Session variables must be defined before session_start()
method is called

*/

$count = 0;

class loginApp extends PHPApplication {

function run()
{

global $MIN_USERNAME_SIZE, $MIN_PASSWORD_SIZE, $MAX_ATTEMPTS;
global $WARNING_URL, $APP_MENU;

$email = $this->getRequestField(‘email’);
$password = $this->getRequestField(‘password’) ;
$url = $this->getRequestField(‘url’);

$emailLen = strlen($email);
$passwdLen = strlen($password);

$this->debug(“Login attempts : “ .
$this->getSessionField(‘SESSION_ATTEMPTS’));

if ($this->is_authenticated())
{

// return to caller HTTP_REFERRER
$this->debug(“User already authenticated.”);
$this->debug(“Redirecting to $url.”);
$url = (isset($url)) ? $url : $this->getServer();
header(“Location: $url”);

Continued

Chapter 5: Central Authentication System 139

08 549669 ch05.qxd 4/4/03 9:24 AM Page 139

Listing 5-7 (Continued)

} else if (strlen($email) < $MIN_USERNAME_SIZE ||
strlen($password) < $MIN_PASSWORD_SIZE) {

// display the login interface
$this->debug(“Invalid Email or password.”);
$this->display_login();
$_SESSION[“SESSION_ATTEMPTS”] =
$this->getSessionField(“SESSION_ATTEMPTS”) + 1;

} else {

// Prepare the email with domain name
if (!strpos($email, ‘’))
{

$hostname = explode(‘.’, $_SERVER[‘SERVER_NAME’]);

if (sizeof($hostname) > 1)
{

$email .= ‘’ . $hostname[1] . ‘.’ . $hostname[2];
}

}

// authenticate user

$this->debug(“Authenticate user: $email with password $password”);

if ($this->authenticate($email, $password))
{

$this->debug(“User is successfully authenticated.”);
$_SESSION[“SESSION_USERNAME”] = $email;
$_SESSION[“SESSION_PASSWORD”] = $password;
$_SESSION[“SESSION_USER_ID”] = $this->getUID();

if (empty($url))
{

$url = $APP_MENU;
}

// Log user activity
$thisUser = new User($this->dbi, $this->getUID());
$thisUser->logActivity(LOGIN);

$this->debug(“Location $url”);
header(“Location: $url”);

140 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 140

$this->debug(“Redirect user to caller application at url =
$url.”);

} else {
$this->debug(“User failed authentication.”);
$this->display_login();
$_SESSION[“SESSION_ATTEMPTS”] =
$this->getSessionField(“SESSION_ATTEMPTS”) + 1;

}
}

}

function warn()
{

global $WARNING_URL;
$this->debug(“Came to warn the user $WARNING_URL”);
header(“Location: $WARNING_URL”);

}

function display_login()
{

global $TEMPLATE_DIR;
global $LOGIN_TEMPLATE;
global $MAX_ATTEMPTS;
global $REL_TEMPLATE_DIR;
global $email, $url;
global $PHP_SELF,

$FORGOTTEN_PASSWORD_APP;

$url = $this->getRequestField(‘url’);

if ($this->getSessionField(“SESSION_ATTEMPTS”) > $MAX_ATTEMPTS)
{

$this->warn();
}

$this->debug(“Display login dialog box”);
$template = new Template($TEMPLATE_DIR);
$template->set_file(‘fh’, $LOGIN_TEMPLATE);
$template->set_block(‘fh’, “mainBlock”);
$template->set_var(‘SELF_PATH’, $PHP_SELF);
$template->set_var(‘ATTEMPT’,

$this->getSessionField(“SESSION_ATTEMPTS”));

Continued

Chapter 5: Central Authentication System 141

08 549669 ch05.qxd 4/4/03 9:24 AM Page 141

Listing 5-7 (Continued)

$template->set_var(‘TODAY’, date(“M-d-Y h:i:s a”));
$template->set_var(‘TODAY_TS’, time());
$template->set_var(‘USERNAME’, $email);
$template->set_var(‘REDIRECT_URL’, $url);
$template->set_var(‘FORGOTTEN_PASSWORD_APP’, $FORGOTTEN_PASSWORD_APP);
$template->parse(“fh”, “mainBlock”);
$template->set_var(‘BASE_URL’, sprintf(“%s”,$this->base_url));
$template->pparse(“output”, “fh”);
return 1;

}

function is_authenticated()
{

return (!empty($_SESSION[“SESSION_USERNAME”])) ? TRUE : FALSE;
}

function authenticate($user = null, $passwd = null)
{

$authObj = new Authentication($user, $passwd, $this->app_db_url);

if ($authObj->authenticate())
{

$uid = $authObj->getUID();
$this->debug(“Setting user id to $uid”);
$this->setUID($uid);
return TRUE;

}

return FALSE;
}

}

global $AUTH_DB_URL;

$thisApp = new loginApp(
array(

‘app_name’ => $APPLICATION_NAME,
‘app_version’ => ‘1.0.0’,
‘app_type’ => ‘WEB’,
‘app_db_url’ => $AUTH_DB_URL,
‘app_auto_authorize’ => FALSE,
‘app_auto_chk_session’ => FALSE,

142 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 142

‘app_auto_connect’ => TRUE,
‘app_type’ => ‘WEB’,
‘app_debugger’ => $OFF
)

);
$thisApp->buffer_debugging();
$thisApp->debug(“This is $thisApp->app_name application”);
$thisApp->run();
$thisApp->dump_debuginfo();

?>

The logout.php application calls the is_authenticated() method of the
class.PHPApplication.php object and, if the user is authenticated, it calls its own
logout method. This method calls the session_unset() and session_destroy()
methods, which are part of PHP’s built-in session management API. The ses-
sion_unset() method simply makes the session variables as if they were never set
before. The effect of session_unset() in our login scenario is that session vari-
ables such as SESSION_USERNAME and SESSION_ATTEMPTS are unset. Similarly, the
session_destroy() method removes the entire session (file or database record)
from the session storage. The full effect is that the user loses her session and will
need a new login session to work with applications that require the central login
facility.

The logout.php application uses the logout.conf file shown in Listing 5-8.
This configuration file is very similar to the login.conf and requires no further
explanation except that the $HOME_URL is a new entry. This variable sets the URL,
which is used to redirect the logged out user to a central page. Typically this URL
would be set to the home page of the intranet or Internet site.

Listing 5-8: logout.conf

<?php

// login.conf

//extract($_GET);
//extract($_POST);

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed framewirk directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.

Continued

Chapter 5: Central Authentication System 143

08 549669 ch05.qxd 4/4/03 9:24 AM Page 143

Listing 5-8 (Continued)

$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$PEAR =$_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’;
$PHPLIB =$_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// Insert the path in the PHP include_path so that PHP
// looks for PEAR, PHPLIB and our application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PEAR . ‘:’ .
$PHPLIB . ‘:’ .
$APP_FRAMEWORK_DIR . ‘:’ .
ini_get(‘include_path’));

$PHP_SELF = $_SERVER[“PHP_SELF”];

$LOGIN_TEMPLATE = ‘login.html’;

$APPLICATION_NAME = ‘LOGIN’;
$DEFAULT_LANGUAGE = ‘US’;

$AUTH_DB_URL = ‘mysql://root:foobar@localhost/auth’;
$ACTIVITY_LOG_TBL = ‘ACTIVITY’;
$AUTH_DB_TBL = ‘users’;

$MIN_USERNAME_SIZE= 3;
$MIN_PASSWORD_SIZE= 3;
$MAX_ATTEMPTS = 250;
$FORGOTTEN_PASSWORD_APP =

‘/user_mngr/apps/user_mngr_forgotten_pwd.php’;

$APP_MENU = ‘/’;

$TEMPLATE_DIR = $_SERVER[‘DOCUMENT_ROOT’] .
‘/login/templates’;

$REL_TEMPLATE_DIR = ‘/login/templates/’;
$WARNING_URL = $TEMPLATE_DIR . ‘/warning.html’;

require_once “login.errors”;
require_once “login.messages”;
require_once ‘DB.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . ‘constants.php’;

144 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 144

require_once $APP_FRAMEWORK_DIR . ‘/’ . $DEBUGGER_CLASS;

require_once $APP_FRAMEWORK_DIR . ‘/’ . $APPLICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $ERROR_HANDLER_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $AUTHENTICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $DBI_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $USER_CLASS;
require_once $TEMPLATE_CLASS;

?>

The logout application also has a logout.errors file, shown in Listing 5-9, and
logout.messages file, shown in Listing 5-10.

Listing 5-9: logout.errors

<?php

// Errors for Logout application

$ERRORS[‘US’][‘MISSING_CODE’] = “No error message found”;

$ERRORS[‘US’][‘INVALID_DATA’] = “Invalid data.”;

?>

The logout messages are displayed using the alert() method found in the
class.PHPApplication.php object.

Listing 5-10: logout.messages

<?php

// Messages for logout applications

$MESSAGES[‘US’][‘LOGOUT_SUCCESSFUL’] = “You are logged out.”;
$MESSAGES[‘US’][‘LOGOUT_FAILURE’] = “You are not logged in.”;
$MESSAGES[‘US’][‘LOGOUT_NOT_LOGGED_IN’] = “You are not logged in.”;

?>

Now let’s test our central login and logout applications.

Chapter 5: Central Authentication System 145

08 549669 ch05.qxd 4/4/03 9:24 AM Page 145

Creating the Central Authentication
Database
Before you can use the login and logout applications, you need to create the central
authentication database and then add a user to it. The central authentication data-
base information is stored in both login.conf and logout.conf files using the
following configuration variables:

$AUTH_DB_TYPE = ‘mysql’;
$AUTH_DB_HOST = ‘localhost’;
$AUTH_DB_NAME = ‘auth’;
$AUTH_DB_TBL = ‘users’;
$AUTH_DB_USERNAME = ‘root’;
$AUTH_DB_PASSWD = ‘foobar’;

In our example, the database type is mysql and the database host name is local-
host, which means we’re implementing the database on the same server as a MySQL
database. If you want to use a different database host or a different database server such
as Postgres or Oracle, you have to change these variables. For our example, I assume
that you’re using the given sample values for $AUTH_DB_TYPE, $AUTH_DB_HOST,
$AUTH_DB_NAME, and $AUTH_DB_TBL. However, I strongly suggest that you use different
$AUTH_DB_USERNAME and $AUTH_DB_PASSWD values for your database.

Make sure that the user you specify in $AUTH_DB_USERNAME has the privi-

lege to access (select, insert, update, and delete) $AUTH_DB_NAME
on $AUTH_DB_HOST. You should test the user’s ability to access this data-

base using your standard database-access tools. For example, if you’re using

MySQL, you can run the command-line MySQL client as mysql -u root
-p -D auth to access the authentication database.

Assuming that you’re using the given settings, you can create a MySQL database
called auth using the mysqladmin create auth command. You’ll require appro-
priate permission to run mysqladmin or equivalent commands to create the auth
database. Please consult your MySQL documentation for details.

Now to create the $AUTH_DB_TBL (users) table you can run the users.sql script
using mysql -u AUTH_DB_USERNAME -p -D AUTH_DB_NAME < auth.sql com-
mand. The auth.ddl script is shown in Listing 5-11.

Listing 5-11: auth.sql

phpMyAdmin MySQL-Dump
version 2.2.5
http://phpwizard.net/phpMyAdmin/

146 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 146

http://phpmyadmin.sourceforge.net/ (download page)
#
Host: localhost
Generation Time: May 14, 2002 at 01:55 PM
Server version: 3.23.35
PHP Version: 4.1.0
Database : `auth`

#
Table structure for table `users`
#

CREATE TABLE users (
UID int(11) NOT NULL auto_increment,
EMAIL varchar(32) NOT NULL default ‘’,
PASSWORD varchar(128) NOT NULL default ‘’,
ACTIVE tinyint(4) NOT NULL default ‘0’,
TYPE tinyint(4) NOT NULL default ‘0’,
PRIMARY KEY (UID),
UNIQUE KEY EMAIL (EMAIL)

) TYPE=MyISAM COMMENT=’User Authentication Table’;

The table created using this script is described in Table 5-3.

TABLE 5-3 THE USER TABLE FIELDS

Field Details

UID This is the user ID field. This is automatically generated.

EMAIL This is the username field. We use e-mail as the username in the
login because e-mail is easy to remember and always unique for
each person in an organization.

PASSWORD This is the encrypted password.

ACTIVE This is the active (1 or 0) field. If the value is 1, then the user is
active and can log in. Otherwise, she cannot log in.

TYPE The type of user is specified using this field. The type can be a
number. Currently, we assume that the number 9 is the highest-
ranking user, such as the administrator.

After this table is created, you can add a user, as explained in the following sec-
tion, to test your login/logout applications.

Chapter 5: Central Authentication System 147

08 549669 ch05.qxd 4/4/03 9:24 AM Page 147

Testing Central Login and Logout
To test the authentication system, you need to create users in the database. (User
management applications are discussed Chapter 6.)

To create a user using the MySQL command-line tool you can run commands
such as the following:

mysql -u root -p -D auth;
Enter password: *****
mysql> insert into users (EMAIL, PASSWORD, ACTIVE, TYPE)
values(‘admin@example.com’, ENCRYPT(‘mysecret’), 1, 9);

Here the first line tells mysql to connect you to the auth database using user-
name root and a password which you have to enter when asked. Of course if you
are not using root account for this database, you should replace the username as
appropriate.

Next at the mysql prompt, you can enter an INSERT statement as shown. Here
the insert statement creates a user account called admin@example.com with pass-
word mysecret. You should change both the username and password to what you
desire. The ACTIVE field is set to 1 to turn on the user and TYPE field is set to 9 to
make this user an administrator. To create a regular user the TYPE field has to be set
to 1.

The insert statement inserts a user named “admin@example.com” with a pass-
word called “mysecret” and sets the user’s status to active. The user type is set to 9,
which is the highest-ranking user type. If you want to create new users using this
script, then you have to change the username and password and run the script to
produce the insert statement.

After the user is added in the database you can run the login application from a
Web browser. For example, Figure 5-7 shows the login application being called
using the http://intranet.evoknow.com/php/login/login.php URL.

Figure 5-7: The login application menu.

148 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 148

Enter the newly created username and password and log in. If you cannot login,
check to see if the user exists in the authentication database. Also, if the user is not
active, the user cannot log in. You can check whether the active flag is working by
toggling it using update statements such as follows from your MySQL database
command line. The following code shows a MySQL command-line session, which
sets the active flag to 0 (ACTIVE = 0) and again activates the admin user (ACTIVE
= 1).

$ mysql -u AUTH_DB_USERNAME -p -D AUTH_DB_NAME

mysql> update users set ACTIVE = 0 where USERNAME =
‘admin@example.com’;
mysql> exit;

$ mysql -u AUTH_DB_USERNAME -p -D AUTH_DB_NAME

mysql> update users set ACTIVE = 1 where USERNAME =
‘admin@example.com’;
mysql> exit;

You can test the logout application by simply calling it directly using the appro-
priate URL. For example, http://intranet.evoknow.com/php/logout/logout.php
will log out a user session.

Making Persistent Logins in
Web Server Farms
Organizations with Web server farms will have to use site-wide persistent logins to
ensure that users are not required to log in from one system to another. Figure 5-8
shows a typical Web server farm.

Figure 5-8: A typical Web server farm balances an organization’s server workload.

Web
Server 1

Web
Server 2

Load Balancer

Web
Server 3

Web
Server n

Chapter 5: Central Authentication System 149

08 549669 ch05.qxd 4/4/03 9:24 AM Page 149

Web server farms are often used to increase scalability and redundancy for the
application services the organization provides. Such a farm usually implements all
the applications in each server node so that any one of the servers can go down or
become busy at any time but the user is directed to a server that is able to service
the application request.

In such an environment, the session data cannot be stored in local files in each
server node. Figure 5-9 shows what happens when file-based user sessions are used
in a Web server farm.

Figure 5-9: Why file-based sessions are not persistent in Web server farms.

When a user logs into a system using a file-based session, the file is stored in a
single server and, in the next request, the user might be sent to a different server
due to load or server failure. In such a case the next system will not have access to
the session and will simply redirect the user to the login application to create a new
login session. This can annoy and inconvenience the user, so a central database-
based session solution is needed, which is shown in Figure 5-10.

To implement this solution, we need to define seven session management func-
tions that PHP will use to implement sessions.

The functions are session_open(), sess_close(), sess_read(), sess_write(),
sess_destroy(), sess_gc(), and session_set_save_handler(). The sess_open()
function is called to start the session, the sess_close() function called when ses-
sion is closed, the sess_read() function is called to read the session information,
the sess_destroy() function is called when session is to be destroyed, the
sess_gc() function is called when garbage collection needs to be done, and finally
session_set_save_hander() is used to tell PHP the names of the other six session
functions.

Web
Server 1

Web
Server 2

Load Balancer

Any Request for Application X

User request for
application X

Web
Server 3

Web
Server n

1st Request 2nd Request nth Request

Session
File

Session
File

Session
File

150 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 150

Figure 5-10: How database-based sessions persist in Web server farms.

Listing 5-12 shows libsession_handler.php which implements all these functions.

Listing 5-12: lib.session_handler.php

<?php

error_reporting(E_ALL);
require_once(‘constants.php’);
require_once(‘class.DBI.php’);
require_once ‘DB.php’;

$DB_URL = “mysql://root:foobar@localhost:/sessions”;

$dbi = new DBI($DB_URL);

Continued

Web
Server 1

Web
Server 2

Load Balancer

Request for application X

Session Database Server

Old Session File New Session File

User request for
application X

Web
Server 3

Web
Server n

Request 2 for application X

User request for
application X

Chapter 5: Central Authentication System 151

08 549669 ch05.qxd 4/4/03 9:24 AM Page 151

Listing 5-12 (Continued)

$SESS_LIFE = get_cfg_var(“session.gc_maxlifetime”);

function sess_open($save_path, $session_name) {
return true;

}

function sess_close() {
return true;

}

function sess_read($key) {
global $dbi, $DEBUG, $SESS_LIFE;

$statement = “SELECT value FROM sessions WHERE “ .
“sesskey = ‘$key’ AND expiry > “ . time();

$result = $dbi->query($statement);

$row = $result->fetchRow();
if ($row) {

return $row->value;
}

return false;
}

function sess_write($key, $val) {
global $dbi, $SESS_LIFE;

$expiry = time() + $SESS_LIFE;
$value = addslashes($val);

$statement = “INSERT INTO sessions “.
“VALUES (‘$key’, $expiry, ‘$value’)”;

$result = $dbi->query($statement);

if (! $result) {
$statement = “UPDATE sessions SET “ .

“ expiry = $expiry, value = ‘$value’ “ .
“ WHERE sesskey = ‘$key’ AND expiry > “ .
time();

$result = $dbi->query($statement);
}

152 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 152

return $result;
}

function sess_destroy($key) {
global $dbi;

$statement = “DELETE FROM sessions WHERE sesskey = ‘$key’”;
$result = $dbi->query($statement);
return $result;

}

function sess_gc($maxlifetime) {
global $dbi;

$statement = “DELETE FROM sessions WHERE expiry < “ . time();
$qid = $dbi->query($statement);
return 1;

}

session_set_save_handler(
“sess_open”,
“sess_close”,
“sess_read”,
“sess_write”,
“sess_destroy”,
“sess_gc”);

?>

Here the sess_open(), sess_close(), sess_read(), sess_destory(), and
sess_gc() methods use a DBI object from our class.DBI.php class to implement
database-based session management. To implement this database-based session
management in our framework, we need to do the following:

1. Place the lib.session_handler.php in the framework directory. For
example, if you’re keeping the class.PHPApplication.php in the
/usr/php/framework directory, then you should put the
lib.session_handler.php in the same directory.

2. Create a database called sessions using mysqladmin command such as
mysqladmin -u root -p create sessions. You will need to know the
username (here root) and password that is allowed to create databases.
Next create a table called sessions using the sessions.ddl script with
the mysql -u root -p -D sessions < sessions.sql command. Here’s
the sessions.sql:

Chapter 5: Central Authentication System 153

08 549669 ch05.qxd 4/4/03 9:24 AM Page 153

CREATE TABLE sessions (
sesskey varchar(32) NOT NULL default ‘’,
expiry int(11) NOT NULL default ‘0’,
value text NOT NULL,
PRIMARY KEY (sesskey)

) TYPE=MyISAM;

3. Modify the following line in lib.session_handler.php to reflect your
user name, password, and database host name:

$DB_URL = “mysql://root:foobar@localhost:/sessions”;

Here user name is root, password is foobar, and database host is local-
host. You should change them if they’re different for your system.

4. Add the following line at the beginning of the
class.PHPApplication.php file.

require_once ‘lib.session_handler.php’;

After you’ve completed these steps, you can run your login application and see
that sessions are being created in the sessions table in the sessions database. To
view sessions in your sessions database, run mysql -u root -p -D sessions. When
you’re logged into the sessions database, you can view sessions using queries such
as the following:

mysql> select * from sessions;
+----------------------------------+------------+-----------------------+
| sesskey | expiry | value |
+----------------------------------+------------+-----------------------+
| 3b6c2ce7ba37aa61a161faafbf8c24c7 | 1021365812 | SESSION_ATTEMPTS|i:3; |
+----------------------------------+------------+-----------------------+
1 row in set (0.00 sec)

After a successful login:

mysql> select * from sessions;
+----------------------------------+------------+-------------------------------
-+
| sesskey | expiry | value
|
+----------------------------------+------------+-------------------------------
-+
| 3b6c2ce7ba37aa61a161faafbf8c24c7 | 1021365820 |
SESSION_ATTEMPTS|i:3;SESSION_USERNAME|s:15:”joe@evoknow.com”; |
+----------------------------------+------------+-------------------------------
-+

154 Part II: Developing Intranet Solutions

08 549669 ch05.qxd 4/4/03 9:24 AM Page 154

1 row in set (0.00 sec)
After logging out:

mysql> select * from sessions;
Empty set (0.00 sec)

You can see that the session is started after login.php and the session is removed
once the user runs logout.php.

Summary
In this chapter you learned about a central authentication system which involves a
login and logout application and a central authentication database. All PHP appli-
cations in your intranet or Web can use this central authentication facility. When
an application is called directly by entering the URL in the Web browser, it can
check for the existence of a session for the user and if an existing session is found,
she is allowed access or else she is redirected to the login form. The logout applica-
tion can be linked from any PHP application to allow the user log out at any time.
Once logged out the session is removed. Having a central authentication system
such as this helps you reduce the amount of code and maintenance you need to do
for creating a seamless authentication process throughout your entire Web or
intranet environment.

Chapter 5: Central Authentication System 155

08 549669 ch05.qxd 4/4/03 9:24 AM Page 155

08 549669 ch05.qxd 4/4/03 9:24 AM Page 156

Chapter 6

Central User Management
System
IN THIS CHAPTER

◆ Designing a user management system for the central authentication system

◆ Implementing a user management system

◆ Managing administrator and regular users

◆ Creating a user-password application

◆ Creating a forgotten-password recovery application

A CENTRAL USER MANAGEMENT system is a set of applications that enables you to
manage users for your PHP applications in a central manner. Using the applications
developed in this chapter you will be able to manage user accounts that are stored
in the central authentication database created in the previous chapter.

Identifying the Functionality
Requirements
First, let’s define the functionality requirements for the user management system.
The user manager must provide the following functionality:

◆ Central user database: The user manager must use a central user data-
base. This is a requirement because of our central authentication architec-
ture. If the user database is not central, we can’t centrally authenticate the
users.

◆ Root user support: A user should be identified as the root user, which
cannot be deleted or deactivated by anyone including the root user itself.

◆ Administrative user support: The root user should be able to create other
administrative users.

◆ Standard user support: A root or administrative user can create, modify,
or delete a standard user account. 157

09 549669 ch06.qxd 4/4/03 9:24 AM Page 157

◆ User password support: A standard user can change her password at any
time after logging in.

◆ Password recovery support: If a user forgets her password, she can
recover it.

To implement these features we need a User object that can permit all of these
operations on a user account.

Creating a User Class
The very first class that we need to build here is the User class, which will provide
methods to add, modify, delete user accounts and also return various other infor-
mation about an user.

User() is the constructor method for the User class. It sets the variables shown
in Table 6-1.

TABLE 6-1 MEMBER VARIABLES SET IN User() METHOD

Member Variable Value

user_tbl Set to $USER_TBL, which is a global variable set in the
user_mngr.conf file to point to the user table in the
central authentication database.

dbi Set to the DBI object passed as a parameter to the
constructor.

minimum_username_size Set to the user_mngr.conf configuration file variable,
$MIN_USERNAME_SIZE, which sets the minimum size of
the username allowed.

min_pasword_size Set to the user_mngr.conf configuration file variable,
MIN_PASSWORD_SIZE, which sets the minimum size of
the password allowed.

USER_ID Set to null or the user ID passed as parameter (if any).

user_tbl_fields Set to an associative array, which creates a key value pair
for each of the fields and field types (text or number) for
the user table.

If the user ID is set in the constructor then it loads the user information by call-
ing the getUserInfo() method in the class. The status of the getUserInfo()

158 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 158

method is stored as is_user, which can be TRUE or FALSE depending on whether
user information was retrieved from the database.

A User class needs the following methods to implement all the operations
needed for user management:

Methods Description

isUser() Returns TRUE if the current user_id number is really
a user ID. If no user ID was supplied to the constructor
method or the supplied-user ID does not point to a
real user, this method returns FALSE.

getUserID() Returns the current user ID.

setUserID() Sets the current user ID if it is supplied or else it
returns the current user ID set by the constructor
method.

getUserIDByName() Returns the user ID by given user name. When a valid
username is given as the parameter, the method
queries the user table to retrieve the appropriate
user ID.

getUserTypeList() Returns an associative array called $USER_TYPE,
which is loaded from the user_mngr.conf file. The
array defines the types of users allowed in the central
user management system, and appears as follows:

$USER_TYPE = array(‘1’ =>
‘Administrator’,

‘2’ => ‘Standard
User’);

getUID() Returns the user ID (USER_ID) for the current User
object.

getEMAIL() Returns the e-mail address (EMAIL) for the current
User object.

getPASSWORD() Returns the password (PASSWORD) for the current
User object.

getACTIVE() Returns the active flag status of a User object.

getTYPE() Returns the user type of the User object.

getUserFieldList() Returns the array of user table fields.

Continued

Chapter 6: Central User Management System 159

09 549669 ch06.qxd 4/4/03 9:24 AM Page 159

Methods Description

getUserInfo() Returns user fields for a given or current user ID.

getUserList() Returns a list of users in the current user table. The
associative array returned contains each user’s ID
(USER_ID) as the key and username (EMAIL) as the
value.

makeUpdateKeyValuePairs() This is a utility method that returns a comma
separated list of key =>value pairs, which can be used
to update a user record.

updateUser() Updates an user data. User data is passed to this
method as an associative array called $data. This
array is passed to the
makeUpdateKeyValuePairs() method which
returns a comma separated list of key=>value pairs
used in SQL update statement inside the updateUser()
method.

This method returns TRUE if the update is successful
and returns FALSE otherwise.

addUser() Adds a new user in the user table in the central
authentication database. New user record is passed to
the method using the $data variable.

The method first escapes and quotes the textual data
and makes a list of key=>value pairs to be used in the
insert statement.

This method returns TRUE if the update is successful
and returns FALSE otherwise.

deleteUser() Returns the chosen (or current) user from the
database.

getReturnValue() Returns TRUE if the result parameter ($r) is set to
DB_OK or else it returns FALSE. This method is used
to see if a database query was successful or not.

Listing 6-1 shows a User class that provides the methods to implement all the oper-
ations needed for user management.

160 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 160

Listing 6-1: class.User.php

<?php

class User
{

function User($dbi = null, $uid = null)
{

global $AUTH_DB_TBL,
$MIN_USERNAME_SIZE,
$MIN_PASSWORD_SIZE,
$ACTIVITY_LOG_TBL;

$this->user_tbl = $AUTH_DB_TBL;
$this->user_activity_log = $ACTIVITY_LOG_TBL;
$this->dbi = $dbi;

//print_r($this->dbi);

$this->minmum_username_size = $MIN_USERNAME_SIZE;
$this->minmum_pasword_size = $MIN_PASSWORD_SIZE;

$this->USER_ID = $uid;

//$this->debugger = $debugger;

$this->user_tbl_fields = array(‘EMAIL’ => ‘text’,
‘PASSWORD’ => ‘text’,
‘TYPE’ => ‘number’,
‘ACTIVE’ => ‘number’
);

if (isset($this->USER_ID))
{

$this->is_user = $this->getUserInfo();
} else {

$this->is_user = FALSE;
}

}

Continued

Chapter 6: Central User Management System 161

09 549669 ch06.qxd 4/4/03 9:24 AM Page 161

Listing 6-1 (Continued)

function isUser()
{

return $this->is_user;
}

function getUserID()
{

return $this->USER_ID;
}

function setUserID($uid = null)
{

if (! empty($uid))
{

$this->USER_ID = $uid;
}

return $this->USER_ID;
}

function getUserIDByName($name = null)
{

if (! $name) return null;

$stmt = “SELECT USER_ID FROM $this->user_tbl WHERE EMAIL = ‘$name’”;

$result = $this->dbi->query($stmt);

if ($result != null)
{

$row = $result->fetchRow();

return $row->USER_ID;
}

return null;

}

function getUserTypeList()
{

global $USER_TYPE;

return $USER_TYPE;

162 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 162

}

function getUID()
{

return (isset($this->USER_ID)) ? $this->USER_ID : NULL;
}

function getEMAIL()
{

return (isset($this->EMAIL)) ? $this->EMAIL : NULL;
}

function getPASSWORD()
{

return (isset($this->PASSWORD)) ? $this->PASSWORD : NULL;
}

function getACTIVE()
{

return (isset($this->ACTIVE)) ? $this->ACTIVE : NULL;
}

function getTYPE()
{

return (isset($this->TYPE)) ? $this->TYPE : NULL;
}

function getUserFieldList()
{

return array(‘USER_ID’, ‘EMAIL’, ‘PASSWORD’, ‘ACTIVE’, ‘TYPE’);
}

function getUserInfo($uid = null)
{

$fields = $this->getUserFieldList();

$fieldStr = implode(‘,’, $fields);

$this->setUserID($uid);

$stmt = “SELECT $fieldStr FROM $this->user_tbl “ .
“WHERE USER_ID = $this->USER_ID”;

//echo “$stmt <P>”;

Continued

Chapter 6: Central User Management System 163

09 549669 ch06.qxd 4/4/03 9:24 AM Page 163

Listing 6-1 (Continued)

$result = $this->dbi->query($stmt);

if ($result->numRows() > 0)
{

$row = $result->fetchRow();

foreach($fields as $f)
{

$this->$f = $row->$f;
}

return TRUE;

}

return FALSE;
}

function getUserIDbyEmail($email = null) // needed for EIS
{

$stmt = “SELECT USER_ID FROM $this->user_tbl “ .
“WHERE EMAIL = ‘$email’”;

$result = $this->dbi->query($stmt);

if($result->numRows() > 0)
{

$row = $result->fetchRow();

return $row->USER_ID;

} else {

return 0;
}

}

function getUserList()
{

164 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 164

$stmt = “SELECT USER_ID, EMAIL FROM $this->user_tbl”;

$result = $this->dbi->query($stmt);

$retArray = array();

if ($result != null)
{

while($row = $result->fetchRow())
{

$retArray[$row->USER_ID] = $row->EMAIL;
}

}

return $retArray;

}

function makeUpdateKeyValuePairs($fields = null, $data = null)
{

$setValues = array();

while(list($k, $v) = each($fields))
{

if (isset($data[$k]))
{

//echo “DATA $k = $data[$k]
”;

if (! strcmp($v, ‘text’))
{

$v = $this->dbi->quote(addslashes($data[$k]));

$setValues[] = “$k = $v”;

} else {

$setValues[] = “$k = $data[$k]”;
}

}
}

Continued

Chapter 6: Central User Management System 165

09 549669 ch06.qxd 4/4/03 9:24 AM Page 165

Listing 6-1 (Continued)

return implode(‘, ‘, $setValues);
}

function updateUser($data = null)
{

$this->setUserID();

$fieldList = $this->user_tbl_fields;

$keyVal = $this->makeUpdateKeyValuePairs($this->user_tbl_fields,
$data);

$stmt = “UPDATE $this->user_tbl SET $keyVal WHERE USER_ID = $this-
>USER_ID”;

$result = $this->dbi->query($stmt);

return $this->getReturnValue($result);

}

function addUser($data = null)
{

$fieldList = $this->user_tbl_fields;
$valueList = array();

while(list($k, $v) = each($fieldList))
{

if (!strcmp($v, ‘text’))
{

$valueList[] = $this->dbi->quote(addslashes($data[$k]));
} else {

$valueList[] = $data[$k];
}

}

$fields = implode(‘,’, array_keys($fieldList));
$values = implode(‘,’, $valueList);

$stmt = “INSERT INTO $this->user_tbl ($fields) VALUES($values)”;
//echo $stmt;
$result = $this->dbi->query($stmt);

166 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 166

return $this->getReturnValue($result);

}

function deleteUser($uid = null)
{

$this->setUserID($uid);

$stmt = “DELETE from $this->user_tbl “ .
“WHERE USER_ID = $this->USER_ID”;

$result = $this->dbi->query($stmt);

return $this->getReturnValue($result);
}

function getReturnValue($r = null)
{

return ($r == DB_OK) ? TRUE : FALSE;

}

function logActivity($action = null)
{

$now = time();

$stmt = “INSERT INTO $this->user_activity_log SET “ .
“USER_ID = $this->USER_ID, “.
“ACTION_TYPE = $action, “ .
“ACTION_TS = $now”;

// echo “$stmt <P>”;

$result = $this->dbi->query($stmt);

return $this->getReturnValue($result);
}

}
?>

Chapter 6: Central User Management System 167

09 549669 ch06.qxd 4/4/03 9:24 AM Page 167

User Interface Templates
Throughout the user management system, many user interface templates are
needed to allow users and administrators to interact with the system. These tem-
plates are simple HTML forms with embedded tags, which are dynamically replaced
to create the desired look and feel of the applications. These templates are supplied
with the CD-ROM and are very simple in nature. These templates are:

◆ usermngr_menu.html - this template displays the user manager menu

◆ usermngr_user_form.html - this template is the user add/modify form

◆ usermngr_status.html - this template shows status of add/modify/delete etc.

◆ usermngr_pwd_change.html - this template is used for password changes

◆ usermngr_pwd_reset.html - this template is used to reset passwords

◆ usermngr_forgotten_pwd.html - this template is used as forgotten pass-
word request form.

◆ usermngr_forgotten_pwd_email.html - this template is used in e-mailing
password reset request for those who have forgotten passwords

Creating a User Administration
Application
The primary application in the central user management system is the user admin-
istration application. It enables the user administrator to do the following tasks:

◆ Add new user accounts

◆ Modify user accounts

◆ Toggle user account active flags

◆ Change user passwords

◆ Upgrade or downgrade users

◆ Delete user accounts

user_mngr.php is a user manager application that implements these features.
Let’s look at some of its main methods:

◆ run(): This method is used to run the application. It acts as a driver and
performs the following tasks:

■ It checks to see if the user is authorized to run the application.

168 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 168

■ If the application is called with $cmd set to add, run() calls
addDriver() to handle user add operation.

If the application is called with $cmd set to modify, run() calls
modifyDriver() to handle user modification operation.

If the application is called with $cmd set to delete, run() calls
deleteUser() to handle user delete operation.

If the $cmd variable is not set, run() calls showScreen() to show the
user management menu.

◆ addUser(): This method adds a user as follows:

1. It calls checkInput() to check user input supplied in add user inter-
face.

2. It adds the default domain to the user’s e-mail address if the username
entered by the user does not include a domain name. For example, if
the user enters carol as the username, addUser() sets the username to
carol@evoknow.com assuming $DEFAULT_DOMAIN is set to
evoknow.com.

3. It generates a two-character random string to be used as a salt for the
crypt() function used to encrypt the user-supplied password.

4. It lowercases the username and creates a User object. An associative
array is defined to hold the user-supplied data in a key=value manner.
The keys are database field names for respective user data.

5. It uses the User object, $userObj, to call addUser(), which in turn
adds the user in the database.

6. It displays a success or failure status message accordingly.

◆ modifyUser(): This method modifies a user account as follows:

1. It uses checkInput() to check user-supplied input.

2. If the user is trying to modify the root user account (identified by the
$ROOT_USER variable loaded from the user_mngr.conf file), then the
user is not allowed to deactivate the root user. Also, the root user
account cannot be lowered to a standard account. This check is also
performed and an appropriate alert message is displayed when such
attempts are made by the administrator user.

3. It enters the user-supplied user type (TYPE), active flag (ACTIVE), and
user ID (USER_ID) into an associative array called $hash.

4. If the user-supplied password does not match the dummy password
(identified by the $DUMMY_PASSWD variable loaded from the
user_mngr.conf file), modifyUser() encrypts the password using a
random two-character-based salt string.

Chapter 6: Central User Management System 169

09 549669 ch06.qxd 4/4/03 9:24 AM Page 169

5. It uses $userObj to call getUserInfo() to load current user data into
the object.

6. It stores modified username (EMAIL) in the $hash variable.

7. It uses the $uesrObj object’s updateUser() method to update the user
in the database.

8. It displays a success or failure status message as appropriate.

◆ deleteUser(): This method, used to delete the chosen user, works as follows:

1. It displays an error message if the user ID is not supplied from the user
interface.

2. It creates a User object, $userObj, and uses getUserInfo() to load the
current user data.

3. It compares the chosen user’s username (EMAIL) with the $ROOT_USER
specified user’s name to avoid deleting the root user account.

4. It uses $userObj’s deleteUser() to perform the actual delete opera-
tion, removing the user from the database.

5. It displays a success or failure status message accordingly.

The following are the other functions/methods used in the user manager
application:

Function Description

modifyDriver() This is the modify driver. It uses the form variable $step to control
how the modify operation is implemented. When $step is not set,
showScreen() is used to display the modify user interface. The
user modify interface sets $step to 2, which is used to call
modifyUser(). modifyUser() uses the User object’s
updateUser() method to modify the user account.

addDriver() This is the add driver. It uses the form variable $step to control
how an add operation is implemented. When $step is not set,
showScreen() is used to display the add user interface. The user
add interface sets $step to 2, which is used to call
modifyUser(). modifyUser() uses the User object’s
addUser() method to add the user account.

menu() Called by showScreen() to display the user management menu.
It uses a User object called $userObj to get a list of existing users
using the getUserList() function. The user list is displayed in
the user interface for modification and deletion operation.

170 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 170

Function Description

modify_screen() Called by showScreen() to display the user modification
interface. modify_screen() also uses a User object called
$userObj to get current user information and display it on the
interface.

add_screen() Called by showScreen() to display the user add interface.

checkPassword() Checks the user-entered password for length and confirmation
tests.

checkInput() Checks if the user has entered the username (EMAIL), user type
(TYPE), and password (PASSWORD) information correctly from user
interfaces displayed in user management.

authorize() Determines if the user is authorized to run the application. If the
user is not $ADMINISTRATIVE_USER, then the method returns
FALSE. Otherwise, it returns TRUE.

Listing 6-2 shows the user manager application called user_mngr.php.

Listing 6-2: user_mngr.php

<?php

require_once “user_mngr.conf”;

require_once $USER_CLASS;

class userManagerApp extends PHPApplication {

function run()
{

global $USERMNGR_MNGR;

$cmd = $this->getRequestField(‘cmd’);

if (! $this->authorize())
{

$this->alert(‘UNAUTHORIZED_ACCESS’);
}

Continued

Chapter 6: Central User Management System 171

09 549669 ch06.qxd 4/4/03 9:24 AM Page 171

Listing 6-2 (Continued)

// At this point user is authorized

$cmd = strtolower($cmd);

if (!strcmp($cmd, ‘add’))
{

$this->addDriver();

} else if (!strcmp($cmd, ‘modify’)) {

$this->modifyDriver();

} else if (!strcmp($cmd, ‘delete’)) {

$this->deleteUser();

} else {

global $USERMNGR_MENU_TEMPLATE;

print $this->showScreen($USERMNGR_MENU_TEMPLATE,
‘menu’,
$USERMNGR_MNGR);

}
}

function modifyDriver()
{

$step = $this->getRequestField(‘step’);

if ($step == 2)
{

$this->modifyUser();

} else {

global $USERMNGR_USER_TEMPLATE, $USERMNGR_MNGR;

print $this->showScreen($USERMNGR_USER_TEMPLATE,
‘modify_screen’,
$USERMNGR_MNGR);

172 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 172

}
}

function addDriver()
{

$step = $this->getRequestField(‘step’);

if ($step == 2)
{

$this->addUser();

} else {

global $USERMNGR_USER_TEMPLATE, $USERMNGR_MNGR;

print $this->showScreen($USERMNGR_USER_TEMPLATE,
‘add_screen’,
$USERMNGR_MNGR);

}
}

function addUser()
{

$username = $this->getRequestField(‘username’);
$password1 = $this->getRequestField(‘password1’);
$password2 = $this->getRequestField(‘password2’);
$user_type = $this->getRequestField(‘user_type’);
$active = $this->getRequestField(‘active’);

global $DEFAULT_DOMAIN,
$USERMNGR_MNGR;

$this->checkInput();

if (!strstr($username,’’))
{

$username = $username . ‘’ . $DEFAULT_DOMAIN;
}

$salt = chr(rand(64,90)) . chr(rand(64,90));

$cryptPassword = crypt($password1, $salt);

Continued

Chapter 6: Central User Management System 173

09 549669 ch06.qxd 4/4/03 9:24 AM Page 173

Listing 6-2 (Continued)

$hash = array(
‘EMAIL’ => strtolower($username),
‘PASSWORD’ => $cryptPassword,
‘TYPE’ => $user_type,
‘ACTIVE’ => $active

);

$userObj = new User($this->dbi);

$status = $userObj->addUser($hash);

if ($status)
{

$this->show_status($this->getMessage(‘USER_ADD_SUCCESSFUL’),
$USERMNGR_MNGR);

} else {
$this->show_status($this->getMessage(‘USER_ADD_FAILED’),

$USERMNGR_MNGR);
}

}

function modifyUser()
{

$username = $this->getRequestField(‘username’);
$password1 = $this->getRequestField(‘password1’);
$password2 = $this->getRequestField(‘password2’);
$user_type = $this->getRequestField(‘user_type’);
$active = $this->getRequestField(‘active’);
$user_id = $this->getRequestField(‘user_id’);

global $USERMNGR_MNGR,
$ADMINISTRATIVE_USER,
$ROOT_USER,
$DUMMY_PASSWD;

$this->checkInput();

// If user is ROOT USER then she cannot be deactivated
if (! strcmp($username, $ROOT_USER))

174 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 174

{
if (! $active)
{

$this->alert(‘INACTIVE_NOT_OK’);
return;

}

if ($user_type != $ADMINISTRATIVE_USER)
{

$this->alert(‘OPERATION_NOT_ALLOWED’);
return;

}

}

$hash = array(
‘TYPE’ => $user_type,
‘ACTIVE’ => $active,
‘USER_ID’ => $user_id

);

if (strcmp($password1, $DUMMY_PASSWD))
{

$salt = chr(rand(64,90)) . chr(rand(64,90));
$cryptPassword = crypt($password1, $salt);
$hash[‘PASSWORD’] = $cryptPassword;

}

$userObj = new User($this->dbi, $user_id);

$userObj->getUserInfo();

$hash[‘EMAIL’] = (strcmp($username,
$userObj->getEMAIL())) ? strtolower($username) :

null;

$status = $userObj->updateUser($hash);

Continued

Chapter 6: Central User Management System 175

09 549669 ch06.qxd 4/4/03 9:24 AM Page 175

Listing 6-2 (Continued)

if ($status)
{

$this->show_status($this->getMessage(‘USER_MODIFY_SUCCESSFUL’),
$USERMNGR_MNGR);

} else {
$this->show_status($this->getMessage(‘USER_MODIFY_FAILED’),

$USERMNGR_MNGR);
}

}

function deleteUser()
{

global $USERMNGR_MNGR,
$ROOT_USER;

$user_id = $this->getRequestField(‘user_id’);

$this->emptyError($user_id, ‘USER_ID_MISSING’);

$userObj = new User($this->dbi, $user_id);

$userObj->getUserInfo();

$email = $userObj->getEMAIL();

if (! strcmp($email, $ROOT_USER))
{

$this->alert(‘USER_DELETE_NOT_ALLOWED’);

} else {

$status = $userObj->deleteUser();
}

if ($status)
{

$this->show_status($this->getMessage(‘USER_DELETE_SUCCESSFUL’),
$USERMNGR_MNGR);

} else {
$this->show_status($this->getMessage(‘USER_DELETE_FAILED’),

$USERMNGR_MNGR);
}

}

176 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 176

function menu(&$t)
{

$userObj = new User($this->dbi);
$users = $userObj->getUserList();

$t->set_block(‘mainBlock’,’userBlock’, ‘ublock’);

while(list($uid, $email) = each($users))
{

$t->set_var(array(
‘USER_ID’ => $uid,
‘USER_NAME’ => $email,
)

);

$t->parse(‘ublock’, ‘userBlock’, true);
}

return TRUE;
}

function modify_screen(&$t)
{

global $DUMMY_PASSWD;

$user_id = $this->getRequestField(‘user_id’);

$userObj = new User($this->dbi, $user_id);

$status = $userObj->getUserInfo();

if (! $status)
{

$this->alert(‘USER_INFO_MISSING’);

} else {

$userType = $userObj->getTYPE();

}

Continued

Chapter 6: Central User Management System 177

09 549669 ch06.qxd 4/4/03 9:24 AM Page 177

Listing 6-2 (Continued)

$userTypes = $userObj->getUserTypeList();

$t->set_block(‘mainBlock’,’typeBlock’, ‘tblock’);

$chosen = ‘’;

while(list($tid, $typeName) = each($userTypes))
{

$chosen = ($tid == $userType) ? ‘selected’ : ‘’;

$t->set_var(
array(

‘TYPE_ID’ => $tid,
‘USER_TYPE’ => $typeName,
‘CHOSEN’ => $chosen
)

);

$t->parse(‘tblock’, ‘typeBlock’, true);

}

$fields = $userObj->getUserFieldList();

foreach ($fields as $f)
{

$t->set_var($f, null);
}

$activeON = ($userObj->getACTIVE()) ? ‘checked’ : null;
$activeOFF = (!$userObj->getACTIVE()) ? ‘checked’ : null;

$t->set_var(array(
‘EMAIL’ => $userObj->getEMAIL(),
‘PASSWORD’ => $DUMMY_PASSWD,
‘ACTIVE_ON’ => $activeON,
‘ACTIVE_OFF’ => $activeOFF,
‘ACTION’ => ‘modify’,
‘USER_ID’ => $user_id
)

);

return TRUE;
}

178 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 178

function add_screen(&$t)
{

$userObj = new User($this->dbi);
$userTypes = $userObj->getUserTypeList();

$t->set_block(‘mainBlock’,’typeBlock’, ‘tblock’);

$chosen = ‘’;

while(list($tid, $typeName) = each($userTypes))
{

$t->set_var(array(
‘TYPE_ID’ => $tid,
‘USER_TYPE’ => $typeName,
‘CHOSEN’ => $chosen
)

);

$t->parse(‘tblock’, ‘typeBlock’, true);
}

$fields = $userObj->getUserFieldList();

foreach ($fields as $f)
{

$t->set_var($f, null);
}

$t->set_var(‘ACTIVE_ON’, ‘selected’);
$t->set_var(‘ACTIVE_OFF’, null);
$t->set_var(‘ACTION’, ‘add’);

return TRUE;

}

function checkPassword($pwd1, $pwd2)
{

global $MIN_PASSWORD_SIZE, $DUMMY_PASSWD;

$this->emptyError($pwd1, ‘PASSWORD1_MISSING’);
$this->emptyError($pwd2, ‘PASSWORD2_MISSING’);

Continued

Chapter 6: Central User Management System 179

09 549669 ch06.qxd 4/4/03 9:24 AM Page 179

Listing 6-2 (Continued)

if (strcmp($pwd1, $pwd2))
{

$this->alert(‘PASSWORD_MISMATCH’);

} else if (strlen($pwd1) < $MIN_PASSWORD_SIZE) {

$this->alert(‘INVALID_PASSWORD’);

}

}

function checkInput()
{

$username = $this->getRequestField(‘username’);
$password1 = $this->getRequestField(‘password1’);
$password2 = $this->getRequestField(‘password2’);
$user_type = $this->getRequestField(‘user_type’);

$this->emptyError($username, ‘USERNAME_MISSING’);
$this->emptyError($user_type, ‘USER_TYPE_MISSING’);
$this->checkPassword($password1, $password2);

}

function authorize()
{

global $ADMINISTRATIVE_USER;

$userObj = new User($this->dbi, $this->getUID());

$type = $userObj->getTYPE();

return ($type == $ADMINISTRATIVE_USER) ? TRUE : FALSE;

}

}//class

$SESSION_USERNAME = null;
$SESSION_USER_ID = null;
global $APP_DB_URL;

180 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 180

$thisApp = new userManagerApp(
array(‘app_name’ => $APPLICATION_NAME,

‘app_version’ => ‘1.0.0’,
‘app_type’ => ‘WEB’,
‘app_db_url’ => $APP_DB_URL,
‘app_auto_authorize’ => FALSE,
‘app_auto_connect’ => TRUE,
‘app_auto_chk_session’ => FALSE,
‘app_debugger’ => $ON
)

);

//$thisApp->buffer_debugging();
$thisApp->run();
//$thisApp->dump_debuginfo();

?>

Configuring user administration applications
The user manager application and all the other applications in the user manage-
ment system require configuration information that is stored in user_mngr.conf.
Table 6-2 shows the configuration settings.

TABLE 6-2 USER MANAGER CONFIGURATION

Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR
package; specifically the DB module needed for
class.DBI.php in our application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the
PHPLIB packages; specifically the template.
inc package needed for template manipulation.

$APP_FRAMEWORK_DIR Set to our application framework directory.

Continued

Chapter 6: Central User Management System 181

09 549669 ch06.qxd 4/4/03 9:24 AM Page 181

TABLE 6-2 USER MANAGER CONFIGURATION (Continued)

Variable Purpose

$PATH Set to the combined directory path consisting of
the $PEAR_DIR, the $PHPLIB_DIR, and the
$APP_FRAMEWORK_DIR. This path is used with
the ini_set() method to redefine the
php.ini entry for include_path to include
$PATH ahead of the default path. This allows
PHP to find our application framework, PHPLIB,
and PEAR-related files.

$AUTHENTICATION_URL Set to the central login application URL.

$LOGOUT_URL Set to the central logout application URL.

$APPLICATION_NAME The internal name of the application.

$DEFAULT_LANGUAGE Set to the default (two character) language
code.

$DEFAULT_DOMAIN Set to the default domain of the user. This
domain is appended when the user does not
specify the fully qualified username
(user@host) during interaction with the user
management applications.

$ROOT_PATH Set to the parent directory within the Web
server’s document root where the user-
manager-specific directory exists as a
subdirectory.

$REL_APP_PATH The relative application path as seen from Web
browser.

$TEMPLATE_DIR Set to the template directory containing the
ihtml template files needed for the user
management applications.

$CLASS_DIR Set to the class directory where user-
management-related class files are stored.

$USER_CLASS Fully qualified pathname for the User class.

$MIN_USERNAME_SIZE Minimum user name (EMAIL) size.

$MIN_PASSWORD_SIZE Minimum password size.

182 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 182

Variable Purpose

$DUMMY_PASSWD Dummy password used during account
modification step.

$ROOT_USER Fully qualified username of the root user

$SECRET A secret random number used in checksum
generation, which is used when forgotten
password URL links are sent via e-mail.

$CHAR_SET Default character set to be used in e-mail
content type header.

$USERMNGR_MNGR Name of the user manager application.

$USERMNGR_FORGOTTEN_APP Name of the forgotten password application.

$USERMNGR_CHANGE_PWD_APP Name of the change password application.

$REL_TEMPLATE_DIR Relative path to the template directory as seen
from the Web.

$APP_DB_URL The fully qualified database URL needed to
access the user database.

$USER_TBL Name of the user table.

$STATUS_TEMPLATE Name of the status information display
template.

$USERMNGR_MENU_TEMPLATE Name of the user management menu template.

$USERMNGR_USER_TEMPLATE Name of the user add/modify form template.

$USERMNGR_PWD_REQUEST_TEMPLATE Name of the password change template.

$USERMNGR_PWD_EMAIL_TEMPLATE Name of the e-mail template, which is used to
send the e-mail message for forgotten
passwords.

$USERMNGR_PWD_RESET_TEMPLATE Name of the forgotten password reset template.

$USERMNGR_PWD_CHANGE_TEMPLATE Name of the password change template.

$ADMINISTRATIVE_USER Numeric type value for administrative user.

$STANDARD_USER Numeric type value for standard user.

$USER_TYPE Associative array defining the relationship
between the numeric user type and user type
labels.

Chapter 6: Central User Management System 183

09 549669 ch06.qxd 4/4/03 9:24 AM Page 183

Listing 6-3 shows the configuration file (user_mngr.conf).

Listing 6-3: user_mngr.conf

<?php

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed framework directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$PEAR =$_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’;
$PHPLIB =$_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// Insert the path in the PHP include_path so that PHP
// looks for PEAR, PHPLIB and our application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PEAR . ‘:’ .
$PHPLIB . ‘:’ .
$APP_FRAMEWORK_DIR . ‘:’ .
ini_get(‘include_path’));

$AUTHENTICATION_URL = “/login/login.php”;
$LOGOUT_URL = “/logout/logout.php”;

$APP_MENU = ‘/home/home.php’;

$APPLICATION_NAME = ‘USER_MNGR’;

$XMAILER_ID = ‘Example User Manager Version 1.0’;

$DEFAULT_LANGUAGE = ‘US’;
$DEFAULT_DOMAIN = ‘example.com’;
$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/user_mngr’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;

$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

184 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 184

require_once “user_mngr.errors”;
require_once “user_mngr.messages”;
require_once ‘DB.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . ‘constants.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $APPLICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $ERROR_HANDLER_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $AUTHENTICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $DBI_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $USER_CLASS;
require_once $TEMPLATE_CLASS;

$MIN_USERNAME_SIZE= 3;
$MIN_PASSWORD_SIZE= 3;
$DUMMY_PASSWD = ‘1234567890’;
$ROOT_USER = ‘kabir@evoknow.com’;
$SECRET = 916489;
$CHAR_SET = ‘charset=iso-8859-1’;

// Application names

$USERMNGR_MNGR = ‘user_mngr.php’;
$USERMNGR_FORGOTTEN_APP = ‘user_mngr_forgotten_pwd.php’;
$USERMNGR_CHANGE_PWD_APP = ‘user_mngr_passwd.php’;

/* --------------START TABLE NAMES ---------------------- */
$APP_DB_URL = ‘mysql://root:foobar@localhost/auth’;
$AUTH_DB_TBL = ‘users’;

/* --------------END TABLE NAMES ---------------------- */

$STATUS_TEMPLATE = ‘usermngr_status.html’;
$USERMNGR_MENU_TEMPLATE = ‘usermngr_menu.html’;
$USERMNGR_USER_TEMPLATE = ‘usermngr_user_form.html’;
$USERMNGR_PWD_REQUEST_TEMPLATE= ‘usermngr_forgotten_pwd.html’;
$USERMNGR_PWD_EMAIL_TEMPLATE = ‘usermngr_forgotten_pwd_email.html’;
$USERMNGR_PWD_RESET_TEMPLATE = ‘usermngr_pwd_reset.html’;
$USERMNGR_PWD_CHANGE_TEMPLATE = ‘usermngr_pwd_change.html’;

$ADMINISTRATIVE_USER = 9;
$STANDARD_USER = 1;
$USER_TYPE = array(‘9’ => ‘Administrator’, ‘1’ => ‘Standard User’);

?>

Make sure you change this file to adjust the file and directory path information
as needed.

Chapter 6: Central User Management System 185

09 549669 ch06.qxd 4/4/03 9:24 AM Page 185

Configuring user administration application
messages
Like any other application in our application framework, all user management
applications need to have an external message file that contains all the interna-
tionalized messages printed from applications. Listing 6-4 shows such a message
file, called user_mngr.messages.

Listing 6-4: user_mngr.messages

<?php

$MESSAGES[‘US’][‘USER_ADD_SUCCESSFUL’] = “User added.”;
$MESSAGES[‘US’][‘USER_ADD_FAILED’] = “User not added.”;

$MESSAGES[‘US’][‘USER_MODIFY_SUCCESSFUL’] = “User modified.”;
$MESSAGES[‘US’][‘USER_MODIFY_FAILED’] = “User not modified.”;

$MESSAGES[‘US’][‘USER_DELETE_SUCCESSFUL’] = “User deleted.”;
$MESSAGES[‘US’][‘USER_DELETE_FAILED’] = “User not deleted.”;

$MESSAGES[‘US’][‘USER_INFO_MISSING’] = “Cannot locate user
information.”;

$MESSAGES[‘US’][‘PWD_EMAIL_SENT’] = “An email with password reset
link has been sent to you.”;

$MESSAGES[‘US’][‘PWD_EMAIL_NOT_SENT’] = “Could not send email due to
mail problem. Try later.”;

?>

Configuring user administration application error
messages
Again, like any other application in our application framework, all user manage-
ment applications need to have an external error message file that contains all the
internationalized error messages printed from applications. Listing 6-5 shows such
an error message file, called user_mngr.errors.

Listing 6-5: user_mngr.errors

<?php

// Errors for user manager apps

$ERRORS[‘US’][‘APP_FAILURE’] = “Application failure”;

186 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 186

$ERRORS[‘US’][‘UNAUTHORIZED_ACCESS’] = “You do not have privilege to
access this application.”;
$ERRORS[‘US’][‘INVALID_REQUEST’] = “Invalid request.”;

$ERRORS[‘US’][‘USERNAME_MISSING’] = “Please enter email as the
username.”;
$ERRORS[‘US’][‘PASSWORD1_MISSING’] = “Please enter password.”;
$ERRORS[‘US’][‘PASSWORD2_MISSING’] = “Please enter confirmation

password.”;
$ERRORS[‘US’][‘USER_TYPE_MISSING’] = “Please select user type.”;
$ERRORS[‘US’][‘PASSWORD_MISMATCH’] = “Passwords do not match.”;
$ERRORS[‘US’][‘PASSWORD_MISMATCH’] = “Password and confirmation password

do not match.”;
$ERRORS[‘US’][‘INVALID_PASSWORD’] = “This password is too short or

invalid .”;

$ERRORS[‘US’][‘USER_DELETE_NOT_ALLOWED’] = “This (root) user cannot be
deleted.”;
$ERRORS[‘US’][‘USER_NOT_FOUND’] = “User not found.”;
$ERRORS[‘US’][‘INACTIVE_NOT_OK’] = “This (root) user cannot be

deactivated.”;
$ERRORS[‘US’][‘OPERATION_NOT_ALLOWED’] = “You cannot reduce privilege of a

root user.”;

?>

Testing the user management application
After you’ve created class.User.php, user_mngr.php, user_mngr.conf,
user_mngr.messages, and user_mngr.errors files in the appropriate directories
as configured in user_mngr.conf, you can test the application. In this section, I
will assume that the user manager application is installed in the following directory
structure and accessible by http://php.evoknow.com/ /user_mngr/apps/
user_mngr.php.

(%DOCUMENT_ROOT)
+---user_mngr

|
+---apps

|
+---templates

Chapter 6: Central User Management System 187

09 549669 ch06.qxd 4/4/03 9:24 AM Page 187

To access the user manager application for the first time, you need the

admin account created in Chapter 5.

When you try to access the user_mngr.php application it will redirect you

to the central login application unless you’re already logged in. Enter the

admin username and password created in Chapter 5.

You should now see the main user management interface, as shown in Figure 6-1.

Figure 6-1: The user management menu.

This menu enables you to add, modify, and delete users in the entire system. To
create a new user, click on the Add User button, which displays the interface shown
in Figure 6-2.

Enter new user information and click on Add User button to create the new user.
If you choose to make a new user inactive, the new user cannot log in until you
change his account to active.

When creating a new user, you don’t need to enter the host name part of the

username (EMAIL) if the user’s host name matches the $DEFAULT_DOMAIN
setting specified in the user_mngr.conf file.

When you’ve added the user, her username (EMAIL) appears in the list of existing
users that you can modify or delete. To modify a user, select the username from the
drop-down list on the user manager interface (refer to Figure 6-1), click the Modify
User button, and change information as needed on the modify-user interface,
shown in Figure 6-3.

188 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 188

Figure 6-2: Adding a new user.

Figure 6-3: Modifying an existing user.

You can delete a user other than the root user at any time. To delete a user, select
the username from the drop-down list on the user manager interface, and click the
Delete User button. Be warned that the delete operation is irreversible. However,
you cannot delete the root user, which is set in the $ROOT_USER variable in the con-
figuration file.

Chapter 6: Central User Management System 189

09 549669 ch06.qxd 4/4/03 9:24 AM Page 189

Don’t attempt to deactivate the root user or downgrade a root user’s type

from administrator to standard. This will create a problem since you will not

be able to manage users until you manually fix this.

Creating a User Password
Application
Users should be able to change their passwords without the need to inform the user
administrator, so the central user management system needs a user password-
changing tool. We’ll use a user password application called user_mngr_passwd.php.

Let’s look at the methods implemented in this application.
changePassword() is the method used to actually implement the password

change, and it:

1. Uses checkPassword() to check the new password against the confirma-
tion password and makes sure they are same. If they are not same, the
method shows an alert message.

2. Generates a random two-character salt string to encrypt the new pass-
word.

3. Uses $userObj to call the updateUser() method to change the current
password with the new password.

4. Displays the success or failure status of the updateUser() operation on
the screen.

Following are the other methods used in the user password application:

Method Description

run() Calls the changePasswordDriver() method to
change the password.

changePasswordDriver() Uses the form variable $step to manage the
password-change process. If $step is not set,
showScreen() is used to display the password-
change request form. If $step is set to 2 in the
change request form, changePassword() is used to
change the password.

190 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 190

Method Description

checkPassword() Checks the user-supplied new password. If the new
password is empty, does not match the confirmation
password, violates the minimum length limit, or
matches the dummy password, it displays the
appropriate alert message.

change_pwd() This method is called by showScreen() to display
the password-change interface.

authorize() Checks if the current user is authorized to run the
application. Because anyone can run this application,
this method uses the isUser() method with a User
object called $userObj to return TRUE or FALSE
status accordingly.

Listing 6-6 shows the user password application user_mngr_passwd.php.

Listing 6-6: user_mngr_passwd.php

<?php

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed framewirk directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$PEAR =$_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’;
$PHPLIB =$_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// Insert the path in the PHP include_path so that PHP
// looks for PEAR, PHPLIB and our application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PEAR . ‘:’ .
$PHPLIB . ‘:’ .
$APP_FRAMEWORK_DIR . ‘:’ .
ini_get(‘include_path’));

Continued

Chapter 6: Central User Management System 191

09 549669 ch06.qxd 4/4/03 9:24 AM Page 191

Listing 6-6 (Continued)

$AUTHENTICATION_URL = “/login/login.php”;
$LOGOUT_URL = “/logout/logout.php”;

$APP_MENU = ‘/home/home.php’;

$APPLICATION_NAME = ‘USER_MNGR’;

$XMAILER_ID = ‘Example User Manager Version 1.0’;

$DEFAULT_LANGUAGE = ‘US’;
$DEFAULT_DOMAIN = ‘example.com’;
$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/user_mngr’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;

$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

require_once “user_mngr.errors”;
require_once “user_mngr.messages”;
require_once ‘DB.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . ‘constants.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $APPLICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $ERROR_HANDLER_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $AUTHENTICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $DBI_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $USER_CLASS;
require_once $TEMPLATE_CLASS;

$MIN_USERNAME_SIZE= 3;
$MIN_PASSWORD_SIZE= 3;
$DUMMY_PASSWD = ‘1234567890’;
$ROOT_USER = ‘kabir@evoknow.com’;
$SECRET = 916489;
$CHAR_SET = ‘charset=iso-8859-1’;

// Application names

$USERMNGR_MNGR = ‘user_mngr.php’;
$USERMNGR_FORGOTTEN_APP = ‘user_mngr_forgotten_pwd.php’;
$USERMNGR_CHANGE_PWD_APP = ‘user_mngr_passwd.php’;

192 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 192

/* --------------START TABLE NAMES ---------------------- */
$APP_DB_URL = ‘mysql://root:foobar@localhost/auth’;
$AUTH_DB_TBL = ‘users’;

/* --------------END TABLE NAMES ---------------------- */

$STATUS_TEMPLATE = ‘usermngr_status.html’;
$USERMNGR_MENU_TEMPLATE = ‘usermngr_menu.html’;
$USERMNGR_USER_TEMPLATE = ‘usermngr_user_form.html’;
$USERMNGR_PWD_REQUEST_TEMPLATE= ‘usermngr_forgotten_pwd.html’;
$USERMNGR_PWD_EMAIL_TEMPLATE = ‘usermngr_forgotten_pwd_email.html’;
$USERMNGR_PWD_RESET_TEMPLATE = ‘usermngr_pwd_reset.html’;
$USERMNGR_PWD_CHANGE_TEMPLATE = ‘usermngr_pwd_change.html’;

$ADMINISTRATIVE_USER = 9;
$STANDARD_USER = 1;
$USER_TYPE = array(‘9’ => ‘Administrator’, ‘1’ => ‘Standard User’);

?>

This application can be run after a user is logged in to the system. Its interface is
shown in Figure 6-4.

Figure 6-4: Changing a user password.

Chapter 6: Central User Management System 193

09 549669 ch06.qxd 4/4/03 9:24 AM Page 193

A user enters the new password in the Password field, confirms the new pass-
word in the Password (confirm) field, and clicks the Change Pwd button to submit
the change request. The user is shown a status message stating that the password
has been changed. From the next login, she will be required to enter the new pass-
word at the central login prompt.

Creating a Forgotten-Password
Recovery Application
If Murphy were alive today, surely he would have added a new law about forgotten
passwords in his famous “Murphy’s Laws” list. It would probably go something like
the following: If a user is given a password, it will be forgotten.

Passwords are often forgotten due to the “Remember my password” feature in
many desktop applications — which caches the password for easy access, freeing the
user from having to remember it — or because users have to try to remember several
passwords, different ones for different applications.

In our application architecture, each user needs to know a single password.
Forgetting the password will be very annoying because the user will not be able to
access any applications until the password is reset.

Ideally, there should be a way for the user to recover the forgotten password.
However, our central authentication system uses cryptographic (one-way hash)
passwords, so there is no way for the system to determine what the original pass-
word is if the user fails to supply the correct one.

So instead of recovering the old password, we will allow the user to recover from
the forgotten password state by replacing her forgotten password with a new one.

Figure 6-5 shows a functional diagram of this recovery process.
Here’s how the recovery process works:

1. The user tries to log in using the wrong password.

2. The central login application rejects the login attempt.

3. The user clicks the link to the forgotten-password recovery application
and enters her e-mail address and clicks on Send Mail button.

4. The forgotten-password recovery application sends the user an e-mail that
includes a URL.

5. The user clicks the URL and is taken to a password-change form, which
she fills out using a new password.

6. The user submits the form. The application stores the new password and
returns a success message.

7. The user can now log in using the new password.

194 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 194

Figure 6-5: A user recovering from the “forgotten password” state.

In the following section, I discuss how to design, develop, and test a forgotten-
password application that works with our central authentication framework.

Designing the forgotten-password recovery
application
We know what we want the application to do, so now we need a flow diagram of
the application, as shown in Figure 6-6.

As the flowchart indicates, when the application is starts (Step 1), it gets an
e-mail address from the user. If the e-mail address belongs to an existing user, the
application sends an e-mail to the user with a URL that has embedded information
to allow the user to call the same application. The embedded URL in the e-mail has
step=2 set so that the application can determine which step is next.

In Step 2 mode, the application verifies that the information supplied with the
URL is valid and came from the e-mail sent earlier. It then allows the user to enter
a new password.

If the new password is acceptable — that is, it meets the minimum password size
requirement — it is encrypted and stored in the database.

Now let’s look at how you can implement this flow diagram into an application.

Login
App

Authentication Request
with Wrong Password

Authentication Request
Failed

Enter
New Password

Password
Changed

Request to Recover
from "Forgotten

Password"

Email with Link to
Change Forgotten

Password Forgotten
Password

App

6

5

4
7

3

2

1

Chapter 6: Central User Management System 195

09 549669 ch06.qxd 4/4/03 9:24 AM Page 195

Figure 6-6: Flow diagram of the forgotten-password recovery application.

Start

End

No

Yes

Yes

Yes

Step = 1?

Does email
address belong

to a user?

Get email address Is the
request_checksum

valid?

Is password
OK?

Get new password from user

Store encrypted password

Send email to user with an
URL that contains:

user_id
request_checksum
step = 2

196 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 196

Implementing the forgotten-password recovery
application
The forgotten-password recovery application implements the methods:

◆ resetPasswordDriver(): This method uses the global form variable,
$step, to determine phases of the forgotten password recovery process.
The tasks performed by this method are as follows:

1. When $step is unset, the first step in the process is assumed and the
user is provided an interface to enter her username (EMAIL) address.

2. When the user has entered the username, the interface supplies a new
value (2) for $step, which is embedded as a hidden field within the
HTML form displayed in the first step.

3. In the second step, the method calls sendEmail() to send an e-mail to
the user with a link that enables her to return to this application and
enter the third step.

4. When the user clicks on the e-mailed link, a user interface that enables
the user to change her password is presented. Submitting the new pass-
word with the confirmation password makes the method enter the final
step.

5. In the final step, the method calls resetPassword() to reset the exist-
ing password with the newly entered password.

◆ resetPassword(): This method performs the actual task of resetting the
existing password to the newly entered password. It works as follows:

1. It uses getCheckSum() to calculate the checksum of the request, and
then compares it with the given checksum. If they don’t match, the
application shows an alert message and returns the user to the last
screen.

2. It uses checkPassword() to check the password for length and dummy
password issues.

3. It creates a two-character salt using two random characters, and then
encrypts the user-entered password, adding it to an associative array
called $hash.

Chapter 6: Central User Management System 197

09 549669 ch06.qxd 4/4/03 9:24 AM Page 197

4. It creates a User object, $userObj, and calls getUserInfo() to load the
user information.

5. It calls updateUser() with $hash as the parameter. updateUser()
performs the actual database operation of updating the password. It
only updates the password because $hash contains only the password
information.

6. It displays the appropriate success or failure status message.

◆ email(): This method is called by showScreen() to populate the e-mail
template, which becomes the HTML message sent to the user who is
requesting the change for a forgotten password. It works as follows:

1. It creates a User object, $userObj, and uses getUserIDByName() to
retrieve the user’s ID.

2. It returns FALSE if the user ID is not found.

Otherwise, it uses getCheckSum() to generate a checksum for the cur-
rent user ID.

3. It incorporates the checksum value in a URL along with the user ID and
step value set to 3.

4. It embeds the forgotten password application URL into the HTML tem-
plate by replacing the PASSWORD_URL tag with the URL value.

5. It returns TRUE status.

The following are other methods implemented in this application.

Method Description

run() Calls the resetPasswordDriver(), which is responsible
for managing the entire forgotten-password process.

sendEmail() Sends an e-mail link to the user, which she can use to return
to the forgotten password application to enter a new
password. The e-mail message is read as an HTML template,
which is processed by the showScreen() method. The
showScreen() method calls the email() method to
create the actual message, which sendEmail() method
sends to the user.

getCheckSum() Creates a checksum value using the user ID and a secret
random number loaded from the configuration file. The
checksum number is used to protect the e-mailed link from
being generated by an unfriendly user.

198 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 198

Method Description

checkPassword() Checks the user-entered password for length and
confirmation tests.

get_username() Called by showScreen() method when displaying the user
name entry interface as the first step in resetting the
forgotten password.

reset_pwd() Called by showScreen() method when displaying the
password entry interface as the third step in resetting the
forgotten password.

authorize() Because anyone can request to change her password, the
authorization method always returns TRUE.

Listing 6-7 shows the code for the forgotten-password recovery application.

Listing 6-7: usermngr_forgotten_pwd.php

<?php

// Turn on all error reporting
error_reporting(E_ALL);

// If you have installed framewirk directory in
// a different directory than
// %DocumentRoot%/framework, change the setting below.
$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$PEAR =$_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’;
$PHPLIB =$_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

// Insert the path in the PHP include_path so that PHP
// looks for PEAR, PHPLIB and our application framework
// classes in these directories
ini_set(‘include_path’, ‘:’ .

$PEAR . ‘:’ .
$PHPLIB . ‘:’ .
$APP_FRAMEWORK_DIR . ‘:’ .
ini_get(‘include_path’));

$AUTHENTICATION_URL = “/login/login.php”;
$LOGOUT_URL = “/logout/logout.php”;

Continued

Chapter 6: Central User Management System 199

09 549669 ch06.qxd 4/4/03 9:24 AM Page 199

Listing 6-7 (Continued)

$APP_MENU = ‘/home/home.php’;

$APPLICATION_NAME = ‘USER_MNGR’;

$XMAILER_ID = ‘Example User Manager Version 1.0’;

$DEFAULT_LANGUAGE = ‘US’;
$DEFAULT_DOMAIN = ‘example.com’;
$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/user_mngr’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;

$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

require_once “user_mngr.errors”;
require_once “user_mngr.messages”;
require_once ‘DB.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . ‘constants.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $APPLICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $ERROR_HANDLER_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $AUTHENTICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $DBI_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $USER_CLASS;
require_once $TEMPLATE_CLASS;

$MIN_USERNAME_SIZE= 3;
$MIN_PASSWORD_SIZE= 3;
$DUMMY_PASSWD = ‘1234567890’;
$ROOT_USER = ‘kabir@evoknow.com’;
$SECRET = 916489;
$CHAR_SET = ‘charset=iso-8859-1’;

// Application names

$USERMNGR_MNGR = ‘user_mngr.php’;
$USERMNGR_FORGOTTEN_APP = ‘user_mngr_forgotten_pwd.php’;
$USERMNGR_CHANGE_PWD_APP = ‘user_mngr_passwd.php’;

/* --------------START TABLE NAMES ---------------------- */
$APP_DB_URL = ‘mysql://root:foobar@localhost/auth’;
$AUTH_DB_TBL = ‘users’;

200 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 200

/* --------------END TABLE NAMES ---------------------- */

$STATUS_TEMPLATE = ‘usermngr_status.html’;
$USERMNGR_MENU_TEMPLATE = ‘usermngr_menu.html’;
$USERMNGR_USER_TEMPLATE = ‘usermngr_user_form.html’;
$USERMNGR_PWD_REQUEST_TEMPLATE= ‘usermngr_forgotten_pwd.html’;
$USERMNGR_PWD_EMAIL_TEMPLATE = ‘usermngr_forgotten_pwd_email.html’;
$USERMNGR_PWD_RESET_TEMPLATE = ‘usermngr_pwd_reset.html’;
$USERMNGR_PWD_CHANGE_TEMPLATE = ‘usermngr_pwd_change.html’;

$ADMINISTRATIVE_USER = 9;
$STANDARD_USER = 1;
$USER_TYPE = array(‘9’ => ‘Administrator’, ‘1’ => ‘Standard User’);

?>

To make it easy for users to reset forgotten passwords, you can add the forgotten-
password application link in the login interface template. Figure 6-7 shows such a
login interface.

Figure 6-7: Central login interface with forgotten-password link.

Testing the forgotten-password
recovery application
To test the forgotten password application, simply click the forgotten-password link
on the login interface. Submit a user’s e-mail address and wait for an e-mail to
appear in the user’s mailbox. Click on the link in the e-mail and change the password.
(See Figure 6-8.)

After you’ve changed the password, you can log in to any application that uses
the central authentication system with the user’s name and the new password.

Chapter 6: Central User Management System 201

09 549669 ch06.qxd 4/4/03 9:24 AM Page 201

Figure 6-8: Changing a password.

Summary
In this chapter I discussed how you can manage users using a central user manage-
ment system consisting of a few applications. This user management (create, mod-
ify, delete and forgotten password support) system works with the central
Login/Logout system previously developed in the earlier chapter.

The very idea of having a central user authentication (login/logout) and a user
management system is to ease user management and make access to various appli-
cations as seamless as possible. In the future chapters the applications we will
develop will simply rely on these systems.

202 Part II: Developing Intranet Solutions

09 549669 ch06.qxd 4/4/03 9:24 AM Page 202

Chapter 7

Intranet System
IN THIS CHAPTER

◆ Developing a base intranet-application

◆ Using login/logout information to generate access reports

◆ Developing a simple messaging application

A BASE INTRANET APPLICATION is an application which is used to provide a home
page for each user. This application shows links to other applications.

In this chapter, we will develop the base intranet application that shows each
user a home page. When a user logs in, she sees a generated page with information,
such as notes from other intranet users, or she can access other intranet tools that
we will build in later chapters.

Identifying Functionality
Requirements
The base intranet application system consists of the following features:

◆ A central user authentication and user management facility: We built
this in the first two chapters in this section of the book. In this chapter, we
will add a set of applications called Access Reporter, Admin Access
Reporter, and Daily Logbook that will allow intranet users, administra-
tions to access login/logout access information. Each regular user will be
allowed to access only her own access report while administrators will
have full access to all user access report and summaries. In a company
environment, these access reports can serve as office attendance record.

◆ A user home application: Each user should be able to log in and view a
dynamic home page that enables that user to access information and
applications available on the intranet system. The home application will
have two small utilities to display tips and handle user preferences related
to screen themes.

203

10 549669 ch07.qxd 4/4/03 9:25 AM Page 203

◆ A simple messaging application that enables users and administrators
to send messages in the form of notes: For example, a user should be
able to send a note via the intranet to another user about a task deadline
or a meeting. We will implement this messaging tool, which we named
here as the Message of the Day (MOTD) tool.

◆ A simple document-publishing application that enables intranet users
to publish HTML documents in an organized manner: This tool enables
users to provide feedback to each posted document. Also, whenever a new
document is added or an existing one is updated, users who have access
to the document should be automatically notified via the messaging sys-
tem previously mentioned. The applications for this suite are built in
Chapter 8.

◆ A simple central contact-manager application that enables intranet
users to access common contact information such as that for vendors,
customers, partners, and co-workers: These applications are built in
Chapter 9.

◆ A simple central event-calendar application suite that enables users to
publish and view important events: These applications are built in
Chapter 10.

◆ A simple Internet resource manager application suite that allows users
to share Internet resources such as Web and FTP sites: These applica-
tions are built in Chapter 10.

The intranet applications that we develop here require the central

login/logout and user-management components of the intranet discussed

in the previous three chapters in this section.

You’ll need to have those applications (login, logout, user-management)

already implemented so that we can develop the base intranet home and

access applications in this chapter.

Designing the Database
Since we are designing the intranet to support small to large number of users, we
need a SQL server as the data storage. Like previous chapters and rest of he book,
we will assume that you are going use MySQL for the database here as well.

The authentication database (auth) previously built for central authentication
will still be used for storing user information such as username, password, active
flag, and so on. Here we will develop a database that stores intranet messages, user
details, preferences, theme choices, and user-access activity log data.

Figure 7-1 shows the database diagram for the intranet system.

204 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 204

Figure 7-1: Intranet system ER diagram.

The users table is shown in the ER diagram to clarify the relationship. It actu-

ally does not belong in the INTRANET database but in the central user-

authentication database called auth discussed in Chapter 5. Users who

appear in the auth database in the users table have access to the intranet.

Table 7-1 describes the details of each table in details.

TABLE 7-1 INTRANET DATABASE TABLES

Table Description

MESSAGE Holds the message title (MSG_TITLE), message number
(MSG_ID), message contents (MSG_CONTENTS), message
date (MSG_DATE), message type (MSG_TYPE), flag (FLAG),
and ID of the author who created the message
(AUTHOR_ID). The message number (MSG_ID) is
automatically generated by the database.

MSG_TRACK Contains the message tracking information. It holds the user
ID (USER_ID) of the user who received the message, the
message number (MSG_ID), and the time stamp when the
message is read by the viewer user (READ_TS).

Continued

Chapter 7: Intranet System 205

10 549669 ch07.qxd 4/4/03 9:25 AM Page 205

TABLE 7-1 INTRANET DATABASE TABLES (Continued)

Table Description

MSG_VIEWER Holds the message viewer data, the message number
(MSG_ID), and the viewer ID (VIEWER_ID). It relates which
message should be viewed by which user.

THEME Holds information about the available intranet themes that
can be used by the user. It contains the theme number
(THEME_ID) and the name of the theme (THEME_NAME).

ACTIVITY Holds information about the user login/logout activities,
discussed in Chapter 5. It contains the user ID (USER_ID),
action type (ACTION_TYPE), and action timestamp
(ACTION_TS).

USER_DETAILS This table contains detailed user information. This table holds
the user ID (USER_ID), first name (FIRST), last name
(LAST), address line #1 (ADDRESS1), address line #2
(ADDRESS2), city (CITY), state (STATE), zip code
(ZIPCODE), country (COUNTRY), phone number (PHONE), and
start date of the user in the intranet (START_DATE).

USER_PREFERENCE Contains the user preference information: the user ID
(USER_ID), preference ID (PREFERENCE_ID), and value
(VALUE).

intranet.mysql is an implementation of the intranet database in MySQL. It’s
included on this book’s CD-ROM (CDROM/ch07/sql/intranet.mysql). To use this
database for these applications, create a database called INTRANET in your database
server and run the following command:

mysql -u root -p -D INTRANET < INTRANET.sql

Make sure that you change the user name (root) to whatever is appropriate for your
MySQL database system.

The INTRANET database must be set up before you start designing the PHP
classes, which are needed to implement the intranet applications.

206 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 206

Designing and Implementing
the Intranet Classes
Three new classes are needed to implement the intranet system: Message,
ActivityAnalyzer, and IntranetUser. Figure 7-2 shows the system design that
uses these classes.

Figure 7-2: Intranet system diagram.

In the preceding design, you can see that central login/logout applications are
used to access user home application. The user home application displays links to
other intranet applications and allows users to create intranet messages. The home
application and login/logout activity applications use User object, Message object,
and Activity Analyzer objects to perform their operations. Notice also that all of
the intranet applications are based on the PHP Application Framework that we
developed earlier in the book. The following sections describe these classes.

Message class
The Message class is used to manipulate each message. It allows an application to
create and delete messages. The ch07/home/class/class.Message.php file in the
CD-ROM is an implementation of the Message class.

Central
Login/Logout

Messages

Messages

User Home Interface

Login/Logout Activity

Intranet User Object
(deals with user info,

preferences)
class.IntranetUser.php

class.Message.php

class.ActivityAnalyzer.phpActivity Analyzer Object
(deals with activity reporting)

Message Object
(deals with messages)

PHP Application Framework
(Provides application, database abstraction,
themes, templates, error handling objects)

Chapter 7: Intranet System 207

10 549669 ch07.qxd 4/4/03 9:25 AM Page 207

This class implements the following methods:

◆ Message(): This is the constructor method. It performs the following
functions:

■ Sets an object variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application.
The dbi object variable holds the DBI object, which is used to commu-
nicate with the backend database.

■ Sets an object variable named msg_tbl to $MESSAGE_TBL, which is
loaded from the configuration file (home.conf). The $MESSAGE_TBL
holds the name of the MESSAGE table.

■ Sets an object variable named msg_track_tbl to $MSG_TRACK_TBL,
which is loaded from the home.conf file. The $MSG_TRACK_TBL holds
the name of the message tracking table.

■ Sets an object variable named msg_view_tbl to $MSG_VIEWER_TBL,
which is loaded from the home.conf file. The $MSG_VIEWER_TBL holds
the name of the message viewer table.

■ Sets an object variable called MSG_ID to the given message number (if
any) by calling setMessageID().

■ Sets an object variable called fields to field names of the MESSAGE
table. The fields variable is an associative array, which contains both
field names and field types in a key = value format.

◆ loadMessageInfo(): This method loads all the message attributes, such
as message number, message title, message contents, message publishing
date, author ID, message type, and flag for a given message. Here’s how it
works:

■ First, the given message ID ($msg_id) is set as the current Message
object’s message ID using setMessageID().

■ A comma-separated list of MESSAGE table field names are created in the
$fieldStr variable using the $this->fields value, which is set in the
constructor.

■ A statement to select all the message fields for the given message ID is
created in $stmt.

■ Using the DBI object ($this->dbi), the $stmt statement is run via
$this->dbi->query() in DBI object. The result of the query is stored
in the $result variable.

208 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 208

■ If more than zero rows are in the $result object, each row is fetched
in the $row variable.

■ For each message field of type text, the data is stripped for embedded
slash characters, which are used to escape quotation marks and slashes
in the value of the field.

■ Each message field data is stored as an object variable using the
$this->$fieldname runtime variable.

◆ getMessages(): This method returns all messages for a given user where
messages have been published on or earlier than a given timestamp or
today. It works as follows:

■ A variable called $fields is assigned a comma-separated list of mes-
sage fields stored in $this->fields.

■ If the method is called without a date ($lastDate), the $lastDate is
set to the current timestamp.

■ An SQL statement is created in $stmt, which queries the MESSAGE table
for all messages that have been published on or earlier than the
$lastDate. The returned rows are ordered using message type
(MSG_TYPE) and message timestamp (MSG_DATE) in descending order.

■ The query is performed using the $this->dbi->query() method of the
DBI object embedded in $this->dbi. The result is stored in $result.

■ If no rows are returned in the $result object, the method returns null.
If there are matching rows, each row is stored in the $row object.

■ For each row, a SQL statement is created in $stmt, which queries the
message tracking table ($this->msg_track_tbl) for messages that
have the same ID as the row’s message ID ($row->MSG_ID) and the
same user ID as the current user ID. The purpose of this query is to find
out whether the current message in the row has already been tracked
(that is, viewed by the current user). The statement is executed and the
result is stored in the $finResult object.

■ If no row is returned for the statement, the current message ($row-
>MSG_ID) has not been tracked (that is, viewed) by the current user and,
therefore, it ($row) is pushed into an array called $retArr[].

■ The $retArr[] array is returned after all rows in the first result set
pointed by the $result object are checked. The resulting array,
$retArr[] contains a list of message rows that the current user has
not viewed yet.

Chapter 7: Intranet System 209

10 549669 ch07.qxd 4/4/03 9:25 AM Page 209

210 Part II: Developing Intranet Solutions

◆ getAllMessages(): This method returns all messages in the MESSAGE
table. It works as follows:

■ A variable called $fields is assigned a comma-separated list of MES-
SAGE table fields, which are stored in $this->fields.

■ A statement, $stmt, is created to select all data from the MESSAGE table
in message type and date order.

■ The query is performed using the $this->dbi object’s query() method,
and the result set is stored in $result object. If no message is found,
the method returns null.

■ On the other hand, if rows are in the $result object, an associative
array called $retArr is populated using message ID (MSG_ID) as the key
and $row, containing each message data, as the value.

■ The $retArr array is returned.

◆ addMessage(): This method adds a new message in the MESSAGE table.
The method is called with message title ($title), publication date ($date),
contents ($msg), flag ($flag), author ID ($auth), and type ($type). It
works as follows:

■ A variable called $fields is assigned a comma-separated list of MES-
SAGE table fields stored in $this->fields.

■ The given title ($title) and message body ($msg) are escaped for char-
acters such as quotation marks and slashes using $this->dbi-
>quote(addslashes()).

■ An SQL statement, $stmt, is created to insert the new message data
into the MESSAGE table.

■ The SQL statement is executed using $this->dbi->query() and the
result of the query is stored in $result object.

■ If the $result status is not okay, the method returns false to indicate
insert failure. Otherwise, another SQL statement, $stmt, is created to
query the database to return the newly created message row’s message
ID. This is done by setting the WHERE clause of the SELECT statement to
AUTHOR_ID = $auth, MSG_TYPE = $type, MSG_DATE = $date, and
FLAG = $flag, which uniquely identifies the new message.

■ If the result of the select query does not return a row, the method
returns null and, if it does, it returns the MSG_ID of the newly created
message.

10 549669 ch07.qxd 4/4/03 9:25 AM Page 210

◆ modifyMessage(): This method updates an existing message in the data-
base. It works as follows:

■ The method is called with message ID ($mid), title ($title), date
($date), body ($msg), and flag ($flag).

■ It sets the current message ID to the given message ID ($mid) using the
setMessageID() method.

■ The given title ($title) and message body ($msg) are escaped for char-
acters such as quotation marks and slashes using $this->dbi-
>quote(addslashes()).

■ An SQL statement, $stmt, is created to update the existing message
data into the MESSAGE table. The statement uses MSG_ID in the WHERE
clause to ensure that only the given message ($mid) is updated.

■ The SQL UPDATE statement is executed using $this->dbi->query(),
and the result of the query is stored in the $result object.

■ If the update is successful, the method returns true; otherwise, it
returns false.

◆ getViewers(): This method returns a list of the user IDs who have
viewed a given message. It works as follows:

■ The method is called with a message ID ($mid).

■ It sets the current message ID to the given message ID ($mid) using
setMessageID().

■ An SQL SELECT statement, $stmt, is created to return VIEWER_ID from
all rows in the message view table that match the given message ID
($mid).

■ If the returned result set object, $result, has no rows, the method
returns null. Otherwise, it creates an array called $retArr, with the
user IDs that are returned per row in the $result object.

◆ addViewer(): This method adds users in the message view table who can
view a given message. It works as follows:

■ The method is called with message ID ($mid) and an array of user IDs
for the viewers ($views).

■ It sets the current message ID to the given message ID ($mid) using the
setMessageID() method.

■ For each user (viewer), it inserts a row in the message view table.

Chapter 7: Intranet System 211

10 549669 ch07.qxd 4/4/03 9:25 AM Page 211

◆ deleteViewers(): This method deletes all the viewers of a given mes-
sage. It works as follows:

■ The method is called with the message ID ($mid).

■ It sets the current message ID to the given message ID ($mid) using the
setMessageID() method.

■ Using a SQL DELETE statement, the method deletes all rows from the
message view table for the given message.

◆ isViewable(): This method determines whether the given message can be
viewed by the given user. It works as follows:

■ The method is called with message ID ($mid) and an user ID ($uid).

■ It sets the current message ID to the given message ID ($mid) using
setMessageID().

■ An SQL SELECT statement, $stmt, is created and executed to return
viewer IDs (VIEW_ID) for the given message and viewer ID. In other
words, if one row for the given message has VIEWER_ID set to the
given user ID ($vid), the statement returns a result object, $result,
which has a nonzero row count.

■ The number of rows is returned. A positive number indicates that the
current message has the given user ID as a viewer.

◆ getMsgIDbyMessageTitle(): This method returns the message ID for a
given message title. It works as follows:

■ The method is called with the message title ($title).

■ The given title ($title) is escaped for characters such as quotation
marks and slashes using $this->dbi->quote(addslashes()).

■ An SQL SELECT statement, $stmt, is created and executed to return the
message ID (MSG_ID) for the given message title. The result of the query
is stored in a result object called $result.

■ If the $result object has no rows, the method returns null.

■ Otherwise, the message ID (MSG_ID) is fetched from the row in the
$result object and returned. This will always return the first message
that has the matching title.

212 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 212

The following table describes the rest of the methods for this class:

Method Description

getMessageContents() Returns the contents of the given message while
taking the message ID as input.

getMessageTitle() Returns the title of the given message while taking
the message ID as input.

getMessagePublishDate() Returns the publishing date of the given message
while taking the message ID as input.

setMessageID() Sets the message ID of the message object if a
message ID is passed as a parameter. It also returns
the message ID.

updateTrack() Updates a user’s message tracking information by
inserting a new row in the message track table. When
this method is called with a user ID ($uid) and
message ID ($mid), it inserts the current timestamp in
the message track table.

deleteMessage() Deletes a given message from the database, using the
given message ID ($mid).

isRead() Determines whether the given message has been read
by querying the message track table for rows
matching a given message ID.

ActivityAnalyzer class
Each time a user logs in or logs out of the intranet, a record is stored in the data-
base. This record is called the activity log. We will develop a class called the
ActivityAnalyzer, which will be used to determine login/logout statistics for one
or more users.

This ActivityAnalyzer class provides the Activity Analyzer object. The list
object is used to manipulate activities. There are two types of activities: login
(ACTIVITY_TYPE = 1) and logout (ACTIVITY_TYPE = 2).

Chapter 7: Intranet System 213

10 549669 ch07.qxd 4/4/03 9:25 AM Page 213

The class allows an application to create and delete actions or activities. The
ch07/home/class/class.ActivityAnalyzer.php file on the CD-ROM is an
implementation of this class, which is discussed in the following section.

This class implements the following methods:

◆ getDailyStartTS(): This method returns the first activity timestamp for a
given timestamp range ($start, $end) for a given user. It works as follows:

■ The method is called using the action timestamp range ($start, $end)
and is supplied a user ID ($uid).

■ An SQL SELECT statement, $stmt, is created to return the minimum
(using SQL MIN() function) action timestamp ($ACTION_TS) as
START_TIME from the activity table where the given user ID matches.
The returned action timestamp is always within the given action time-
stamp range ($start, $end).

■ If the result of the SQL query returns no rows, the method returns null;
otherwise, the row is fetched and the minimum action timestamp (as
START_TIME) is returned from the result object.

◆ getDailyEndTS(): This method returns the last activity timestamp for a
given timestamp range ($start, $end) for a given user. It works as follows:

■ The method is called using action timestamp range, which starts with
$start, $end and is supplied a user ID ($uid).

■ An SQL SELECT statement, $stmt, is created to return the maximum
(using the SQL MAX() function) action timestamp ($ACTION_TS) as
END_TIME from the activity table where the given user ID matches. The
returned action timestamp is always within the given action timestamp
range ($start, $end).

■ If the result of the SQL query returns no rows, the method returns null.
Otherwise, the row is fetched and the minimum action timestamp (as
END_TIME) is returned from the result object.

◆ getDailyActivityInfo(): This method returns a list of activity records
for a given user in a given start and end action timestamp. It works as
follows:

■ The method is called using the action timestamp range, which starts with
$start and ends with $end. The method is also supplied a user ID ($uid).

■ An SQL SELECT statement, $stmt, is created to return action type
(ACTION_TYPE) and timestamp (ACTION_TS) from the activity table
where the given user ID matches. The returned action timestamp is
always within the given action timestamp range ($start, $end).

■ If the result of the SQL query returns no rows, the method returns null.
Otherwise, the list of action records (activity type and timestamp) are
returned in an array called $activityArr[].

214 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 214

◆ analyzeDailyActivity(): This method returns the total office hours and
extra (overtime) hours logged by a given user for a given period of time. It
works as follows:

■ The method is called with an associative parameter array called
$params, which contains the current user ID ($params[‘USER_ID’]),
activity start timestamp ($params[‘DAY_START’]), and end timestamp
($params[‘DAY_END’]).

■ The method calls getDailyActivityInfo() to find a list of activities
in the given range for the current user. The list is stored in
$activityArr. If this list is empty, the method returns null.

■ The method breaks down each element of $activityArr into activity
type ($type) and timestamp ($ts).

■ By looping through the list of activities, it finds the first instance of a
login activity ($type = 1) and sets $startcount to the login time-
stamp ($ts). It also finds the logout activity ($type = 2) for which
login activity is already found ($startcount is set) and calls
getOfficeAndExtraBreakdown() to find the total office and extra
hours breakdown. getOfficeAndExtraBreakdown() returns the break-
down into an associative array, which is stored in $breakdown.

■ The $totalOffice time is incremented using the breakdown informa-
tion for each complete activity (login and logout) session.

■ Finally, the total office hours and the extra hours are returned in an
associative array called $analysis.

◆ getDailyLog(): This method returns the activity log of given user for a
day. It works as follows:

■ The method is called with an associative parameter array called
$params, which contains the current user ID ($params[‘USER_ID’]),
activity start timestamp ($params[‘DAY_START’]), and end timestamp
($params[‘DAY_END’]).

■ The method calls getDailyActivityInfo() to find a list of activities
in the given range for the current user. The list is stored in
$activityArr. If this list is empty, the method returns null.

■ The method breaks down each element of $activityArr into activity
type ($type) and timestamp ($ts).

■ By looping through the list of activities, it finds the first instance of a
login activity ($type = 1) and sets $startcount to the login time-
stamp ($ts). It also finds the logout activity ($type = 2) for which
login activity is already found ($startcount is set) and calls
getLogs() to find the office and extra hours breakdown. getLogs()
returns the breakdown into an associative array, which is stored in an

Chapter 7: Intranet System 215

10 549669 ch07.qxd 4/4/03 9:25 AM Page 215

associative array called $breakdown. The breakdown contains login,
logout, office hours, and extra hours.

◆ getLogs(): This method returns an associative array containing login,
logout, office hours, and extra hours information for a given start and end
timestamp of an activity log record. It works as follows:

■ The method is called with an associative array parameter called
$params, which contains information from the configuration file
(home.conf) regarding start of office hours (OFFICE_START), end of
office hours (OFFICE_END), start of lunch hour (LUNCH_START), and end
of lunch hour (LUNCH_END). These settings are found as follows in the
default configuration file:

define(‘OFFICE_START_TIME’, 10); //24 HRS TIME FORMAT
define(‘LUNCH_START_TIME’, 13); //24 HRS TIME FORMAT
define(‘LUNCH_END_TIME’, 14); //24 HRS TIME FORMAT
define(‘OFFICE_END_TIME’, 19); //24 HRS TIME FORMAT

■ The method defines an associative array called $retArr, which is what
it returns after inserting appropriate key = value parameters.

■ It stores the start ($start) parameter as the login time in the $retArr.
Similarly, it stores the end ($end) parameter as the logout time in the
$retArr.

■ Office hours are initialized in a method variable $office to be zero.
Extra hours are initialized to a method variable called $extra to be zero.

■ A global parameter $WEEKEND is loaded. This parameter is set in the
configuration file as an array. The default configuration in home.conf
for this array is

$WEEKEND = array(‘Sat’, ‘Sun’);

■ The method checks to see whether the day of $start timestamp is in
the $WEEKEND array. If so, it sets the $office variable to zero, because
only extra (overtime) hours are allowed on weekends. It calculates the
$extra time by subtracting the $start from $end.

■ If the start ($start) timestamp does not represent a weekend day, the
method calculates the office hours by excluding the lunch hours from
the office hours. It also calculates any extra hours that are beyond the
office hours.

■ The method returns $retArr with login, logout, total office, and total
extra hour information.

◆ getOfficeAndExtraBreakdown(): This method returns an associative
array containing total office hours and total extra hours information for a
given start and end timestamp of an activity log record.

216 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 216

The method is called exactly as getLogs() is, and it performs the same way. The
method returns total office and total extra hour information in an anonymous
associative array.

The following table describes the rest of the methods for this class:

Method Description

ActivityAnalyzer() The constructor method. It sets an object variable named
dbi to point to the class.DBI.php-provided object,
which is passed to the constructor by an application. dbi
is used to communicate with the backend database.

It also sets an object variable called activity_tbl to
$ACTIVITY_TBL, which is loaded from the configuration
file (home.conf). The $ACTIVITY_TBL variable holds
the name of the activity table.

logUserOut() Records a logout activity (ACTIVITY_TYPE = 2) in the
ACTIVITY table for a given user by inserting a new activity
row for the user ($uid) at given time ($time). If the
logout activity is successfully inserted into the database,
the method returns true. Otherwise it returns false.

logUserIn() Records a login activity (ACTIVITY_TYPE = 1) in the
ACTIVITY table for a given user by inserting a new activity
row for the user ($uid) at given time ($time). If the
login activity is successfully inserted into the database,
the method returns true; otherwise, it returns false.

Creating the IntranetUser class
This InternetUser class provides the intranet user object, which is used to retrieve
and set user information. The ch07/home/class/class.IntranetUser.php file in
the CD-ROM is an implementation of this class.

Following are the methods available in this class:

◆ IntranetUser(): This is the constructor method, which performs the fol-
lowing tasks:

■ Sets an object variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application.
The dbi object variable holds the DBI object, which is used to commu-
nicate with the backend database.

Chapter 7: Intranet System 217

10 549669 ch07.qxd 4/4/03 9:25 AM Page 217

■ Sets an object variable called user_details_tbl to
$USER_DETAILS_TBL, which is loaded from the home.conf file. The
$USER_DETAILS_TBL variable holds the name of the users table.

■ Sets an object variable called user_pref_tbl to $USER_PREFERENCE_TBL,
which is loaded from the home.conf file. The $USER_PREFERENCE_TBL
variable holds the name of the user preference table.

■ If the constructor is called with a user ID ($uid), it is set to
$this->uid.

◆ getContactInfo(): This method returns all information regarding a
given user ID ($uid) from the USER_DETAILS table. It works as follows:

■ This method is called with the user ID ($uid) parameter.

■ It calls the setIntranetUserID() method to set the current user ID to
$uid.

■ It creates an SQL SELECT statement, $statement, to select all informa-
tion from the USER_DETAILS table for the given user ID ($uid).

■ The result of the executed select statement is stored in the $this-
>contactInfo object.

The following table describes the other methods of this class:

Method Description

setIntranetUserID() Sets the intranet user ID. If the intranet user ID ($uid) is
provided as a parameter, it is set as the object’s intranet user ID
($this->uid), or the current intranet user ID is returned.

getName() Returns the first and last name of the current user. It gets this
information from the $this->contactInfo object variable,
which is a DBI result set object set by the
getContactInfo() method.

getPreferences() Returns the preferences for a given user in an associative array.

updateAutoTip() Updates tool tip status for a given user.

addAutoTip() Sets or resets the automatic tip preference. The method is called
with the user ID ($uid) and the tip preference option ($tip). It
creates an SQL INSERT statement, $statement, that inserts
the tip option for preference ID (2), which is the preference
number for the automatic tip. It returns true if the tip preference
is inserted successfully; otherwise, it returns false.

218 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 218

Setting Up Application
Configuration Files
Each of the applications in the intranet system uses a central configuration file
called home.conf. For the given configuration file, the directory structure is shown
here:

Here’s the directory structure that the home.conf require:

+---htdocs ($ROOT_PATH same as %DocumentRoot%)
|
+---home (applications and configuration files go here)
| |
| +--class (class files go here)
| |
| +---templates (html templates go here)
| |
| +---themes (theme templates are stored here)
| |
| +---tips (tips are stored here)
|
+---photos (user photos are stored here)
|
+---login (central login application)
|

+---logout (central logout application)

Here the home directory is assumed to be a top-level directory in the
%DocumentRoot% of the intranet Web site. The photos directory is also a top-level
directory within the site; user photos are optional, however, and can be placed in
the directory manually as long as the file names are userid.jpg. A default photo
called default_photo.jpg is provided in the photos directory for users without
any photo in this directory. The login/logout directories are part of the central
authentication discussed earlier in the book.

To configure the applications for your directory structure, you have to change
the settings as shown in Table 7-2.

The messages displayed by the intranet applications are stored in the home.mes-
sage file, which you can copy from the ch7/home directory within the CD-ROM.
You can customize each message by using a text editor.

The error messages displayed by the intranet applications are stored in error
messages file called home.errors which can be found in ch7/home directory of the
CD-ROM. You can customize each message by using a text editor.

Chapter 7: Intranet System 219

10 549669 ch07.qxd 4/4/03 9:25 AM Page 219

TABLE 7-2 HOME.CONF SETTINGS

Variable Values

$PEAR_DIR Set to the directory where you have installed the PEAR
packages. The DB class needs the class.DBI.php, which is
part of the PEAR packages.

$PHPLIB_DIR Set to the directory where the PHPLIB packages are stored,
because the Template class (template.inc) is part of the
PHPLIB packages.

$APP_FRAMEWORK_DIR Point this to our application framework class directory.

$AUTHENTICATION_URL Point the central authentication application (login.php),
which is part of our application framework. The default value
is /login/login.php, which should work if you have
followed instructions in Chapter 5.

$LOGOUT_URL Point the central logout application (logout.php), which is
part of our application framework. The default value is
/logout/logout.php, which should work if you have
followed instructions in Chapter 5.

$ROOT_PATH Point to the document root directory of your Web site
where you host this application.

$REL_ROOT_PATH Point to the relative path, which is the parent of the apps
directory.

$INTRANET _DB_URL Configure this to enable you to connect to the intranet
database via the named host using the named username and
password.

For example, the default value

mysql://root:foobar@localhost/INTRANET

states that the intranet database called INTRANET is located
in the localhost system and can be accessed by using the
username root and password foobar.

$USER_DB_URL Configure to enable you to connect to the user database.

For example, the default value

mysql://root:foobar@localhost/auth

states that the authentication database called auth is
located in the localhost system and can be accessed by
using the username root and password foobar.

220 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 220

Variable Values

$TIP_SCRIPT Point the tip script (tip_script.js), which is needed to
show tips.

$TIP_URL Point to the relative path, which is the parent of the tips
directory.

$DEFAULT_THEME Set to the default theme ID. By default, the theme is set to 1.

$USER_DEFAULTS Point to an array that contains default preferences of all users.

$MAX_AVAILABLE_TIP Set to the maximum number of tips that are available in the
tips directory within the templates directory.

$ADMIN_MSG_COLOR Set the color shown to the viewers with administrative
privileges.

$STANDARD_MSG_COLOR Set the color shown to the standard viewers.

$OFFICE_START_TIME Set to the expected office start time, such as 10 (for 10 a.m.).

$LUNCH_START_TIME Set the expected start time for lunch, such as 13 (for 1 p.m.;
remember, we’re using a 24-hour format).

$LUNCH_END_TIME Set to the expected lunch end time, such as 14 (for 2 p.m.).

$OFFICE_END_TIME Set to the expected office end time, such as: 19 (for 7 p.m.).

$DEFAULT_REPORT_TYPE Set the default report type: MONTHLY, WEEKLY, or DAILY.

$ACCESS_REPORT_ Set the color for the even rows of the report. The color value
EVEN_ROW_COLOR is in HTML color format (RGB).

$ACCESS_REPORT_ Set the color for the odd rows of the report. The color value
ODD_ROW_COLOR is in HTML color format (RGB).

$ACCESS_RPT_OFFICE_ Set the text color for the regular office hours of the access
HR_TEXT_COLOR_REGULAR report. The color value is in HTML color format (RGB).

$ACCESS_RPT_OFFICE_HR_ Set the text color for the extra office hours of the access
TEXT_COLOR_IRREGULAR report. The color value is in HTML color format (RGB).

$ADMIN_TYPE Set the user type value that will indicate an administrative
user level. The default value of 9 is okay.

$EXPECTED_OFFICE_HRS Set to the daily office hours that are expected to be maintained
by every employee. The default is set to 8 hours per day.

Continued

Chapter 7: Intranet System 221

10 549669 ch07.qxd 4/4/03 9:25 AM Page 221

TABLE 7-2 HOME.CONF SETTINGS (Continued)

Variable Values

$GRACE Set to the grace period (in seconds). The default value is 600
seconds (10 minutes). This means that if an employee fails to
meet the full office hours requirements by 10 minutes or less,
the grace period is applied to make up her full office hours.

$WEEKEND Set to the day(s) of the week that is/are considered as
weekend. The default values (‘Sat’, ‘Sun’) should be
standard for most places on this planet. Keep the default.

Setting Up the Application
Templates
The HTML interface templates needed for the applications are included on the
CD-ROM. These templates contain various template tags to display necessary infor-
mation dynamically. The templates are named in the home.conf file. Table 7-3
explains the purpose of each template.

TABLE 7-3 HTML TEMPLATES

File Name Purpose

home.html Home page template of intranet.

home_status.html Shows status messages when user performs an
operation such as updating preference settings.

access_report.html Used to display an access report.

add_msg.html Used to add an intranet message.

msg_mngr.html Shows message-management options to users.

msg_preview.html Shows the preview of a message to users.

preference.html Shows the theme preference page.

log_detail.html Shows the log details for a day.

admin_access_report.html Shows the access report to administrators.

222 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 222

These templates also use images that are stored in an image directory called
images within the template directory pointed by the $TEMPLATE_DIR variable in the
home.conf file.

Intranet Home Application
The home.php application is responsible for displaying an intranet home page to
each user. The application is included on the CD-ROM in the ch07/apps directory.

home.php implements the following functionality:

◆ It displays the intranet home page to each user after the user is logged in.

◆ It uses the home page to show any message(s) that the user needs to view.

◆ When the user clicks the OK button of a message (to indicate that he has
read the message), the application updates the message-tracking table so
that the same message is not displayed again.

This application has the following methods:

◆ run(): This method is responsible for running the application. This
method does the following:

■ If the user is not authenticated, it displays an alert message and returns
the user to previous page. This effectively terminates the application.

■ If the user is authenticated, it creates a theme object, $this-
>themeObj.

■ The current user’s theme choice is stored in $this->theme by calling
the getUserTheme() method of the theme object created.

■ When the user comes to the home application after clicking the OK
button to indicate that she has read a message, this method calls the
updateMsgTrack() method.

■ Then the displayHome() method is called to display the intranet home
page.

◆ displayHome(): This method displays the home page of the intranet sys-
tem and also shows specific messages to specific users. Here is how it
works:

■ It applies the appropriate theme to the page.

■ It checks whether tips are to be shown to the user and sets tip informa-
tion accordingly.

■ It sets the photo of the user who has requested this page.

Chapter 7: Intranet System 223

10 549669 ch07.qxd 4/4/03 9:25 AM Page 223

■ It sets the current date and time on the home page.

■ It sets any new or unread messages for the user in appropriate places in
the appropriate order.

■ It parses or renders the page information and shows the page accord-
ingly to the user.

Other methods for this application include those described in the following
table:

Method Description

authorize() Authorizes everyone on the intranet to view the page and,
therefore, always returns TRUE.

updateMsgTrack() Takes the message ID that has been read by the user and
updates the database accordingly.

getName() Finds and returns the formatted first name of the user retrieved
from the viewer’s username (e-mail address).

popAutoTip() Pops up a tip of the day. It is called from the displayHome()
method if the user has the auto-tip option ON in her preference.

unhtmlentities() The exact reverse of the htmlentities() method in the
PHP API.

Now we will develop a set of mini applications that can be run from the home
page of each user. They are as follows:

◆ MOTDO manager application: This application is used to send intranet
messages from one user to another. It is ideally used by administrators to
notify users of company-wide events, hence it is named the MOTD
(Message of the Day) application.

◆ Access reporter application: This application is used to provide
login/logout reports for intranet users. Each user can view her access log
information in a nicely formatted manner to see how she is keeping her
office hours. Users cannot view other user’s access report.

◆ Admin access reporter application: This application allows intranet
administrators to view anyone’s access report in a daily, weekly, or
monthly view.

◆ Daily logbook application: This application allows users to view the
login/logout activities for a given day.

224 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 224

◆ User preference application: This application allows users to set their
themes and automatic tip-preference settings.

◆ User tip application: This application shows an automatic tip from the tip
directory when a user sets her preference to receive an automatic tip on
each login.

The details of these applications are discussed in the following sections.

MOTD manager application
The MOTD manager application, ln_msg_mngr.php, is responsible for managing
daily messages. It is included on the CD-ROM in the ch07/apps directory.

The application implements the following functionality:

◆ It enables all users to create, modify, and delete messages.
Administrative users use a different message template than regular users
so that admin messages can be easily identified.

◆ It enables all users to select viewers for each message while adding or
modifying messages.

This application has the following methods:

◆ run(): When the application is run, this method is called. It does the
following:

■ Calls the authorize() method to see whether the user is allowed to
access this application. If the user is not allowed, it displays an alert
message and returns her to the home page.

■ Creates a theme object called $this->themeObj and retrieves the theme
selection for the current user by using the getUserTheme() method. The
chosen theme is set to $this->theme variable of the application.

■ Uses two query parameters, cmd and step, to determine which message
operation (add, modify, delete) is requested and what step of the
operation needs to be processed. When cmd is set to add, step can be
null, which represents the start of the add message operation, and,
therefore, displayMsgAddModMenu() is called to show the add message
interface. After the user fills out the new message information, the
interface submits a step parameter with a value of 2, indicating that
the user has submitted a new message. Then confirmMessage() is
called to display a confirmation page showing the message for the user
to confirm. When the user confirms the message, the step parameter is

Chapter 7: Intranet System 225

10 549669 ch07.qxd 4/4/03 9:25 AM Page 225

returned with a value of 3 from the user interface shown by
confirmMessage(). This indicates that the user has confirmed the new
message, which is then written to the database addMessage().

■ Similarly, when the user decides to modify an existing message and
run() is called with cmd set to modify, the step parameter value can be
1, 2, or 3— calling displayMsgAddModMenu(), confirmMessage(), and
modifyMessage(), respectively — or null.

■ If the user decides to delete an existing message and the run method is
called with cmd set to delete, deleteMessage() is called.

■ If the user does not specify any message operations (add, modify,
delete), the user is shown the main message interface using
displayMsgMngrMenu().

■ In summary, run() decides which functionality is requested by the
user and calls the appropriate message method to perform the desired
operations.

◆ deleteMessage(): This method finds the message ID of the message to be
deleted and deletes that message from the database. If this method is
called without a proper message ID, it shows an error message. It works as
follows:

■ If it is called without a message ID ($mid) as a query parameter, it
shows an alert message and returns null.

■ Else, a message object called $msgObj is created and the deleteMessage()
of the object is called with the $mid value to delete the message. The
status of this operation is stored in $status variable.

■ A theme template object called $themeTemplate is created and set up
in the usual way to load the user-selected theme template file.

■ A status message template ($STATUS_TEMPLATE) is loaded in a template
object called $template as usual. If the $status is true, a status mes-
sage indicating that the message is deleted is inserted into the $tem-
plate content block. Also, deleteViewers() is called to remove all
the users from the message’s viewer table. This is done to ensure that,
when a message is deleted, the system does not attempt to show the
viewers a nonexistent message.

■ If the message could not be deleted, $status is false, and a message
indicating the failure is inserted in the $template object’s content
block.

■ Finally, the contents of the $template object are inserted into the
$themeTemplate object’s content block, and the results are printed on
the user’s browser screen.

226 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 226

◆ confirmMessage(): This method shows a preview of the message after
the user has added or modified one and gets his confirmation. It also con-
firms that the message is a valid one or shows appropriate error messages.
If the user chooses to cancel from this screen, she is taken back to the
add/modify menu, where she can edit her message and continue. This
method works as follows:

■ When the method is called, the user has either created a new message
or modified an existing message. So the method receives the message
title ($title), publication date ($msgDate), body ($msg), current time-
stamp ($currentTS), operation mode ($mode), message ID ($mid) (only
if editing an existing message), and viewer list ($viewers).

■ A local variable $date is created using the month ($m), day ($d), and
year ($y) of the given publication date.

■ If the given date is invalid or less than the current date, the method shows
an alert message indicating a bad publication date and returns null.

■ The method checks to see whether the title, body, or viewer list is
empty. If any of them are not defined by the user in the previous step,
an alert message is shown and the method returns null.

■ Using a current timestamp from the mktime() function, a new time-
stamp containing the current hour, minute, and second, along with the
user-given month, day, and year, is created in the $realDate variable.

■ A theme template object called $themeTemplate is created and set up
in the usual way to load the user-selected theme template file.

■ Similarly, a message preview template ($MSG_PREVIEW_TEMPLATE) is
loaded in a template object called $template as usual. All user-sup-
plied data are embedded into the preview template.

■ Finally, the contents of the $template object are inserted into the
$themeTemplate object’s content block, and the results are printed on
the user’s browser screen.

◆ modifyMessage(): This method gets the modified message information,
such as message ID, message title, publish date, message contents, and
viewer IDs, and updates the database. It shows the appropriate confirma-
tion message if no error is found. Otherwise, it shows the appropriate error
message. Here’s how it works:

■ If the method is called without a viewer list, it shows an alert message
and returns.

■ A message object called $msgObj is created with the current message ID
($mid), which is supplied to the method as a query parameter.

Chapter 7: Intranet System 227

10 549669 ch07.qxd 4/4/03 9:25 AM Page 227

■ The isRead() method of the $msgObj is called to determine whether
the chosen message has already been read. The message cannot be
modified if other users have already acknowledged reading it.
Changing this message now would be unethical. The best approach is
to add a new message using the modified content so that the users can
see it again. Therefore, if the message is already read, addMessage() is
called to add the modification as a new message.

◆ addMessage(): This method gets new message information, such as mes-
sage title, publish date, message contents, and viewer IDs, and inserts the
message data into the database. It shows the appropriate confirmation
message if no error is found. Otherwise, it shows the appropriate error
message. Here’s how it works:

■ If the method is called without a viewer list, it shows an alert message
and returns.

■ A message object called $msgObj is created.

■ We add the new message using the addMessage() method of the
$msgObj. The status of this operation is stored in the $status variable.

■ If $status is true, a status message indicating that the message is
added is inserted in the $template content block, and addViewers() is
called to add the viewers of this message. If the message could not be
added, $status is false, and a message indicating the failure is inserted
in the $template object’s content block.

■ The contents of the $template object are inserted into the
$themeTemplate object’s content block, and the results are printed on
the user’s browser screen.

◆ displayMsgMngrMenu(): This method displays the initial message man-
ager options menu available only to administrators, because only admin-
istrators can modify or delete messages. This is how it works:

■ A message manager template ($MSG_MNGR_TEMPLATE) is loaded in a
template object called $template.

■ A new message object called $msgObj is created.

■ The template includes buttons to add, modify, and delete messages and
a list of messages from which the user can choose messages to modify
or delete.

228 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 228

■ The list is loaded using the getAllMessages() method of the $msgObj
object.

■ The contents of the $template object are inserted into the
$themeTemplate object’s content block, and the results are printed on
the user’s browser screen.

◆ displayMsgAddModMenu(): This method displays the add/modify message
interfaces. This is how it works:

■ Checks whether the message ID has been supplied when this method is
called with the ‘modify’ parameter. If the message ID has not been
supplied, the method shows the appropriate error message and returns
the user to the previous page. Otherwise, it creates the new message
object, $msgObj, and stores the message contents, publish date, and
title attributes of the message into variables for later use.

■ A message add/modify template ($MSG_ADD_TEMPLATE) is loaded in a
template object called $template.

■ The template includes a Web form for taking input of the message title,
message contents, publish date, and view rights. If this method is called
with the ‘modify’ parameter, it loads the specified message informa-
tion into the Web form.

■ The contents of the $template object are inserted into the
$themeTemplate object’s content block, and the results are printed on
the user’s browser screen.

◆ unhtmlentities(): This method is the exact reverse of the htmlenti-
ties() method in the PHP API.

◆ authorize(): This method authorizes access to this application. It works
as follows:

■ It uses getUID() to check whether the current user ID is positive.
Because all valid user IDs are positive numbers, it creates a DBI object
called $user_dbi that points to the central user-authentication data-
base (USER_DB_URL).

■ A user object called $userObj is created using the $user_dbi and cur-
rent user ID.

■ The current user type is tested using getType() to determine whether it
is administrator (ADMIN_TYPE) or not. If the current user is of type
administrator, the $isAdmin variable is set to TRUE and it returns TRUE.
For nonadministrative users, this method will return TRUE if cmd =
add; otherwise, it returns FALSE.

Chapter 7: Intranet System 229

10 549669 ch07.qxd 4/4/03 9:25 AM Page 229

Access reporter application
The access reporter application, access_reporter.php, shows the access report of
the current user. It is included on the CD-ROM in the ch07/apps directory.

It has the following methods:

◆ run(): When the application is run, this method is called. It basically
decides which functionality is requested by the user and calls the appro-
priate method to perform the desired operations. It does the following:

■ Creates a theme object, $this->themeObj.

■ Stores the current user’s theme choice in $this->theme by calling the
getUserTheme() method of the theme object created.

■ If the application is called with cmd = “Force Login”, logUserIn() is
called. Similarly, cmd = “Force Logout” calls logUserOut(). These
two operations are done when an administrator wants to manually log
in or log out a user.

■ Calls the reportDriver() method to show the access report.

◆ logUserOut(): This method logs out the specified user. It works as follows:

■ Checks whether the administrator provided the given date and time is
valid. Otherwise, it shows the appropriate error message to the user and
returns to the previous page.

■ Checks whether the given date and time correspond to the future. If
they do, it shows the appropriate error message to the user and returns
to the previous page.

■ Creates a new ActivityAnalyzer object called $analyzer.

■ Uses the logUserOut() method of the $analyzer object to log out the
user.

■ Calls the reportDriver() method to render the updated access report.

◆ logUserIn(): This method logs in the specified user. It works as follows:

■ Checks whether the given date and time is valid. If they aren’t, it shows
the appropriate error message to the user and returns to the previous
page.

■ Checks whether the given date and time correspond to the future. If
they do, it shows the appropriate error message to the user and returns
to the previous page.

■ Creates a new ActivityAnalyzer object called $analyzer.

230 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 230

■ Uses the logUserIn() method of the $analyzer object to log in the user.

■ Calls the reportDriver() method to render the updated access report.

◆ authorize(): This method authorizes access to this application. It works
as follows:

■ It checks the current user ID using the getUID() method. Because all
valid user IDs are positive numbers, it creates the DBI object called
$user_dbi that points to the central user-authentication database
(USER_DB_URL).

■ A user object called $userObj is created using the $user_dbi and the
current user ID.

■ The getType() method is called to determine the user type of the cur-
rent user. If the current user is of type administrator (ADMIN_TYPE), the
$isAdmin variable is set to TRUE.

■ This method always returns TRUE, because everyone on the intranet can
view this application.

◆ reportDriver(): This method generates and displays the user-access
report. It works as follows:

■ Generates the appropriate report. For example, if the report type ($rpt)
is a weekly report, the generateWeeklyReport() method is called to
generate the weekly report.

■ Displays the report using the displayReport().

◆ generateDailyReport(): This method generates the access report of a
user for a specific day. This method works as follows:

■ If the user viewing the page has administrator privileges, this method
shows her the admin block that includes a list of users from which she
can select any user’s daily report. This block also includes a link to the
overall summary report and the buttons for force login and force
logout.

■ It finds out the timestamp of the day to be shown. Because the user has
the option to scroll through the days by using the >> and << buttons,
this timestamp is not always the current day.

■ It finds out the starting and ending timestamps of the given day and
uses the ActivityAnalyzer object to retrieve the office hours and the
extra hours for the day for that user.

■ It returns the formatted information that includes the date, the day, the
start time, the end time, the total office hours, and the total extra
hours. It also includes a brief summary with totals and averages.

Chapter 7: Intranet System 231

10 549669 ch07.qxd 4/4/03 9:25 AM Page 231

◆ generateWeeklyReport(): This method generates an access report of a
user for a specific week. This method works as follows:

■ If the user viewing the page has administrator privileges, this method
shows her the admin block that includes a list of users from which she
can select any user’s daily report. The block includes a link to the over-
all summary report and the buttons for force login and force logout.

■ It finds out the timestamp of the week to be shown. Because the user
has the option to scroll through the weeks by using the >> and << but-
tons, this timestamp is not always the current week.

■ It finds out the starting and ending timestamps of the given week and
uses the ActivityAnalyzer object to retrieve the office hours and the
extra hours for each day of the given week for that user.

■ It returns the formatted information that includes the date, the day, the
start time, the end time, the total office hours, and the total extra
hours, as well as a brief summary with totals and averages.

◆ generateMonthlyReport(): This method generates an access report of a
user for a specific month. This method works as follows:

■ If the user viewing the page has administrator privileges, this method
shows him the admin block that includes a list of users from which he
can select any user’s monthly report. This includes a link to the overall
summary report and the buttons for force login and force logout.

■ It finds out the timestamp of the month to be shown. As the user has
the option to scroll through the months by using the >> and << but-
tons, this timestamp is not always the current month.

■ It finds out the starting and ending timestamps of the given month and
uses the ActivityAnalyzer object to retrieve the office hours and the
extra hours for each day of the given month for that user.

■ It returns the formatted information that includes the date, the day, the
start time, the end time, the total office hours, and the total extra hours
and includes a brief summary with totals and averages.

◆ displayReport(): This method displays user-access reports. It works as
follows:

■ It uses the Theme class to find out the preferred theme for this user.

■ It creates a new ThemeTemplate object called $themetemplate and
loads the preferred theme template.

■ The content block of the $themeTemplate is loaded with $report,
which is passed to this method as a parameter.

■ It renders the contents of $themeTemplate to the user.

232 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 232

Other methods for this application include those in the following table:

Method Description

convert() Converts time stamp values as taken from the seconds as
input into hours, minutes, and remaining seconds and
returns the resultant string.

getWeeklyTSRange() Returns the weekly time stamp range for a given day, in an
array containing the starting and ending time stamps of the
week with any time stamp as input.

getMonthlyTSRange() Returns the monthly time stamp range for a given day, in an
array containing the starting and ending time stamps of the
month with any time stamp as input.

now() Returns the time stamp corresponding to the current date
and time.

Admin access reporter application
The admin access reporter application, admin_access_reporter.php, shows the
overall access report of all the employees/users that can be viewed only by the
administrators. It is included on the CD-ROM in the ch07/apps directory.

This application has the following methods.

◆ run(): When the application is run, this method is called. It checks
whether the user has administrative privileges. If the user does not have
administrative privileges, it exits from the application. If the user has
administrative privileges, it calls the reportDriver() method.

◆ authorize(): This method authorizes only administrators to view the
application. If the user has administrative privileges, it returns TRUE.
Otherwise, it returns FALSE. It uses the $userObj object of User class to
get the current user type; sets the isAdmin property of the application,
depending on the type it finds; and returns the isAdmin property, which
identifies whether the user is an administrator.

◆ generateDailyReport(): This method generates an access report of all
users for a specific day. This method works as follows:

■ It finds out the timestamp of the day to be shown. Because the user has
the option to scroll through the days by using the >> and << buttons,
this timestamp is not always the current day.

Chapter 7: Intranet System 233

10 549669 ch07.qxd 4/4/03 9:25 AM Page 233

■ It finds out the starting and ending timestamps of the given day and
then uses the ActivityAnalyzer object to retrieve the office hours and
the extra hours for the day for all users.

■ It returns the formatted information that includes the user name, total
office hours, and total extra hours of all users for that day, as well as a
brief summary with totals and averages.

◆ generateWeeklyReport(): This method generates an access report of a
user for a specific week. This method works as follows:

■ It finds out the timestamp of the week to be shown. Because the user
has the option to scroll through the weeks by using the >> and << but-
tons, this timestamp is not always the current week.

■ It finds out the starting and ending timestamps of the given week and
uses the ActivityAnalyzer object to retrieve the office hours and the
extra hours for each day of the given week for all users.

■ It returns the formatted information that includes the username, total
office hours, and total extra hours of all users for that week, as well as
a brief summary with totals and averages.

◆ generateMonthlyReport(): This method generates an access report of a
user for a specific month. This method works as follows:

■ It finds out the timestamp of the month to be shown. Because the user
has the option to scroll through the months by using the >> and <<
buttons, this timestamp is not always the current month.

■ It finds out the starting and ending timestamps of the given month and
uses the ActivityAnalyzer object to retrieve the office hours and the
extra hours for each day of the given month for all users.

■ It returns the formatted information that includes the username, total
office hours, and total extra hours of all users for that month and a
brief summary with totals and averages.

◆ displayReport(): This method is used to display user-access reports. It
works as follows:

■ It uses the Theme class to find out the preferred theme for this user.

■ It creates a new ThemeTemplate object called $themeTemplate and
loads the preferred theme template.

■ The content block of the $themeTemplate is loaded with $report,
which is passed to this method as a parameter.

■ The contents of the $themeTemplate are rendered to the user.

234 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 234

The following tables describes the other methods for this application:

Method Description

reportDriver() Generates the appropriate report based on the type of report
requested. (For example, if report type ($rpt) is weekly
report (WEEKLY = 2), generateWeeklyReport() is
called to generate the report.) It then calls
displayReport() to display the report.

convert() Converts timestamp values as taken from the seconds as
input into hour, minute, and remaining seconds and returns
the resultant string.

getWeeklyTSRange() Returns the weekly timestamp range for a given day. This
method returns an array containing the starting and ending
timestamps of the week with any timestamp as input.

getMonthlyTSRange() Returns the monthly timestamp range for a given day. This
method returns an array containing the starting and ending
timestamps of the month with any timestamp as input.

now() Returns the timestamp corresponding to the current date
and time.

toggleSortCriteria() Toggles the sort criteria from ascending to descending and
vice-versa. It takes the string ‘reverse’ or null as input
and returns the other one of the two as output in an
exclusive manner.

sortByExtra() Sorts the report by extra hours of the users in descending
order. It takes two arrays as parameters and returns 1 if the
first one’s extra hour value is less than the other one’s;
otherwise, it returns –1.

sortByOffice() Sorts the report by office hours of the users in descending
order. It takes two arrays as parameters and returns 1 if the
first one’s office hour value is less than the other one’s;
otherwise, it returns –1.

reversesortByExtra() Sorts the extra hours of the users in ascending order. It takes
two arrays as parameters and returns –1 if the first one’s extra
hour value is less than the other one’s; otherwise, it returns 1.

reversesortByOffice() Sorts the office hours of the users in ascending order. It
takes two arrays as parameters and returns –1 if the first
one’s office hour value is less than the other one’s;
otherwise, it returns 1.

Chapter 7: Intranet System 235

10 549669 ch07.qxd 4/4/03 9:25 AM Page 235

Daily logbook manager application
The daily logbook manager application is called daily_logbook_mngr.php, which
shows a daily breakdown of login/logout for a particular user. This application is
included on the CD-ROM in the ch07/apps directory.

It has the following methods:

◆ run(): When the application is run, this method is called. It does the
following:

■ Checks whether the user has administrative privilege.

■ If the user has the administrative privilege and if she passes a user ID,
she can view the access logs of that user as well. run() sets $this-
>userID as the passed user ID. Nonadministrative users are not allowed
to view others’ access logs. They can view only their own logs.

■ After setting the userID, it runs reportDriver(), which shows the
daily activities of the intended user for the given date.

◆ authorize(): This method authorizes access to this application. It works
as follows:

■ It creates the DBI object called $user_dbi, which points to the central
user authentication database (USER_DB_URL).

■ A user object called $userObj is created using the $user_dbi and cur-
rent user ID.

■ The getType() is used to determine the current user type. If the user is
an administrator (ADMIN_TYPE), the $isAdmin variable is set to TRUE.

■ This method always returns TRUE, because everyone on the intranet can
view this application.

◆ reportDriver(): This method generates and displays the user access
report. It works as follows:

■ It finds out all the timestamps (Office start timestamp, Lunch start
timestamp, Lunch end timestamp, and so on) that are necessary to
retrieve the activities of the day.

■ It creates an object of the ActivityAnalyzer class and uses the
getDailyLog() method of that object to get the daily activity log.

■ It generates the report using the $LOG_DETAIL_TEMPLATE template and
shows it to the user.

◆ convert(): This method converts timestamp values as taken from the sec-
onds as input into hours, minutes, and remaining seconds and returns the
resultant string.

236 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 236

User tip application
The user tip application is called tips.php and shows a tip of the day. This appli-
cation is included on the CD-ROM in the ch07/apps directory.

It has the following methods:

◆ run(): This method is responsible for running the application. It sets
$TIP_URL to the URL of the tip to be shown by randomly choosing a tip
template and then redirects the application to show the tip template.

◆ authorize(): This method authorizes everyone on the intranet to view
the document access list and, therefore, always returns TRUE.

User preference application
Currently, the user can have two types of preferences: a specific theme ID or an
automatic tip display on or off. A preference application (discussed later) asks the
user to choose a theme and enable/disable automatic tip on login options.

A preference ID value of 1 indicates that the preference is for a theme; a value of
2 indicates that the user’s preference is for an automatic tip display.

A theme is like a skin on the intranet interface that makes the intranet look dif-
ferent for different users. The themes are HTML templates that are loaded by
intranet applications, and the application’s own interface is embedded within the
contents block area of the theme.

The user preference application is called preference.php, and is included on
the CD-ROM in the ch07/apps directory.

This application enables users to choose a theme for their intranet home page and
also allows them to toggle automatic tip display on login. It has the following methods:

◆ run(): When the application is run, this method is called. It decides which
functionality is requested by the user and calls the appropriate method to
perform the desired operations. It does the following:

■ Creates a theme object, $this->themeObj.

■ The current user’s theme choice is stored in $this->theme by calling
the getUserTheme() method of the theme object created.

■ If the application is called with $pref = upd, the preferences are
updated. (At the first instance of preference change, if there is no pre-
vious preference to update, run() adds the new preferences to the
database. Thereafter, it continues to update [and not insert] every time
there is a request to change preference.)

■ displayMenu()is called to show the current preferences.

◆ authorize(): This method authorizes everyone on the intranet to view
the document-access list and, therefore, always returns TRUE.

Chapter 7: Intranet System 237

10 549669 ch07.qxd 4/4/03 9:25 AM Page 237

◆ displayMenu(): This method displays the menu shown in the preference
page. This is how it works:

■ A preference template ($PREFERNCE_TEMPLATE) is loaded in a template
object called $template.

■ The template contains a list of available themes that is loaded using the
getAllThemes() method of the Theme class. The current theme for the
user viewing the page is preselected.

■ It also contains two radio buttons for the auto tip option (Yes/No); one
of them is preselected based on the current user’s auto tip preference.

■ The user’s preferences are retrieved using the getPreferences()
method of the intranetUser class.

■ The update button at the bottom of the template lets the user update
her preferences, which she can change using the combo box and the
radio buttons.

■ The contents of the $template object are inserted into the
$themeTemplate object’s content block and the results are printed on
the user’s browser screen.

Installing Intranet Applications
from the CD-ROM
The installation process assumes the following:

◆ You are using a Linux system with MySQL and Apache server installed.

◆ During the installation process, this directory is referred to as
%DocumentRoot%.

◆ Your MySQL server is hosted on the intranet Web server and can be accessed
via localhost. However, if this is not the case, you can easily modify the
database URLs in each application’s configuration files. For example, the
home.conf file has MySQL database-access URLs such as the following:

$INTRANET_DB_URL=’mysql://root:foobar@localhost/INTRANET’
$USER_DB_URL = ‘mysql://root:foobar@localhost/auth’

If your database server is called db.domain.com and the username and
password to access the INTRANET and auth databases (which you will cre-
ate during this installation process) are admin and db123, you would mod-
ify the database access URLs throughout each configuration file as follows:

$INTRANET_DB_URL=’mysql://admin:db123@db.domain.com/INTRANET’
$USER_DB_URL = ‘mysql://admin:db123@db.domain.com/auth’

238 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 238

◆ You have installed the PHPLIB and PEAR libraries. Normally, these are
installed during PHP installation. For your convenience, we have provided
these in the lib/phplib.tar.gz and lib/pear.tar.gz directories on the
CD-ROM. In the sample installation steps, we assume that these are
installed in the /evoknow/phplib and /evoknow/pear directories.
Because your installation locations for these libraries is likely to differ,
make sure that you replace these paths in the configuration files.

Here is how to get your intranet applications up and running:

1. Install the framework. You need to extract the framework.tar.gz file
from the ch4 directory on the CD-ROM. This file should be placed in your
%DocumentRoot% directory and extracted.

Once you extract it by using tar xvzf framework.tar.gz, the frame-
work.tar.gz will install the PHP Application Framework in the
%DocumentRoot%/framework directory.

2. Install the central user-authentication applications. If you have not yet
installed ch5.tar.gz from the CD-ROM (in the ch05 directory), you
should extract the ch5.tar.gz file using tar xvzf ch5.tar.gz com-
mand in your %DocumentRoot% directory.

This installs central login/logout applications in the %DocumentRoot%/
login and %DocumentRoot%/logout applications.

Make sure that you create the auth database and an administrative user as
discussed in Chapter 5. The quickest way to create this database, with an
administrative user account called carol and password mysecret, is to
run the following commands:

mysqladmin –u root –p create auth
mysql –u root –p –D auth < auth.sql

mysql –u root –p –D auth

mysql> insert into users (EMAIL, PASSWORD, ACTIVE, TYPE)
values(‘carol@example.com’, ENCRYPT(‘mysecret’), 1, 9);

mysql> exit

The auth.sql file can be found in the ch5/sql directory on the CD-ROM.

Make sure that you configure the login and logout applications using
%DocumentRoot%/login/login.conf and %DocumentRoot%/logout/
logout.conf files, respectively. In most cases, you should need to change
only paths and database access information.

3. Install the central user-management system. From the ch6 directory of
the CD-ROM, extract the user_mngr.tar.gz file using tar xvzf
user_mngr.tar.gz in your %DocumentRoot% directory.

Chapter 7: Intranet System 239

10 549669 ch07.qxd 4/4/03 9:25 AM Page 239

This will install the central user-management application in the
%DocumentRoot%/user_mngr directory. Make sure that you configure the
user manager applications by using the %DocumentRoot%/user_mngr/
apps/user_mngr.conf file. In most cases, you should need to change
only paths and database access information.

4. Install the home applications. If you have an index.php file in your
%DocumentRoot%, rename and back up this file. Then, from the ch7 direc-
tory of the CD-ROM, extract ch7.tar.gz in %DocumentRoot%. This will
create a home directory and photos directories in your document root, and
it will also install index.php script. Configure %DocumentRoot%/home/
home.conf for path and database settings.

Make sure that you create the INTRANET database as discussed earlier in
this chapter. The quickest way to create this database is to run the follow-
ing commands:

mysqladmin –u root –p create database INTRANET
mysql –u root –p –D INTRANET < INTRANET.sql

The INTRANET.sql file can be found in the ch07/sql directory.

5. Set the file/directory permissions. Make sure that you’ve changed the file
and directory permissions so that your intranet Web server can access all
the files. The path pointed to by the $LD_CATEGORY_NAV_DIR variable in
home.conf must be writeable by the Web server, because this is the navi-
gation file that gets generated whenever a new document is published
using the simple publishing tool discussed in Chapter 8. You should keep
this directory outside your Web document tree if possible.

After you’ve performed these steps, you’re ready to test your applications.

Testing the Intranet
Home Application
Log in to your intranet via http://yourserver/index.php using the username
and password that you created in Chapter 6. If you used the database configuration
steps described in the previous section, you should have at least a default user
called carol (with password set to mysecret) that can log you into your intranet.

240 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 240

The index.php file installed in %DocumentRoot% during the installation process
is nothing but a simple redirect to /home/home.php application. So if you did not
install index.php in the previous installation section, you can access your intranet
using http://yourserver/home/home.php. You’ll be automatically redirected to
the central login script (/login/login.php), and after you authenticate success-
fully, you’ll see an intranet home page, as shown in Figure 7-3.

Figure 7-3: An intranet user home page.

The user home shows a left navigation bar with applications that are available
on your intranet. The navigation bar is a file that is loaded from %DocumentRoot%/
themes/%CurrentTheme%/home_left_nav.html. For example, the default theme
(std_blue) will load the navigation file %DocumentRoot%/themes/std_blue/
home_left_nav.html.

If you install intranet applications anywhere beyond the %DocumentRoot%
as suggested, you’ll need to modify the navigation files (home_left_nav.
html,default_left_nav.html) for each theme in the themes directory.

You’ll have to update the links to applications in these files to point to the

application locations where you installed them.

Chapter 7: Intranet System 241

10 549669 ch07.qxd 4/4/03 9:25 AM Page 241

Changing user preferences
To change your theme or auto tip preferences, click the Preferences link in the nav-
igation bar. You’ll see a screen similar to that shown in Figure 7-4.

Figure 7-4: User preferences.

You can decide to view the automatic tip window at login by selecting the
Automatically Show Tip of the Day option, and you can change the current theme
by selecting a new theme from the drop-down list of themes.

After you submit your changes by clicking the Update button, the theme choice
will take effect immediately. However, the auto tip is shown only once per login, so
you’ll have to log out to see a new tip.

The tips are stored in the %DocumentRoot%/home/templates/tips directory as
number.html, where number is an integer. You can add as many tips as you want
to show your users by creating new number.html files in sequential order and then
updating the $MAX_AVAILABLE_TIP setting in home.conf to reflect the number of
available tips in your intranet.

To return to the home page, click the Home link in the navigation bar.

Checking user access logs
To view your own access report, click the Access Report link, which shows a screen
similar to that in Figure 7-5.

Because we’re showing an administrative user (Carol) session in the sample
screen, you see a great deal more than what a regular user sees.

As an administrator, our sample user, Carol, can force-login/logout anyone and
also view other users’ access logs. For example, Figure 7-6 shows Carol viewing
another user’s access log entries.

242 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 242

Figure 7-5: Viewing your own access log.

Figure 7-6: Viewing another user’s access log by using an administrative
account.

An administrative user, such as Carol, can also access a summary version of the
access logs for all users by clicking the Overall Summary Report link. It shows a
screen similar to that in Figure 7-7.

Chapter 7: Intranet System 243

10 549669 ch07.qxd 4/4/03 9:25 AM Page 243

Figure 7-7: Viewing all user access summary reports.

As an administrative user, Carol can view weekly, daily, or monthly reports for all
user access. The arrow buttons allow her to view previous months, weeks, or days.

Writing a message to other users
From the user home page, a user can send another user a message via the MOTD
tool by clicking the MOTD Manager link on the navigation bar. Figure 7-8 shows
the message screen.

Figure 7-8: Writing a message to other users.

244 Part II: Developing Intranet Solutions

10 549669 ch07.qxd 4/4/03 9:25 AM Page 244

A user can add a message and decide who can view it by selecting one or more
users from the list or everyone. Clicking the Save Message link shows a confirma-
tion page with the message shown on-screen for review. When the user confirms
the message by clicking the Confirm button, the message is sent to the intended
users and displayed on the day of the message.

Figure 7-9 shows the message being shown on Carol’s home page.

Figure 7-9: A message from another user.

Carol must click the OK button to remove the message. The great thing about
this type of messaging system is that all users must click OK to signify that they’ve
read the message. This means that a company administrator is assured that all her
messages are being read.

To log out from the intranet, click the Logout link at any time.

Summary
In this chapter, you explored a base intranet system that utilizes the central authen-
tication and user-management systems discussed in the preceding chapters. Here
you learned how to generate a user home page and how to enable a simple message
delivery system that users can use to notify each other of company or personal
events and issues.

Chapter 7: Intranet System 245

10 549669 ch07.qxd 4/4/03 9:25 AM Page 245

10 549669 ch07.qxd 4/4/03 9:25 AM Page 246

Chapter 8

Intranet Simple
Document Publisher
IN THIS CHAPTER

◆ Developing a simple intranet document publisher

◆ Installing the intranet document publisher

◆ Using the intranet document publisher

PUBLISHING DOCUMENTS ON THE WEB or on the intranet is a major task due to the
complexity of the documents and how organizations manage their workflow. In
this chapter, we’ll develop a simple document publishing tool that is available to all
users on the intranet and handles HTML documents only. Because most office
word-processing applications these days can save files as HTML, this opens up the
publisher to most organizations.

Let’s look at the functionality requirements that this document publishing sys-
tem will meet.

Identifying the Functionality
Requirements
The document publisher will offer each user on the intranet the following:

◆ Web forms to create new documents: The Web form accepts both text
and HTML data. However, the publisher itself does not support formatting.
In other words, if a user wants to paste the contents of a Word document
into the publisher form, she should save the Word document as an HTML
file and copy the HTML contents instead of the text shown in Word’s
WYSIWYG editor. If text documents are to be submitted, a simple trick is
needed to maintain formatting, which is discussed in the “Adding a new
document” section later in this chapter.

◆ Easy and simple category-based document organization: Each document
is published in a category. There can be only a single level of categories.
Each category will have a defined set of users who can view documents 247

11 549669 ch08.qxd 4/4/03 9:25 AM Page 247

and a defined set of publishers (i.e. users who can create/modify/delete
documents).

◆ User-level access control for viewing and creating documents: Users can
have view or publish (creation/modification/deletion) rights. Multiple
users can have view or publish rights per category.

◆ Automated announcements for document availability and updates:
When new documents are created, the users with view and publish rights
are shown an MOTD announcement when they log in to the intranet.
When an existing document is modified or removed, the appropriate users
also are notified via MOTD. This notification is very useful because an
important document change notice can be sent automatically to appropri-
ate users who need to know about the changes. In fact, users will have to
acknowledge that they know about the changes by clicking on the OK
button of the MOTD document change notice message which gets dis-
played on their home pages.

Let’s take a quick look at the prerequisites of such a publishing system.

The Prerequisites
This document publishing system builds on the intranet classes discussed in the
previous chapters in this part of the book. For example, it uses the MOTD class
(Chapter 6) to announce new documents and updates.

The applications that we develop here require the central login/logout applica-
tions (Chapter 5), user-management applications (Chapter 6), and the intranet home
applications (Chapter 7).

In addition, administrative intranet users, who are defined in the intranet user
table discussed in Chapter 6, are given full access to all aspects of the document
and category management in this publishing tool.

Now let’s look at the database design and implementation needed for creating
this document publishing system.

Designing the Database
When designing the database for the document publisher we have consider the fol-
lowing data requirements:

◆ There will be multiple categories. Each category will have list of users who
can view documents in that category. Each category will also have list of
users who can publish documents in that category. So a category has
many viewers and publishers.

248 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 248

◆ In each category there will be many documents. Each document will have
tracking information and responses. Therefore each document has many
tracking and response data.

Based on these requirements, we can create the database relationship as shown in
Figure 8-1. Here the LD_CATEGORY table has one to many relationships with the
LD_DOCUMENTS table because each category can have many documents.
Similarly, LD_CATEGORY has one to many relationships with LD_CAT_VIEWER
(viewer list) and LD_CAT_PUBLISHER (publisher list) tables. Since each document
in LD_DOCUMENT table has many tracking and response records, it has one to
many relationships with LD_TRACK (tracking data) and LD_RESPONSE (response
data) tables.

Figure 8-1: Intranet document publisher database diagram.

Table 8-1 describes each table in the database.

TABLE 8-1 DOCUMENT PUBLISHER DATABASE TABLES

Table Description

LD_CATEGORY This table is the integral part of this database. It holds the
category number (CAT_ID), which is automatically generated
by the database, and the category name (CAT_NAME),
description (CAT_DESC), and order (CAT_ORDER).

LD_CAT_PUBLISHER Contains the category publisher information: the category
number (CAT_ID) and the ID of the publisher who can publish
document in that category (PUBLISHER_ID).

LD_CAT_VIEWER Holds the category viewer information: the category number
(CAT_ID) and the viewer ID of the user who can view
documents in that category (VIEWER_ID).

Continued

Chapter 8: Intranet Simple Document Publisher 249

11 549669 ch08.qxd 4/4/03 9:25 AM Page 249

TABLE 8-1 DOCUMENT PUBLISHER DATABASE TABLES (Continued)

Table Description

LD_DOCUMENT Holds information about the document: the doc ID (DOC_ID),
which is automatically generated when a new document is
added to a category; the category number (CAT_ID) in which
the document will be published; and the document heading
(HEADING), body (BODY), and publishing date (PUBLISH_DATE).

LD_RESPONSE Contains response(s) to a document published in a category.
Each response consists of an ID (RESPONSE_ID), responder
(RESPONDER), subject (SUBJECT), rate of the document (RATE),
comment by the responder (COMMENT), document ID (DOC_ID),
and time of response (RESPONSE_TS).

LD_TRACK Stores information about when and who viewed the document.
It contains the ID (DOC_ID) of the document that has been
viewed, the ID (UID) of the users who viewed this page, and the
time when the document was visited by the user (VISIT_TS).

I have provided the necessary SQL to create the document publisher database in
the ch8/sql/ld_tool.sql file in the CDROM. You can create the database on your
MySQL server using this file as follows:

mysql -u root -p -D INTRANET < ld_tool.sql

Make sure you change the user name (root) to whatever is appropriate for your
system.

The Intranet Document Application
Classes
With the intranet document publisher database designed, it’s time to look at the
PHP classes needed to implement the application. Figure 8-2 shows the system dia-
gram for the publisher.

As shown in the system diagram, there are three new objects (Category, Doc, and
Response) that are needed to implement the intranet document publisher. Let’s dis-
cuss the classes that will provide these objects for your applications.

250 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 250

Figure 8-2: Intranet document publisher system diagram.

The Category class
The Category class is used to manipulate each category. It allows an application to cre-
ate, modify, and delete a category. The ch08/apps/class/class.Category.php file
in the CDROM an implementation of this class. This class uses the following methods:

◆ Category(): This is the constructor method. It performs the following
functions:

■ Sets the object variable cat_tbl to $LD_CATEGORY_TBL, which is loaded
with the category table name (LD_CATEGORY) from the ld.conf file.

■ Sets the object variable doc_tbl to $LD_DOC_TBL, which is loaded with
the document table name (LD_DOCUMENT) from the ld.conf file.

■ Sets the object variable cat_pub_tbl to $LD_CAT_PUB_TBL, which is
loaded with the category publisher table from the ld.conf file.

■ Sets the object variable cat_view_tbl to $LD_CAT_VIEW_TBL, which is
loaded with the category viewer table name from the ld.conf file.

■ Sets the object variable dbi to point to the class.DBI.php-provided
object that is passed to the constructor by an application. The dbi
member variable holds the DBI object that is used to communicate with
the back-end database.

■ Sets the object variable CAT_ID to the given category ID (if any).

■ Sets the object variable std_fields, which is an array that contains
the LD_CATEGORY table attributes and their data type.

Central
Login/Logout

Messages

Categories

Documents

Response

User Home Interface

PHP Application Framework

Message Object

Simple Intranet Document
Publisher Applications

Category Object

Doc Object

Response Object

class.Message.php

class.Category.php

class.Doc.php

class.Response.php

Chapter 8: Intranet Simple Document Publisher 251

11 549669 ch08.qxd 4/4/03 9:25 AM Page 251

◆ loadCatInfo(): This method loads all attribute values into the category
object from the LD_CATEGORY table by the specified category IDs. This is
how it works:

■ setCatID() is called to set the passed category ID to the current
object. If no category ID is passed, the current $this->cid is taken.

■ The $this->dbi object is used to retrieve all the attribute values of the
given category from the LD_CATEGORY table.

■ Each of the values is set to the current object so that they can be retrieved
at any time using the other get methods of this class. For example $this-
>CAT_NAME is set to the value of the CAT_NAME of the given category.

◆ getCategoryIDbyName(): This method returns the category ID for the
given category name. It works as follows:

■ It takes the category name as parameter.

■ The category name is quoted using the quote() method of the $this-
>dbi object and inserted into the SQL statement, which is needed to
retrieve the category ID.

■ The query executes, and the resultant category ID is returned. If no
result is found, it returns null.

◆ getCategories(): This method returns all the category names along with
their IDs from the LD_CATEGORY table. This is how it works:

■ It executes a SQL query to retrieve all the field value of the
LD_CATEGORY table ordered by descending CAT_ORDER.

■ The result is stored in an array that contains the category ID and name.

■ It returns the prepared array (or null, if the result set is empty).

◆ getPublishers(): This method returns the publisher IDs for a given
category. This is how it works:

■ It calls setCatID() to set the passed category ID.

■ It executes a SQL query that retrieves all the publisher IDs from the
LD_CAT_PUBLISHER table for the given category ID.

■ It stores the result of the execution in an array (unless the result set is
empty), and returns the array. It returns null if the result set is empty.

◆ getViewers(): This method returns the viewer IDs for a given category.
It works as follows:

■ It calls setCatID() to set the passed category ID.

■ It executes a SQL query that retrieves all the viewer IDs from the
LD_CAT_VIEWER table for the given category ID.

252 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 252

■ It stores the result of the execution in an array (unless the result set is
empty), and returns the array. It returns null if the result set is empty.

◆ addCategory(): This method adds a new category into to the LD_CATE-
GORY table. Category name, category ID, category order, and description
are passed into an associative array as a parameter to the method. It
works as follows:

■ The SQL statement is prepared using the $this->std_fields array
that contains all the attributes of the LD_CATEGORY table and the values
from the associative array that has been passed as parameter.

■ The values of the parameter are formatted using the quote() method
of the $this->dbi object.

■ After executing the SQL statement, the newly added category’s CAT_ID
is retrieved using another SQL statement.

■ If the insertion query is successful, this method returns the category ID
of the newly added category. Otherwise, it returns FALSE.

◆ modifyCategory(): This method updates category information for a
given category. Update information is passed in an associative array as a
parameter to this method. It works as follows:

■ The SQL statement is prepared using the $this->std_fields array
that contains all the attributes of the LD_CATEGORY table and the values
from the associative array that has been passed as parameter.

■ The values of the parameter are formatted using the quote() method
of the $this->dbi object.

■ If the update query is successful, this method returns TRUE. Otherwise,
it returns FALSE.

◆ updateCategoryOrders(): This method updates the orders of the cate-
gories. This takes an array of category ID and new order and assigns the
new orders to each category. This is how it works for each category:

■ It updates the category by assigning it a temporary value (–1). This is
done to avoid having the same order for two categories, which would
forbid you to execute the query, because the ORDER attribute is unique.

■ After assigning the temporary value, the category is updated with the
new order value for it.

■ The method returns TRUE upon successful update. Otherwise, it returns
FALSE.

Chapter 8: Intranet Simple Document Publisher 253

11 549669 ch08.qxd 4/4/03 9:25 AM Page 253

Method Description

setCatID() Sets the category ID of the category object. It takes a
non-empty category ID as the parameter.

getCategoryName() Returns the name of the category object from the
LD_CATEGORY table. It calls loadCatInfo() to set
all the field properties of the class and then returns
$this->CAT_NAME.

getCategoryOrder() Returns the order of the category object from the
LD_CATEGORY table. It calls loadCatInfo() to set
all the field properties of the class and then returns
$this->CAT_ORDER.

getCategoryDesc() Returns the description of the category object from
the LD_CATEGORY table. It calls loadCatInfo() to
set all the field properties of the class and then
returns $this->CAT_DESC.

getHighestOrder() Returns the highest order of the LD_CATEGORY table.

deleteCategory() Deletes the category from the database. It deletes all
data related to the category from the ld_tool
database. It takes the category ID as a parameter and
returns TRUE or FALSE depending on the status of
the deletion operation.

deleteDocsByCatID() Deletes all document records related to a category. It
takes category ID as a parameter and returns TRUE or
FALSE depending on the status of the deletion
operation.

deleteCategoryViewers() Deletes all viewer records related to a category. It
takes category ID as a parameter.

deleteCategoryPublishers() Deletes all publisher records related to a category. It
takes category ID as a parameter.

isViewable() Determines if a category is viewable by a specific
viewer. It takes category ID and user ID as parameters
and returns TRUE if the user is authorized to view
documents under the given category; otherwise, it
returns FALSE.

254 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 254

Method Description

isPublishable() Determines if the given publisher is allowed to publish
in a specific category. It takes category ID and user ID
as parameter and returns TRUE if the user is
authorized to publish documents under the given
category; otherwise, it returns FALSE.

addCategoryPublishers() Adds publishers to a specific category. It takes
category ID and user IDs as parameters and returns
TRUE upon successful insertion of the data. It returns
FALSE if it fails to add the publishers for the category.

addCategoryViewers() Adds viewers to a specific category. It takes category
ID and user IDs as parameters and returns TRUE upon
successful insertion of the data. It returns FALSE if it
fails to add the viewers for the category.

The Doc class
The Doc class provides the doc object, which is used to manipulate doc. It allows
publishers to create and delete doc. The ch08/apps/class/class.Doc.php file in
the CDROM is an implementation of this class. The following are the methods avail-
able in this class:

◆ Doc(): This is the constructor method, which performs the following
tasks:

■ Sets the object variable cat_tbl, which holds the category table name,
to $LD_CATEGORY_TBL, which is loaded from the ld.conf file.

■ Sets the object variable doc_tbl, which holds the LD_DOCUMENT table
name, to $LD_DOC_TBL, which is loaded from the ld.conf file.

■ Sets the object variable resp_tbl, which holds the response table
name, to $LD_RESPONSE_TBL, which is loaded from the ld.conf file.

■ Sets the object variable track_tbl, which holds the track table name,
to $LD_TRACK_TBL, which is loaded from the ld.conf file.

■ Sets an object variable called std_fields, which is an array that con-
tains the LD_DOCUMENT table attributes and their data type.

Chapter 8: Intranet Simple Document Publisher 255

11 549669 ch08.qxd 4/4/03 9:25 AM Page 255

■ Sets an object variable called fields, which holds a comma separated
list of fields from the std_fields set earlier.

■ Sets the object variable dbi to point to the class.DBI.php-provided
object, which is passed to the constructor by an application. The dbi
member variable holds the DBI object that is used to communicate with
the back-end database.

■ Calls setDocID()to set the document ID of the object.

■ Sets an object variable called std_fields, which is an array that con-
tains the LD_DOCUMENT table attributes and their data type.

◆ loadDocInfo(): This method loads all attribute values into the document
object from the LD_DOCUMENT table by the specified document ID. This is
how it works:

■ setDocID() is called to set the passed document ID to the current
object. If no document ID is passed, the current object’s document ID is
taken.

■ The $this->dbi object is used to retrieve all the attribute values of the
given document from the LD_DOCUMENT table.

■ Each of the values is set to the current object so that they can be
retrieved at any time using the other get methods of this class. For
example $this->DOC_NAME is set the value of the DOC_NAME of the
given document. This method sets all the attributes such as document
ID, category number, heading, body of the document, and publish date
for a given document.

◆ addDoc(): This method adds new documents to the database. Attributes
such as document ID, category number, heading, body of the document,
and publish date are passed in an associative array as parameters to this
method. It works as follows:

■ The SQL statement is prepared using the $this->std_fields array
that contains all the attributes of the LD_DOCUMENT table and the values
from the associative array that has been passed as parameter.

■ The values of the parameter are formatted using the quote() method
of the $this->dbi object.

■ After executing the SQL statement, the newly added document’s
DOC_ID is retrieved using another SQL statement.

■ If the insertion query is successful, this method returns the category ID
of the newly added category. Otherwise, it returns FALSE.

256 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 256

◆ modifyDoc(): This method updates document information in the data-
base. Attributes such as document ID, category number, heading, body of
the document, and publish date are passed in an associative array as para-
meters to this method. It works as follows:

■ The SQL statement is prepared using the $this->std_fields array
that contains all the attributes of the LD_DOCUMENT table and the values
from the associative array that has been passed as a parameter.

■ The values of the parameter are formatted using the quote() method
of the $this->dbi object.

■ If the update query is successful, this method returns TRUE. Otherwise,
it returns FALSE.

◆ getDocsByCatID(): This method returns all documents that are to be
published until the current time related to the given category from the
database. This method takes category ID as the parameter. It works as
follows:

■ It executes a SQL statement that retrieves all the documents up to the
current timestamp for the given category.

■ It stores the result into an array if the result set is not empty.

■ It returns the array, or, if the result is empty, it returns null.

◆ getAllDocsByCatID(): This method returns all documents that fall under
the given category. This also takes category ID as a parameter. It works as
follows:

■ It executes a SQL statement that retrieves all the documents for the
given category.

■ It stores the result into an array if the result set is not empty.

■ It returns null if the result is empty. Otherwise, it returns the array.

◆ getTrackDetails(): This method returns all tracking information for the
given document. It works as follows:

■ It executes a SQL query that retrieves all the user IDs and their visit
timestamps for the given document ID.

■ The result is stored in an array if it is not empty.

■ The method returns null when the result set is empty. Otherwise, it
returns the array.

Chapter 8: Intranet Simple Document Publisher 257

11 549669 ch08.qxd 4/4/03 9:25 AM Page 257

The following are other methods of this class:

Method Description

setDocID() Sets the document ID. If the document ID is provided
as a parameter, it is set as the object’s document ID;
otherwise, the current object’s document ID is
returned.

getHeading() Returns the heading of the current document object. It
takes document ID as a parameter.

getPublishDate() Returns the publishing date of the current document
object. It also takes document ID as a parameter.

getBody() Returns the body of the current document object.
Document ID is passed into this method as a
parameter.

getCategory() Returns the category of the current document object.
It takes document ID as a parameter.

deleteDoc() Deletes the document from the database. It will delete
all data related to the document from the database. It
takes the ID of the document to be deleted as the
parameter.

deleteResponsesByDocID() Deletes all responses related for any doc from the
database. It takes document ID as the parameter.

trackVisit() Tracks visits to the given document and enters new
track information (document ID, user ID, and visit
timestamp) into the LD_TRACK table of the database.
It takes document ID, user ID, and the timestamp as
parameters. It returns TRUE upon successful insertion;
otherwise, it returns FALSE.

The Response class
The Response class provides the response object. The response object is used to
manipulate response data. Applications can add or remove responses using the
response object. The ch08/apps/class/class.Response.php file in the CDROM
is an implementation of this class.

258 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 258

Following are the response class methods:

◆ Response(): This is the constructor method that creates the response
object. This method does the following:

■ Sets the object variable cat_tbl, which holds the category table name,
to $LD_CATEGORY_TBL, which is loaded from the ld.conf file.

■ Sets the object variable doc_tbl, which holds the document table
name, to $LD_DOC_TBL, which is loaded from the ld.conf file.

■ Sets the object variable resp_tbl, which holds the response table
name, to $LD_RESPONSE_TBL, which is loaded from the ld.conf file.

■ Sets the object variable dbi to point to the class.DBI.php-provided
object, which is passed to the constructor by an application. The dbi
member variable holds the DBI object that is used to communicate with
the back-end database.

■ Calls setResponseID() to set the response ID of the object. Sets the
object variable std_fields, which is an array that contains the
LD_RESPONSE table attributes and their data type.

◆ loadResponseInfo(): This method loads all attribute values into the
response object from the LD_RESPONSE table by the specified response ID.
This is how it works:

■ It calls setResponseID() to set the passed response ID to the current
object. If no response ID is passed, the current object’s response ID is
taken.

■ The $this->dbi object is used to retrieve all the attribute values of the
given response from the LD_RESPONSE table.

■ Each of the values is set to the current object so that they can be
retrieved at any time using the other get methods of this class. For
example $this->RESPONDER is set the username who responded (i.e.
provided feedback) to a document.

◆ getResponsesByDocID(): This method returns all responses for a given
document ID. This is how it works:

■ It executes a SQL query that retrieves all the attributes of the
LD_RESPONSE table for a given document ID.

■ It stores the result of the query in an array unless the result set is
empty.

■ The method returns null when there is no result found from the query;
otherwise, it returns the array.

Chapter 8: Intranet Simple Document Publisher 259

11 549669 ch08.qxd 4/4/03 9:25 AM Page 259

◆ addResponse(): This method adds new response to the LD_RESPONSE
table of the database. The attributes such as response ID, category number,
subject, document ID, rate, response time, and so on are passed into an
associative array as parameters to this method. It works as follows:

■ The SQL statement is prepared using the $this->std_fields array
that contains all the attributes of the LD_RESPONSE table and the values
from the associative array that has been passed as parameter.

■ The values of the parameter are formatted using the quote() method
of the $this->dbi object.

■ After executing the SQL statement, the newly added response’s
RESPONSE_ID is retrieved using another SQL statement.

■ If the insertion query is successful, this method returns the response ID
of the newly added response. Otherwise, it returns FALSE.

Following are the other methods in this class:

Method Description

setResponseID() Sets the response ID. If the response ID is provided as
the parameter, it is set as the object’s response ID;
otherwise, the current response ID is returned.

getResponseSubject() Returns the subject of the current response. It takes
the response ID as the parameter.

getResponseDocID() Returns the document ID of the current response. It
takes the response ID as the parameter.

getResponder() Returns the responder of the current response. It takes
response ID as the parameter.

getResponseBody() Returns the body of the current response. Response ID
is passed to this method as the parameter.

getAvgRatingByDocID() Returns the average rating of a given document. It
takes the document ID as the parameter.

getTotalResponseByDocID() Returns the total number of responses for the given
document. This method takes the document ID as the
parameter.

deleteResponse() Deletes the response from the database. It will delete
all data related to the response from the database. It
takes response ID as the parameter.

260 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 260

Setting up Application Configuration
Files
Like all other applications we’ve developed in this book, the document publishing
applications also use a standard set of configuration, message, and error files. These
files are discussed in the following sections.

The main configuration file
The primary configuration file for the entire document publishing system is called
ld.conf. Table 8-2 discusses each configuration variable.

TABLE 8-2 LD.CONF VARIABLES

Configuration Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR
package; specifically the DB module needed for
class.DBI.php in our application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the
PHPLIB packages (specifically, the
template.inc package needed for template
manipulation).

$APP_FRAMEWORK_DIR Set to our application framework directory.

$PATH Set to the combined directory path consisting of
$PEAR_DIR, $PHPLIB_DIR, and
$APP_FRAMEWORK_DIR. This path is used with
the ini_set() method to redefine the
php.ini entry for include_path to include
$PATH ahead of the default path. This allows
PHP to find our application framework, PHPLIB,
and PEAR-related files.

$AUTHENTICATION_URL Set to the central login application URL.

$LOGOUT_URL Set to the central logout application URL.

$HOME_URL Set to the topmost URL of the site. If the URL
redirection application does not find a valid URL
in the e-campaign database to redirect to for a
valid request, it uses this URL as a default.

Continued

Chapter 8: Intranet Simple Document Publisher 261

11 549669 ch08.qxd 4/4/03 9:25 AM Page 261

TABLE 8-2 LD.CONF VARIABLES (Continued)

Configuration Variable Purpose

$APPLICATION_NAME Internal name of the application.

$DEFAULT_LANGUAGE Set to the default (two-character) language
code.

$ROOT_PATH Set to the root path of the application.

$REL_ROOT_PATH Relative path to the root directory.

$REL_APP_PATH Relative application path as seen from the web
browser.

$TEMPLATE_DIR The fully qualified path to the template
directory.

$THEME_TEMPLATE_DIR The fully qualified path to the theme template
directory.

$REL_PHOTO_DIR The Web-relative path to the photo directory
used to store user photos.

$PHOTO_DIR The fully qualified path to the photo directory.

$DEFAULT_PHOTO Name of the default photo file, which is used
when a user does not have a photo in the photo
directory.

$CLASS_DIR The fully qualified path to the class directory.

$REL_TEMPLATE_DIR The Web relative path to the template directory
used.

$CATEGORY_CLASS Name of the Category class file.

$DOC_CLASS Name of the Doc class file.

$RESPONSE_CLASS Name of the Response class file.

$MESSAGE_CLASS Name of the Message class file. This class is
developed for the MOTD application, discussed
in the Chapter 7.

$LD_MNGR Name of the application that shows document
indexes for a given category or all categories.

$LD_DETAILS_MNGR Name of the application that shows document
details.

262 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 262

Configuration Variable Purpose

$LD_RESPONSE_MNGR Name of the application that manages
responses to documents.

$LD_ADMIN_MNGR Name of the application that allows
administrative users to manage categories.

$LD_VISIT_LIST_MNGR Name of the application that allows users to
view document-tracking information.

$LD_DB_URL The fully qualified URL for the database used to
store the documents and categories.

$LD_CATEGORY_TBL Name of the category table in the database.

$LD_DOC_TBL Name of the document table in the database.

$LD_RESPONSE_TBL Name of the response table in the database.

$USER_PREFERENCE_TBL Name of the user preference table in the
database.

$MESSAGE_TBL Name of the MOTD message table in the
database.

$LD_CAT_PUB_TBL Name of the category publishers table in the
database.

$LD_CAT_VIEW_TBL Name of the category viewers table in the
database.

$LD_TRACK_TBL Name of the document tracking data table in
the database.

$MSG_VIEWER_TBL Name of the message viewer list table in the
database.

$AUTH_DB_TBL Name of the user authentication table in the
database.

$STATUS_TEMPLATE Name of the status template file used to display
status messages.

$LD_HOME_TEMPLATE Name of the document index template file.

$LD_DETAILS_TEMPLATE Name of the document details template file.

$LD_RESPONSE_TEMPLATE Name of the document response entry form
template file.

Continued

Chapter 8: Intranet Simple Document Publisher 263

11 549669 ch08.qxd 4/4/03 9:25 AM Page 263

TABLE 8-2 LD.CONF VARIABLES (Continued)

Configuration Variable Purpose

$LD_VIEW_RESPONSE_TEMPLATE Name of the document response view template
file.

$ADD_MOD_DOC_TEMPLATE Name of the add/modify document entry form
template file.

$ADD_MOD_CATEGORY_TEMPLATE Name of the add/modify category entry form
template file.

$ANNOUNCE_LD_ADDED_TEMPLATE Name of the new document announcement
message template file.

$ANNOUNCE_LD_MOD_TEMPLATE Name of the document modification
announcement message template file.

$LD_VISIT_LIST_TEMPLATE Name of the document track listing template
file.

$LD_REORDER_CAT_TEMPLATE Name of the category reordering entry form
template file.

ODD_COLOR Color defined for odd rows when displaying
tabular data such as document track listing.

EVEN_COLOR Color defined for even rows when displaying
tabular data such as document track listing.

$ratings Defines an associative array used to display
response rating information.

USER_DB_URL The fully qualified authentication database URL.

LD_ADMIN_TYPE The administrative user type value.

CAT_PER_LINE The number of categories per row to show in a
navigation table, which is created in the
navigation file.

SEPARATOR The characters that separate each navigation
entry (category) in the navigation, which is
created in the navigation file.

LD_UPDATE_TITLE The MOTD message header used to announce
updated documents via MOTD.

LD_ADD_TITLE The MOTD message header used to announce
new documents via MOTD.

264 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 264

Configuration Variable Purpose

$LD_CATEGORY_NAV_DIR The fully qualified path for the category
navigation file. Ideally, you should set this to a
path that is outside your Web document tree
and the files in this directory should have only
read/write permissions for the Web server user
which runs the PHP scripts.

$LD_CATEGORY_NAV_OUTFILE The category navigation file created by the
simple document publishing system.

$LD_CATEGORY_NAV_TEMPLATE The category navigation template file used to
generate the navigation file pointed by
$LD_CATEGORY_NAV_OUTFILE.

$DEFAULT_THEME The default theme index in the
$THEME_TEMPLATE array.

$USER_DEFAULTS A user’s theme and auto tip default settings.

$TIP_SCRIPT The name of the tip script.

$TIP_URL The Web-relative path for the tip files.

$MAX_AVAILABLE_TIP The maximum number of tips from which to
display the tip.

$THEME_TEMPLATE[n] The list of theme templates

$PRINT_TEMPLATE[n] The list of print templates associative with the
theme templates.

The directory structure used in the ld.conf file supplied in ch8 directory on the
CD-ROM may need to be tailored to your own system’s requirements. Here is what
the current directory structure looks like:

htdocs ($ROOT_PATH same as %DocumentRoot%)
|
+---home (base intranet application discussed in chapter 7)
| |
| +---templates
| |
| +---themes (theme templates used by all intranet apps) <--+
| |
+---photos (user photos used by all intranet apps) |

Chapter 8: Intranet Simple Document Publisher 265

11 549669 ch08.qxd 4/4/03 9:25 AM Page 265

| |
+---ld_tools (Intranet Simple Document Publisher Application) |

| |
+---apps (publisher apps and configuration files) |

| |
+---class (publisher apps and configuration) |
| |
+---templates (publisher HTML templates) |

| |
+---themes ------------symbolically linked------------+

By changing the following configuration parameters in ld.conf, you can mod-
ify the directory structure to fit your site requirements.

$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];

$REL_PHOTO_DIR = ‘/photos’;
$PHOTO_DIR = $ROOT_PATH . $REL_PHOTO_DIR;
$REL_ROOT_PATH = ‘/ld_tool’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;
$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;
$THEME_TEMPLATE_DIR = $TEMPLATE_DIR . ‘/themes’;

The themes directory within the ld_tools/apps/templates should be a symbolic link
pointing to the themes directory of the Intranet home application themes. For the
given directory structure the ld_tools/apps/templates/themes can be created using
the following command:

ln -s home/templates/themes ld_tools/apps/templates/themes

The above command assumes that it is being run from the %DocumentRoot%
(htdocs) directory of the intranet Web site. If you cannot make symbolic links
between two directories, you can simply copy the home/templates/themes directory
as ld_tools/apps/templates/themes. Also, you can set the $THEME_TEMPLATE_DIR to
$ROOT_PATH . ‘/home/templates/themes’.

The messages file
The messages displayed by the publisher applications are stored in the
ch8/apps/ld.messages file in the CDROM. You can change the messages using a
text editor.

266 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 266

The errors file
The error messages displayed by the document publishing applications are stored in
the ch8/apps/ld.errors file in the CDROM. You can modify the error messages
using a text editor.

Setting Up the Application
Templates
The HTML interface templates needed for the applications are included on the
CD-ROM. These templates contain various template tags to display necessary infor-
mation dynamically. The templates are named in the ld.conf file. These templates
are discussed in Table 8-3.

TABLE 8-3 HTML TEMPLATES

Configuration Variable Template File Purpose

$STATUS_TEMPLATE ld_status.html Shows status
message.

$LD_HOME_TEMPLATE ld_brief.html Document index
template.

$LD_DETAILS_TEMPLATE ld_details.html Shows the contents of
the document.

$LD_RESPONSE_TEMPLATE ld_response_ Web form template to
input.html enter response

information.

$LD_VIEW_RESPONSE_TEMPLATE ld_response_ Response viewer
view.html template.

$ADD_MOD_DOC_TEMPLATE ld_add_mod_doc.html Web form template to
add or modify
documents.

$ADD_MOD_CATEGORY_TEMPLATE ld_add_mod_cat.html Web form template to
add or modify
category.

Continued

Chapter 8: Intranet Simple Document Publisher 267

11 549669 ch08.qxd 4/4/03 9:25 AM Page 267

TABLE 8-3 HTML TEMPLATES (Continued)

Configuration Variable Template File Purpose

$ANNOUNCE_LD_ADDED_TEMPLATE ld_added_ Message template
announcement.html is shown when a new

document is added.

$ANNOUNCE_LD_MOD_TEMPLATE ld_modified_ Message that is
announcement.html shown when an

existing document is
modified.

$LD_VISIT_LIST_TEMPLATE ld_visit_list.html Lists the complete
document-tracking
information.

$LD_REORDER_CAT_TEMPLATE ld_order_cat.html Web form template
that enables an
administrator to
modify the order of
the categories.

The Document Publisher Application
The document publisher application, ld_admin_mngr.php, is responsible for man-
aging documents and categories. This application is included on the CD-ROM in the
ch8/apps directory.

It implements the following functionality:

◆ Enables administrative users to create, modify, and delete categories and
documents.

◆ Enables administrative users to assign viewers (users who can view docu-
ments in a category) and publishers (users who can create, modify, or
delete documents in a category) to each category.

◆ Enables users to create, modify, and delete documents.

◆ Does not allow non-administrative users to create, modify, or delete
categories.

The ch8/apps/ld_admin_mngr.php in the CDROM an implementation of this
application.

268 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 268

Here are the methods in this application:

◆ run(): When the application is run, this method is called. It decides which
functionality is requested by the user and calls the appropriate driver
method to perform the desired operations. Here’s how it works:

■ Creates a theme object, $this->themeObj.

■ The current user’s theme choice is stored in $this->theme by calling
the getUserTheme() method of the theme object created.

■ If the application is called with the cmd=del query parameter,
deleteDriver() is run. Similarly, cmd=add calls addDriver(),
cmd=mod calls modifyDriver(), and cmd=reo calls reorderDriver().

◆ reorderDriver(): This method is used to change the order of the cate-
gories in the system. Categories can be displayed in navigation displayed by
the home.php (discussed in Chapter 7) in the given order set by this method.

In addition, when the categories are listed in the document index page,
the order of each category is determined by order information stored in
the database. This method allows you to change the order. It is called
when cmd=reo is passed as a query parameter to the application.

Here is how it works:

■ The method checks to see if the application is being run by an adminis-
trator. If it isn’t, the method returns a null.

■ The reordering of categories requires that first the user is given a chance
to set the order and then apply the requested order. So the method uses
the $step query parameter to control the application state.

■ If step=1 is passed, the method displays the Web form that allows the
user to reorder the categories. This Web form is created by calling
displayReorderMenu(). If step=2 is passed, the method updates the
order of the category because the step=2 is only passed from the Web
form displayed by displayReorderMenu(), which is shown when
step=1 is passed.

◆ deleteDriver(): This method controls how delete operations are per-
formed on documents, responses, and categories. It works as follows:

■ If the obj=doc query parameter is passed to this method when called, it
calls deleteDoc() to start the document delete process.

■ If the obj=response query parameter is passed, it runs
deleteResponse() to start the delete process for response for a
document.

■ If the obj=category query parameter is passed, it runs
deleteCategory() to start the category delete process.

Chapter 8: Intranet Simple Document Publisher 269

11 549669 ch08.qxd 4/4/03 9:25 AM Page 269

◆ addDriver(): This method controls how add operations are performed on
documents and categories. It works as follows:

■ If the obj=doc query parameter is passed to this method when called, it
calls addDoc() to start the document creation process.

■ If the obj=category query parameter is passed, it runs addCategory()
to start the category creation process.

◆ modifyDriver(): This method controls how modify operations are per-
formed on documents and categories. It works as follows:

■ If the obj=doc query parameter is passed to this method when called, it
calls modifyDoc() to start the document modification process.

■ If the obj=category query parameter is passed, it runs
modifyCategory() to start the category modification process.

◆ addDoc(): This method controls how a new document is added. It works
as follows:

■ If the step=NULL query parameter is passed, it calls the
displayAddModDocMenu() method with ‘add’ parameter to display the
new document Web form.

■ If the step=2 query parameter is passed, storeDoc() is called to store
the new document.

◆ modifyDoc(): This method controls how documents are modified. It
works as follows:

■ If the step=NULL and nid (document ID) query parameter is not empty,
displayAddModDocMenu() is called with a ‘Modify’ parameter, which
loads the document referred by $nid and allows the user to modify it.

■ If the method is called without an nid (document ID), an error alert is
shown.

■ If step=2 parameter is passed, the document is updated using
updateDoc().

◆ addCategory(): This method controls how a new category is added. It
works as follows:

■ If step=NULL query parameter is passed, it calls the displayAddMod
CategoryMenu() method with the ‘add’ parameter to display the new
category Web form.

■ If step=2 query parameter is passed, storeCategory() is called to
store the new category.

270 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 270

◆ modifyCategory(): This method controls how categories are modified. It
works as follows:

■ If the step=NULL and cid (category ID) query parameter is not empty,
displayAddModCategoryMenu() is called with the ‘Modify’ parame-
ter, which loads the category information referred by $cid and allows
the user to modify it.

■ If the method is called without a cid (category ID), an error alert is
shown.

■ If step=2 parameter is passed, the document is updated using the
updateCategory() method.

◆ storeDoc(): This method adds a document in the database. It works as
follows:

■ If the method is called with empty category ID ($cid) but a new cate-
gory name ($cat), it creates the new category using a category object
and retrieves the new category’s ID using the getCategoryIDByName()
method of the new category object.

■ It creates a new document object called $docObj.

■ It checks to see if there is a category ID ($cid) and whether or not the
required document parts (subject called $heading and contents called
$body) are provided. If any of this required information is missing, the
method shows an alert message and returns null.

■ It extracts the month, day, and year of the document’s publish date
($pub_date), which has been supplied from the Web form.

■ The publishing date is verified to be a future date using the
checkDate() function. If it is not a future date, an alert message is
shown to inform the user that documents cannot have a past publica-
tion date, and the method returns null.

■ The current hour, second, and minutes are stored in $curHr, $curSec,
and $curMin variables using the date() function.

■ A parameter list array called $params is constructed using all the data-
base fields needed to create the document, which is passed to the
addDoc() method to create the document.

■ If the addDoc() method of the document object returns TRUE, the docu-
ment is added and a screen showing the success message is constructed
using showStatusMessage(). To announce the new document, a Message
object is created. The addMessage() method of the Message class (from
Chapter 7) is used add the new document announcement message to
appropriate viewers using the addViewer() of the Message object.

■ If the document could not be added, a status message shows the failure
notice.

Chapter 8: Intranet Simple Document Publisher 271

11 549669 ch08.qxd 4/4/03 9:25 AM Page 271

◆ displayReorderMenu(): This method is used to display the category
reordering Web form. It works as follows:

■ It creates a template object to display the Web form on the browser.

■ A category object called $catObj is created to get the list of available
categories using the getCategories() method.

■ The current order of categories is obtained using getHighestOrder().

■ Using a loop, the template tags are replaced to populate the Web form
to show the categories and allow the user to change the category order.

◆ updateOrders(): This method is used to update the order of the cate-
gories. It works as follows:

■ First, it checks to see if the order information passed as a query para-
meter from the Web form has no duplicates. It uses array_unique()
to return a list of unique elements in the query parameter $order,
which stores the category order given by the user. The result of
array_unique() is passed to count() function to count the number
of elements in the array. If the count is smaller than the count of the
$order array (with possible duplication), an alert message is shown
and the method returns null.

■ If $order is a unique list of category order, a category object called
$catObj is created. It calls updateCategoryOrders() to update the
category order per user-supplied information.

■ A status message is displayed using showStatusMessage().

■ Because category ordering has changed, the navigation file needed by
home.php (used in Chapter 7 to display intranet home for each user) is
updated using generateCategoryNavigator().

◆ storeCategory(): This method is used to store a category in the data-
base. It works as follows:

■ A new category object called $catObj is created.

■ The new category must have the required information: name, order, list
of users who can publish, and list of users who can view documents to
be published in the category. If any of this information is missing, an
alert message is shown, and the method returns null.

■ A parameter list, $params, is created with all the database fields for the
category. addCategory() adds the new category.

■ If the new category is added successfully, addCategoryPublishers()
is called to add the publisher user list to the appropriate category data-
base table, and addCategoryViewers() is called to add the viewer user

272 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 272

list for the new category in the database table. A status message is
shown using showStatusMessage() to inform the administrator about
the successful creation of the category. Because the new category needs
to be added to the navigation file used by home.php application,
generateCategoryNavigator() is called to generate a new version of
this file that includes the new category.

■ If the new category is not added, showStatusMessage() informs the
administrative user about the failure.

◆ updateDoc(): This method updates a document. Here’s how it works:

■ If the method is called with empty category ID ($cid) but a new cate-
gory name ($cat), it creates the new category using a category object
and retrieves the new category’s ID using the getCategoryIDByName()
method of the new category object.

■ It creates a new document object called $docObj.

■ It checks to see if there is a category ID ($cid) and whether or not the
required document parts (subject called $heading and contents called
$body) are provided. If any of this required information is missing, the
method shows an alert message and returns null.

■ It extracts the month, day, and year of the document’s publish date
($pub_date), which has been supplied from the Web form.

■ The publishing date is verified to be a future date using the
checkDate() function. If it is not a future date, an alert message is
shown to inform the user that documents cannot have a past publica-
tion date, and the method returns null.

■ The current hour, second, and minutes are stored in the $curHr,
$curSec, $curMin variables using the date() function.

■ A parameter list array called $params is constructed using all the data-
base fields needed to create the document, which is passed to the
modifyDoc() method to modify the document.

■ If the modifyDoc() method of the document object returns TRUE status,
the document is added, and a screen showing the success message is
constructed using showStatusMessage(). To announce the document
modification, a Message object is created. The addMessage() method
of the Message class (from Chapter 7) is used to add the new document
announcement message to appropriate viewers using the addViewer()
of the Message object.

■ If the document could not be added, a status message shows the failure
notice.

Chapter 8: Intranet Simple Document Publisher 273

11 549669 ch08.qxd 4/4/03 9:25 AM Page 273

◆ updateCategory(): This method is used to update a category in the data-
base. It works as follows:

■ A new category object called $catObj is created.

■ The new category must have required information: name, order, list of
users who can publish, and list of users who can view documents pub-
lished in this category. If any of this information is missing, an alert
message is shown and the method returns null.

■ A parameter list, $params, is created with all the database fields for the
category. modifyCategory() modifies the category.

■ If the category is modified successfully, deleteCategoryPublishers()
and deleteCategoryViewers() are called to remove the existing pub-
lisher and viewer user lists. Then addCategoryPublishers() is called
to add the current publisher user list to the appropriate category data-
base table, and addCategoryViewers() is called to add the viewer user
list for the new category in the database table. showStatusMessage()
informs the administrator about the successful creation of the category.
Because the modified category needs to be updated in the navigation
file used by the home.php application, generateCategoryNavigator()
is called to generate a new version of this file that includes the new
category.

■ If the category is not modified, a status message informs the adminis-
trative user about the failure using the showStatusMessage() method.

◆ generateCategoryNavigator(): This method is used to create the cate-
gory navigation file needed by the home.php application (discussed in
Chapter 7). It works as follows:

■ It creates a new category object $catObj. getCategories() obtains a
list of categories and stores it in $categories.

■ The category navigation template is loaded in a template object called
$template.

■ If the number of categories is not zero, a maximum number of cate-
gories (configured in ld.conf file using CAT_PER_LINE) per line is
written as an HTML table row by looping through the list of categories.
Each category name is turned into a hyperlink that allows users to click
on a category and view the documents available in that category.

◆ displayAddModDocMenu(): This method displays the add or modify docu-
ment Web form as needed. It works as follows:

■ The user’s theme template is loaded into the $themeTemplate object.

■ The add or modify document template called $ADD_MOD_DOC_TEMPLATE
(configurable via ld.conf) is loaded in the $template object.

274 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 274

■ A category object called $catObj is created. If the user has supplied the
category name using a query parameter ($cat), the selected category
name is used to retrieve the category ID ($selCid) using
getCategoryIDbyName() of the $catObj Category object.

■ The list of categories stored in $categories is used to populate an
HTML drop-down list, but the user is not allowed to change the chosen
category, so the menu is disabled.

■ The publication date is stored as the current date using
date(“m/d/Y”,mktime()).

■ If the $nid query parameter, which is used to signify that the user is
modifying an existing document (as $nid represent document ID), is
not empty, the chosen document is loaded into the Web form using a
document object called $docObj. Note that if multiple documents are
selected by the user, an alert message is shown to inform the user that
only a single document can be modified at any time.

■ Unlike add, in case of modify the $categories list is used to create the
HTML drop-down list, but this time the user is allowed to change the
current category of the document. Therefore, the menu is not disabled.

■ Finally, the user is presented with the filled out template with docu-
ment data, which is embedded in the user’s theme template.

◆ displayAddModCategoryMenu(): This method is responsible for display-
ing the add or modify category Web form. It works as follows:

■ It creates a theme template object called $themeTemplate and a tem-
plate object called $template. These templates are populated with vari-
ous template key=values.

■ It creates a category object called $cObj and retrieves the order of the
categories in $lastOrder using the getHighestOrder() method.

■ If the method is called with a category ID ($cid), the method checks to
see if more than one category is chosen. In case of more than one, it
shows an alert message to state that only one category can be modified
at any time and returns null.

■ In case a single category ID is provided in $cid, a new category object,
$catObj, is used to get the publishers ($publishers) and viewers
($viewers) using the getPublishers() and getViewers() methods,
respectively.

■ A DBI object called $authDBI is created to point to the central user
database (USER_DB_URL). A user object called $userObj is created using
the $authDBI object the database reference.

■ A list of current users is retrieved in $users using the getUserList()
method of the $ userObj object.

Chapter 8: Intranet Simple Document Publisher 275

11 549669 ch08.qxd 4/4/03 9:25 AM Page 275

■ The user list is sorted and the sorted list is reset.

■ The $pub_every is set to false to indicate that, by default, not everyone
is allowed to publish. If the current publisher list ($publishers) is not
empty and the publisher ID is 0 (zero), which indicates ‘everyone’ is
in the list of $publishers, then the user list in the HTML template
shows ‘everyone’ selected as the chosen list of publishers.

■ The $view_every is set to false to indicate that, by default, not every-
one is allowed to view. If the current viewer list ($viewers) is not
empty and the viewer ID is 0 (zero), which indicates ‘everyone’ is in
the list of $viewers, then the user list in the HTML template shows
‘everyone’ selected as the chosen list of viewers.

■ The Web form is displayed using the standard template. The user fills
out the Web form and submits the new or existing category for addi-
tion or modification, respectively.

◆ deleteDoc(): This method deletes an existing document. The document
ID ($nid) must be supplied as a query parameter. It works as follows:

■ If the document ID ($nid) is not found, the method returns NULL.

■ If document ID is provided, a new document object called $docObj is
created.

■ Because the user is allowed to delete multiple documents, the $nid can
be a list of document IDs, and a loop is used to delete each of the doc-
uments mentioned in the list.

■ For each document, it retrieves the header ($heading) using
getHeading() on the $docObj.

■ Each document is deleted using deleteDoc().

■ If a document is deleted successfully, all responses to the document are
also deleted using deleteResponsesByDocID().

■ If there are MOTD messages corresponding to the deleted document, they
are removed using deleteMessage()on a Message object called $msgObj.

■ A status message is displayed using showStatusMessage().

◆ deleteCategory(): This method is used to delete chosen categories. Here
is how it works:

■ If the category ID ($cid) list is not supplied as a query parameter, the
method shows an alert message and returns null. Otherwise, it creates a
Category object called $catObj and uses a loop to delete all the cate-
gories mentioned in the category ID list. For each to-be-deleted category,
all the documents within the category are also deleted. A Doc object
called $docObj is created, and getDocesByCatID() is used to retrieve
the entire document IDs for a given to-be-deleted category. If there are

276 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 276

documents in a category, deleteDocsByCatID() is used to delete all the
documents in that category. In addition, for each document, all responses
are deleted using the deleteResponsesByDocID() method.

■ If the categories are successfully deleted, a status message is shown
using showStatusMessage(). A new navigation file is created using
generateCategoryNavigator().

■ If the categories could not be deleted, a status message stating the fail-
ure is shown using showStatusMessage().

◆ deleteResponse(): This method is used to delete a response to a pub-
lished document. It works as follows:

■ If the response ID ($rid) list is not supplied as a query parameter, the
method shows an alert message and returns null.

■ It creates a Response object called $respObj and uses a loop to delete
all the responses mentioned in the response ID list. Each response is
deleted using deleteResponse().

■ If the responses are successfully deleted, a status message is shown
using showStatusMessage().

■ If the responses could not be deleted, a status message stating the fail-
ure is shown using showStatusMessage().

◆ showStatusMessage(): This method displays a message in a template.
The method is called with the message ($statusMessage) and it simply
loads a template object and displays the message in the template.

◆ authorize(): This method is used to authorize access to this application.
It works as follows:

■ It uses getUID() to check whether the current user ID is positive.
Because all valid user ID are positive numbers, it creates a DBI object
called $user_dbi that points to the central user authentication data-
base (USER_DB_URL).

■ A user object called $userObj is created using $user_dbi and the cur-
rent user ID.

■ getType() tests whether the current user type is administrator
(LD_ADMIN_TYPE). If the current user is of type administrator, the
$isAdmin variable is set to TRUE and the method returns true.

■ If the application is called with category name (stored in $cat query
parameter), a new Category object called $catObj is created. The cate-
gory ID ($cid) for the supplied category ($cat) is retrieved by calling
getCategoryIDbyName().

■ If the current user does not have publishing rights to the current cate-
gory, the method returns FALSE. Otherwise, it returns TRUE.

Chapter 8: Intranet Simple Document Publisher 277

11 549669 ch08.qxd 4/4/03 9:25 AM Page 277

The document index display application
The document index application, ld_mngr.php, shows document indexes for each
category or all categories when the category is not specified. This application is
included on the CD-ROM in the ch08/apps directory.

Here are its methods:

◆ run(): This method is responsible for running the application. It works as
follows:

■ It creates a theme object called $themeObj and assigns it to $this-
>themeObj. The theme object identifies the user’s preferred theme using
getUserTheme().

■ It calls displayDocHome() to display the document index home page.

◆ authorize(): This method is called by the application to authorize the
user. It works as follows:

■ It calls setUserType() to find out if the user is an administrator or a
regular user. It returns TRUE if the user is an administrator.

■ If the user is not an administrator, it checks if the category name is passed
as a query parameter called $cat. If the category name is passed, a
Category object called $catObj is used to call getCategoryIDbyName()
to get the category ID ($cid) by the category name ($cat).

■ Using the category ID, the Category object $catObject calls
isViewable() to find if the user can view the category. Similarly, it
uses isPublishable() to check whether the user can publish in the
chosen category.

■ If the user can either view or publish, the method returns TRUE; other-
wise, it returns FALSE.

◆ setUserType(): This method sets $this->isAdmin to TRUE if the user is
administrator; otherwise, it sets it to FALSE. Here is how it works:

■ It sets the $this->isAdmin variable to FALSE. Therefore, the default is
that user is not assumed an administrator.

■ If the current user’s UID is greater than 0, which means valid, then it
creates a DBI object called $user_dbi and passes that to the construc-
tor of the User object called $userObj.

■ The $userObj calls getType() to find out if the current user’s type
matches LD_ADMIN_TYPE. If the user is an administrator, then $this-
>isAdmin is set to true.

◆ displayDocHome(): This method displays the document index page for a
given category or shows all the categories with their document lists when
a category is not provided. It works as follows:

278 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 278

■ A theme template object called $themeTemplate loads the current
user’s template.

■ A template object called $template loads the template file,
$templateFile, passed to the method.

■ A Category object called $catObj, a Doc object called $docObj, and a
Response object called $resObj are created.

■ If the user did not supply a category name in $cat as a query parame-
ter to the application, the method loads all the available categories in
the associative array called $categories by calling the
getCategories() method of the $catObj.

■ On the other hand, if a category name is supplied in $cat,
getCategoryIDbyName() is used to retrieve the category ID in $cid.
The $categories list is populated with the current category name and
ID as an entry in the associative array.

■ Now the category list $categories is looped to retrieve each category
name $cname and category ID $cid.

■ If the current user is not an administrator, the category list check box
is set to NULL. This ensures that a regular user cannot select a category
to modify or delete.

■ If the current user is not an administrator and she cannot publish in
the current category, then the method gets the document list, $docs,
for the current category using the getdocsByCatID() method.
Otherwise, it gets all the documents for the category by the
getAlldocsByCatID() method.

■ If the document list associative array ($docs) is not empty, then the
method loops through each document.

■ For each document, the method calls getTotalResponseByDocID()
using the Response object $resObj.

■ The total response per document is shown in a listing.

■ If the current user is not an administrator or does not have publishing
rights, the check box next to the document is disabled. Otherwise, it is
enabled.

■ Using the Category object $catObj, category description is retrieved
using getCategoryDesc(). The description text is filtered for slashes
using stripslashes() and shown in the template.

■ If the user is an administrator or has publishing rights to the category
being displayed, the category and the documents are shown with check
boxes that the user can click on to modify or delete the category or
document.

Chapter 8: Intranet Simple Document Publisher 279

11 549669 ch08.qxd 4/4/03 9:25 AM Page 279

The document details application
The document details application, ld_details_mngr.php, shows the details of a
document. This application is included on the CD-ROM in the ch08/apps directory.
It has the following methods:

◆ run(): This method calls the displayDocDetail() to display the chosen
document’s contents.

◆ authorize(): This method sets $this->isAdmin to TRUE if the user is an
administrator; otherwise, it sets it to FALSE. Here is how it works:

■ It sets the $this->isAdmin variable to FALSE . Therefore, the default is
that user is not assumed an administrator.

■ If the current user’s UID is greater then 0, which means valid, then it
creates a DBI object called $user_dbi and passes that to the construc-
tor of the User object called $userObj. If the current UID is less then 0,
the method returns false and the PHP Application object
$DocDetailsMngr aborts the application.

■ The $userObj is used to call the getType() method to find out if the
current user’s type matches LD_ADMIN_TYPE. If the user is an adminis-
trator, then the $this->isAdmin is set to TRUE.

◆ displayDocDetail(): This method displays the contents of the chosen
document. The chosen document ID is supplied by query parameter, $nid.
It works as follows:

■ If the $nid is not provided when the application is called, an alert mes-
sage is shown and application is aborted by its alert() method.

■ It creates a theme object called $themeTemplate and loads the current
user’s theme template.

■ A template object called $template is loaded with the document
details template ($LD_DETAILS_TEMPLATE).

■ A document object called $docObj is created. The trackVisit() of the
Document object is called to record that this user is visiting the docu-
ment page.

■ A Response object called $resObj is created. A response listing called
$responses is created by calling the document’s
getResponsesByDocID() method.

■ If there are one or more responses for this document, they are linked at
the end of the document. Otherwise, the response block section of the
template is set to null.

280 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 280

■ If the current user is an administrator, the administrative block in the
template is set; otherwise, it is set to NULL.

■ The getTrackDetails() of the $docObj is called to retrieve the track
count to display as number of visits.

■ The document is displayed with the number of visits and responses.

The document response application
The document response application, ld_response _mngr.php, manages responses
for each document. It’s included on the CD-ROM in the ch08/apps directory. Users
can create or view responses. It has the following methods:

◆ run(): This method is used to control how the application works. Here is
how this method works:

■ A theme object called $this->themeObj is created. The theme used by
the current user is set as the application’s theme using the $this-
>theme variable.

■ The $cmd query parameter is used to determine if the user wants to cre-
ate or view responses. If the $cmd is empty, displayResponseForm() is
shown to allow the user to enter a new response. If the $cmd variable is
set to ‘submit’, the user has submitted a new response, and using
submitResponse() is used. Finally, if $cmd is set to ‘view , the user
wants to view a response, which is done using showResponse().

◆ showResponse(): This method is responsible for showing responses to
documents. It works as follows:

■ It creates a theme template object called $themeTemplate, loads the cur-
rent user’s theme template, and sets theme-related template key values.

■ It creates a Response object called $respObj and retrieves the docu-
ment’s ID ($nid) using getResponseDocID() on the $resObj.

■ Using the $nid, it creates a document object called $docObj and
retrieves the document’s header ($heading) and publish date
($docPublishDate) using getHeading() and getPublishDate(),
respectively, on the $docObj.

■ It retrieves the responder user name ($responderName), response head-
ing ($responseHeading), and response ($responseBody) by calling the
getResponder(), getResponseSubject(), and getResponseBody()
methods, respectively, on the $resObj.

■ The response information is displayed using a template object called
$template.

Chapter 8: Intranet Simple Document Publisher 281

11 549669 ch08.qxd 4/4/03 9:25 AM Page 281

◆ submitResponse(): This method allows the application to write a new
response of a chosen document. Here is how it works:

■ If the method is called without a document ID ($nid), empty response
subject/header ($sub), or response body ($comment) as query parame-
ters, it shows an alert message and returns NULL.

■ If all the required response data is supplied, an associative array called
$params is created, which is passed to the addResponse() of a new
Response object called $resObj to create the response in the database.

■ The status of the addition is displayed using the show_status() method.

◆ showStatusMessage(): This method displays a message in a template.
The method is called with the message ($statusMessage) and it simply
loads a template object and displays the message in the template.

◆ displayResponseForm(): This method is used to display the response
entry Web form. It works as follows:

■ If a document ID ($nid) is not supplied as a query parameter, the
method shows an alert message and returns null.

■ If a document ID is supplied, it creates a theme template object
($themeTemplate) and a template object ($template) and displays the
response entry Web form.

The document view list application
The document view list application, ld_view_list_mngr.php, shows the list of
users who have viewed this document. This application included on the CD-ROM in
the ch08/apps directory. It has the following methods:

◆ run(): This method calls the displayDocVisitList() to display the list
of users who have viewed the chosen document.

◆ authorize(): This method authorizes everyone on the intranet to view
the document access list and, therefore, always returns TRUE.

◆ displayDocVisitList(): This method displays a list of users who have
viewed the chosen document. It works as follows:

■ A template object called $template is created and various template
variables are set.

■ If the document ID ($nid) is not supplied by the user as the query para-
meter, an alert message is shown and the application aborts.

282 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 282

■ If $nid is supplied, a new document object called $docObj is created.

■ The heading of the document is retrieved via the getHeading()
method of the $docObject and inserted into the template after parsing
for slashes by using stripslashes().

■ A list of document tracking information is stored in $trackArr by call-
ing the getTrackDetails() method of the current document object.

■ A DBI object called $user_dbi is created, which opens a connection to
the user table specified by USER_DB_URL.

■ For each track record for the document, the template is populated with
a viewer’s e-mail address by calling getEMAIL() of the $userObj
object, which is created inside the loop for each track.

Installing Intranet Document
Application
I assume that you’re using a Linux system with MySQL and Apache server installed.
The following installation process presumes the following:

◆ Your intranet web server document root directory is /evoknow/intranet/
htdocs. Of course, if you have a different path, which is likely, you should
change this path whenever you see it in a configuration file or instruction
in this chapter. During the installation process, I will refer to this directory
as %DocumentRoot%.

◆ You have installed the PHPLIB and PEAR library. Normally, these are
installed during PHP installation. For your convenience, I have provided
these in the lib/phplib.tar.gz and lib/pear.tar.gz directories on
the CD-ROM. In these sample installation steps, I will assume that these
are installed in the /evoknow/phplib and /evoknow/pear directories.
Because your installation locations for these libraries are likely to differ,
make sure you replace these paths in the configuration files.

Here is how you can get your intranet document publishing applications up and
running:

1. Install the base intranet applications. If you haven’t yet installed the
base intranet user home application and the messaging system discussed
in Chapter 7, you must do so before proceeding further.

Chapter 8: Intranet Simple Document Publisher 283

11 549669 ch08.qxd 4/4/03 9:25 AM Page 283

2. Install the intranet document publisher database tables. You must
already have installed the INTRANET database (see Chapter 7 for details).
Once you have installed INTRANET database, you need to create the tables
needed for the document publisher. The easiest way to do this is to use the
ch08/sql/ld_tools.sql file found in the CDROM.

To create the tables is to run the following commands:

mysql –u root –p –D INTRANET < ld_tools.sql

3. Install the intranet document publisher applications. Now from the ch8
directory of the CD-ROM, extract ch8.tar.gz in %DocumentRoot%. This
creates ld_tool in your document root. Configure %DocumentRoot%/
ld_tool/apps/ld.conf for path and database settings. The applications
are installed in the %DocumentRoot%/ld_tool/apps directory and the
templates are stored in %DocumentRoot%/ld_tool/apps/templates.

Your MySQL server is hosted on the intranet web server and, therefore, it
can be accessed via localhost. However, if this is not the case, you can
easily modify the database URLs in each application’s configuration files.
For example, the home.conf file has a MySQL database access URLs such
as the following:

$LD_DB_URL=’mysql://root:foobar@localhost/INTRANET’
define(‘USER_DB_URL’, ‘mysql://root:foobar@localhost/auth’);

Say your database server is called db.domain.com and the user name and
password to access the INTRANET and auth databases (which you will cre-
ate during this installation process) are admin and db123. In this case, you
will modify the database access URLs throughout each configuration file
as follows:

$LD_DB_URL=’mysql://admin:db123@db.domain.com/INTRANET’
define(‘USER_DB_URL’,
‘mysql://admin:db123@db.domain.com/auth’);

4. Set file/directory permissions. Make sure you have changed file and
directory permissions such that your intranet web server can access all the
files. The path pointed by $LD_CATEGORY_NAV_DIR variable in home.conf
and ld.conf files must be writable by the web server, because this is the
navigation file that gets generated whenever a new document is pub-
lished. This directory should be outside your Web document tree and
should be only writable by the Web server user running the PHP scripts.

284 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 284

The default theme template (std_blue) has links to the document publish-

ing application. If you have installed the document publishing applications

anywhere other than the %DocumentRoot%/ld_tool/apps directory

(default), you will need to modify the %DocumentRoot%/themes/
std_blue/home_left_nav.html file. Similarly, you have to modify the

other (std_aqua,std_wheat) themes.

After you’ve performed these steps, you’re ready to test your publishing
applications.

Testing Intranet Document
Application
Log in to your intranet via http://yourserver/index.php or http://yours-
erver/home/home.php using the user name and password you created in Chapter 6
and tested in Chapter 7.

Click on the Document Publisher link on the left navigation bar of your Intranet
home page — or point your web browser to http://yourserver/ld_tool/
apps/ld_mngr.php after you’re logged in to the intranet — to see the primary doc-
ument index, as shown in Figure 8-3.

Figure 8-3: The main document index.

Chapter 8: Intranet Simple Document Publisher 285

11 549669 ch08.qxd 4/4/03 9:25 AM Page 285

By default, the index is empty. Only administrator users can create, modify, and
delete categories. An administrative user can also add, modify, or delete any docu-
ments in the system.

Creating a new category
The logged-in user in this example is an administrator, so she can add a new cate-
gory by clicking on the Add a New Category link, which brings up a screen similar
to the one shown in Figure 8-4.

Figure 8-4: Adding a new category.

Adding category is a simple process. In Figure 8-4, the administrative user adds
a new category called Policy to hold company policy documents and allows user
Carol publishing rights and everyone in the company viewing rights.

After this category is added, it shows up in the home page of all users as a hori-
zontal navigation bar, as shown in Figure 8-5.

Now when a user clicks on the Document Publisher (Doc Publisher) link on the
left navigation bar, the document index shows the new category and its description
as shown in Figure 8-6.

286 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 286

Figure 8-5: A new category in the user’s home page.

Figure 8-6: A new category in the document index page.

Chapter 8: Intranet Simple Document Publisher 287

11 549669 ch08.qxd 4/4/03 9:25 AM Page 287

Adding a new document
To add a new document in a category, click on the Document Publisher from the
left navigation or the category itself on the horizontal navigation shown on top.
You can then click on the Add a New Document link to add a document. Figure 8-7
shows a user adding a document in the Policy category.

Figure 8-7: Adding a new document.

After the new document is added, the viewers of the category where the document
is published receive a notice. An example of such a notice is shown in Figure 8-8.

When any user with viewing rights goes to the category index (by clicking the
category link on the top) or by viewing the main document index using the
Document Publisher link on the left navigation bar of her home page, she can view
the document listed in the category as shown in Figure 8-9.

288 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 288

Figure 8-8: A new document notice via the intranet messaging system.

Figure 8-9: A new document in its category.

Chapter 8: Intranet Simple Document Publisher 289

11 549669 ch08.qxd 4/4/03 9:25 AM Page 289

The user can click on the document title to view the document. The document
appears as shown in Figure 8-10.

Figure 8-10: Viewing the document.

Notice that the document shows a View Visitors List which can be clicked on to
see which users have already viewed this document. This link shows a screen simi-
lar to Figure 8-11.

Figure 8-11: Viewing who else has seen this document.

290 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 290

Also, any user viewing this document can post comments by clicking on the Post
Comments link, which shows a Web form as shown in Figure 8-12.

Figure 8-12: Adding feedback comments to published documents.

The posted comments appear along with document. Any other user can view the
posted comment by clicking on the comment title shown in the Feedback section of
the document, as shown in Figure 8-13.

Figure 8-13: A document with posted user feedback comments.

Chapter 8: Intranet Simple Document Publisher 291

11 549669 ch08.qxd 4/4/03 9:25 AM Page 291

When you add a new category, the category name appears in the horizontal nav-
igation bar. The number of categories shown per row is controlled in ld.conf using
define(‘CAT_PER_LINE’, 5) settings. To show more than five categories per nav-
igation line in the horizontal top navigation, modify this setting. Figure 8-14 shows
how multiple categories are shown in the user’s home page using the horizontal
navigation bar.

When you delete a category, the navigation file is automatically updated. Also,
deleting a category deletes all the documents in that category.

Figure 8-14: The user’s home page with multiple document categories.

Summary
In this chapter, you learned to create a simple document publishing system for your
intranet. This system enables you to create categories and store documents within
each category. The categories and documents are all stored in a database. You can
extend this basic document publishing system to incorporate fancy features such as
images, attachments, and so on.

292 Part II: Developing Intranet Solutions

11 549669 ch08.qxd 4/4/03 9:25 AM Page 292

Chapter 9

Intranet Contact Manager
IN THIS CHAPTER

◆ Developing an intranet contact manager

◆ Installing an intranet contact manager

◆ Using an intranet contact manager

EVERY OFFICE HAS A LIST OF contacts for vendors, customers, news/print/trade
media, and so forth. These contacts are often managed in individual address books
or in personal digital assistants (PDAs). In this chapter, you’ll develop an intranet
contact manager system that enables administrative users in the office to store any
type of contact in a central contact database. All users can search the contact data-
base without needing to move from their desk.

Functionality Requirements
The contact manager will have the following features:

◆ Central contact database: The database stores all contacts in a central
back-end database, which can be backed up at any time by the system
administrator.

◆ Contact category hierarchy: Each contact must be stored in a subcategory
of a category. Only one-level subcategories are allowed. For example, a
category called Vendors can have multiple one-level subcategories such as
Telecommunication Vendors, Office Suppliers, Hardware Vendors, Food
Suppliers, and so forth. In this version of the contact manager, a contact
can only belong to a single category.

◆ Contact management by administrative staff only: The contact manager
allows administrative users to add, modify, and delete contacts and
categories.

◆ Search interface for everyone: Each administrative or regular user must
be allowed to search the contacts stored in the database.

293

12 549669 ch09.qxd 4/4/03 9:25 AM Page 293

◆ Automatic reminders: When adding or modifying a contact, the adminis-
trator can set up reminders for future meeting/calls with the contact that
will be shown via the intranet messaging interface when appropriate.

◆ Easy e-mail interface: Administrative users should be able to send
e-mails to contacts by clicking on the contact e-mail address. The e-mail
sent to the contact should be stored in the contact manager system, so
that later the user can review the messages she sent to a contact. This is a
good feature for lead management. For example, a user can add a new
lead to the contact database, send an e-mail, and then pull up the e-mail
from the contact database later when the lead calls or responses via email.
Because the e-mail sent is stored with the central contact database, which
can be very useful if a lead should call while the original user is unavail-
able, another administrator could easily pull up the lead’s information and
cover the situation (and the lead will feel very important because “everyone”
in the company happens to know about the previous communications).

Understanding Prerequisites
This intranet contact manager system builds on the intranet classes discussed in
Chapters 5, 6, and 7.

The applications that we develop here require the intranet central login/logout,
user management, and home applications discussed in those earlier chapters.

Administrative intranet users, who are defined in the intranet user table discussed
in Chapter 6, are given full access to all aspects of the contact management tool.

Let’s look at the database design and implementation needed for creating this
intranet contact management system.

The Database
Figure 9-1 shows the database diagram for the contact manager. The central table
in this database is the CONTACT_INFO table, which stores the contact data. The
CONTACT_CATEGORY table, which stores category information, has a one to many
relationship with CONTACT_INFO since a category can have many contacts.
Similarly the CONTACT_INFO table has a one to many relationship with the
CONTACT_KEYWORD table. The latter stores one or more keywords per contact.
The CONTACT_INFO table also has a one to many relationship with the CONTACT_
REMINDER table, which stores reminders, and with the CONTACT_MAIL table,
which stores emails sent to contacts.

294 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 294

Figure 9-1: Contact manager database diagram.

Table 9-1 describes the details of the database tables.

TABLE 9-1 [NAME OF DATABASE] DATABASE TABLES

Table Description

CONTACT_CATEGORY This table holds the category ID (CAT_ID), category name
(CAT_NAME), category description (CAT_DESC), and
category parent (CAT_PARENT). The category number
(CAT_ID) is automatically generated by the database.

CONTACT_INFO Contains the contact information: the contact ID
(CONTACT_ID), category ID (CAT_ID), contact first name
(CONTACT_FIRST), contact middle initial
(CONTACT_INITIAL), contact last name
(CONTACT_LAST), contact e-mail (EMAIL), phone
number (PHONE), fax (FAX), Web site URL (URL), company
name (COMPANY_NAME), company address
(COMPANY_ADDRESS), home address (HOME_ADDRESS),
source (SOURCE), reference (REFERENCE), and a check
flag (FLAG). The contact ID (CONTACT_ID) is
automatically generated by the database.

Since we are not allowing company or home address to
be searchable in this version of contact manager, these
fields are kept as text fields. Also, the source field is used
to identify who provided the contact and reference field
is used to identify who referred the contact.

Continued

Chapter 9: Intranet Contact Manager 295

12 549669 ch09.qxd 4/4/03 9:25 AM Page 295

TABLE 9-1 [NAME OF DATABASE] DATABASE TABLES (Continued)

Table Description

CONTACT_KEYWORD Holds the contact keyword information. The contact
keyword consists of the contact number (CONTACT_ID)
and keyword (KEYWORD).

CONTACT_MAIL Holds information about the contact e-mail information:
the e-mail ID (MAIL_ID), CONTACT_ID, CC To list
(CC_TO), the subject of the e-mail (SUBJECT), body
(BODY) of the e-mail, sending time stamp (SEND_TS), and
the check flag (CHECK_FLAG). The e-mail ID (MAIL_ID)
is automatically generated by the database.

CONTACT_REMINDER Contains reminder(s) of contacts. A reminder can be set
up during contact creation to remind the administrator to
call/email the contact at a later date. For example, say
you got a contact from a trade show and would like to
contact the person after a week or so, in such case you
can set up a reminder when you add the contact to the
database. Each reminder consists of IDCONTACT_ID,
reminder created by (CREATED_BY), reminder about
(REMIND_ABOUT), reminder date (REMIND_DATE), and
MOTD ID (MOTD_ID).

The ch9/sql/contact.sql file in the CDROM is a MySQL script to create the
contact manager database. To create the contact manager database in MySQL, cre-
ate a database called CONTACTS in your database server and run the following
commands.

mysqladmin -u root -p create CONTACTS
mysql -u root -p -D CONTACTS < contact.sql

Make sure you change the user name (root) to whatever is appropriate for your
system.

With the contact manager database ready, let’s look at the PHP classes that will
be needed to implement the applications.

296 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 296

The Intranet Contact Manager
Application Classes
Now lets look at how we can design the contact manager system to work within our
intranet. Figure 9-2 shows the system diagram for the objects needed to develop the
contact manager. The category and contact objects are the only new objects in this
diagram. All other objects and the framework have been already developed in ear-
lier chapters.

Figure 9-2: The contact manager system diagram.

The category and contact objects can be created with two new classes: the
Category class and the Contact class.

The Message class needed for the contact manager has already been built

in Chapter 7.

Central
Login/Logout

Messages

Categories

Contacts

User Home Interface

PHP Application Framework

Message Object

Intranet Contact
Manager Applications

Category Object

Contact Object

class.Message.php

class.Category.php

class.Contact.php

Chapter 9: Intranet Contact Manager 297

12 549669 ch09.qxd 4/4/03 9:25 AM Page 297

The Category class
The Category class is used to manipulate each category. It allows an application to
create, modify, and delete a category. The ch09/apps/class/class.Category.php
file on the CD-ROM implements this class. This class implements the following
methods:

◆ Category(): This is the constructor method. It performs the following
functions:

■ Sets a member variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application.
dbi holds the DBI object that is used to communicate with the back-
end database.

■ Sets a member variable named cat_tbl to $CONTACT_CATEGORY_TBL,
which is loaded from the contact.conf file. $CONTACT_CATEGORY_TBL
holds the name of the category table.

■ Sets a member variable named std_fields, which is an associative
array to hold all the attributes of the CONTACT_CATEGORY table and
their types.

■ Sets a member variable named fields, which is a comma-separated
list of CONTACT_CATEGORY table fields.

■ Calls setCatID() to set a member variable called cid to the given cat-
egory ID (if any).

◆ loadCatInfo(): This is the constructor method. It performs the following
functions:

■ Calls setCatID() to make sure that the passed category ID (if any) is
set to the member variable.

■ Creates in $stmt a statement to select all the table attribute values for
the given category ID.

■ Uses the DBI object ($this->dbi) to run the $stmt statement via the
$this->dbi->query() method in the DBI object, and stores the result
in $result.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable. For each CONTACT_CATEGORY table field of
type text, the data is stripped for embedded slash characters, which
are used to escape quotation marks, and slashes in the value of the
field. Each category field data is stored as an object variable using
$this->$fieldname run-time variable.

298 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 298

◆ getCategoryIDbyName(): This method returns the category ID of the cat-
egory object from the given category name. This is how it works:

■ It formats the given category name to convert it to a SQL-capable
string by adding slashes and quotes.

■ It creates in $stmt a statement to select all category IDs for the given
category name.

■ It uses the DBI object $this->dbi to run the $stmt statement via the
$this->dbi->query() method in the DBI object, and stores the result
in $result variable.

■ If there are no rows in the $result object, the method returns null. If
the result set is not empty, the row is fetched in the $row variable, and
the category ID from the row is returned.

◆ addCategory(): This method adds a new category into to the
CONTACT_CATEGORY table. The category name, category ID, category par-
ent, and description are passed in an associative array as a parameter to
the method. It works in the following manner:

■ From the given parameter all the values that are supposed to be of text
type in the database are escaped for characters such as quotation marks
and slashes using $this->dbi->quote(addslashes()) methods.

■ A variable called $values is assigned a comma-separated list of all the
parameter values.

■ A SQL statement, $stmt, is created to insert the new category data into
the CONTACT_CATEGORY table using the member variable ‘fields’
(contains attribute names) and $values.

■ The SQL statement is executed using $this->dbi->query(), and the
result of the query is stored in the $result object.

■ If the $result status is not okay, the method returns FALSE to indicate
insert failure. Otherwise, getCategoryIDbyName() is used to return the
newly created category’s ID.

◆ getParentCategories(): This method returns all the parent (main) cate-
gories. It works as follows:

■ A statement to select all the table (CONTACT_CATEGORY) attribute val-
ues for the categories having parent ID as zero (the main categories) is
created in $stmt.

■ The DBI object $this->dbi runs the $stmt statement via the $this-
>dbi->query() method in the DBI object, and the result is stored in
the $result variable.

Chapter 9: Intranet Contact Manager 299

12 549669 ch09.qxd 4/4/03 9:25 AM Page 299

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ For each category, the category name and the category ID is stored in a
single associative array. The method returns the array if the result set is
not empty; otherwise, it returns null.

◆ getSubCategories(): This method returns all the children (subcategories)
of a given parent category. This works as follows:

■ A statement to select all the table attribute values for the categories
having parent IDs as the given category ID is created in $stmt.

■ Using the DBI object $this->dbi, the $stmt statement is run via the
$this->dbi->query() method in the DBI object, and the result is
stored in the $result variable.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ For each category found, the category name and the category ID is
stored in a single associative array.

■ The method returns the array if the result set is not empty; otherwise, it
returns null.

◆ modifyCategory(): This method updates the category information for a
given category. Update information is passed in an associative array as a
parameter to this method. The method works as follows:

■ From the given parameter list, all the values that are of text type in
the database are escaped for characters such as quotation marks and
slashes using $this->dbi->quote(addslashes()) methods.

■ A SQL statement, $stmt, is created to update the given category data to
the CONTACT_CATEGORY table using the associative array that has been
passed as parameter.

■ The SQL statement is executed using $this->dbi->query().

■ The method returns TRUE on successful update operation; otherwise, it
returns FALSE.

◆ getParentOf(): This method returns the parent of the given category.
This is how it works:

■ setCatID()is called to set the given category ID.

■ A statement to select the parent category ID for the given category ID
is created in $stmt.

300 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 300

■ Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object, and the result is
stored in the $result variable.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ If there are no rows in the $result object, the method returns null. If
the result set is not empty, the row is fetched in the $row variable, and
the parent category ID from the row is returned.

Following are the rest of the methods for this class:

Method Description

setCatID() If the category ID is passed to this method, it sets the
member variable cid to the given category ID. At the end, it
returns the category ID.

getCategoryName() Uses loadCatInfo() with the given category ID to set all
the attributes for the category, and returns the name of the
category.

getCategoryParent() Uses loadCatInfo() with the given category ID to set all
the attributes for the category, and returns the parent ID of
the category.

getCategoryDesc() Uses loadCatInfo() with the given category ID to set all
the attributes for the category, and returns the description of
the category.

deleteCategory() Deletes the category from the database. It takes the category
ID as input and returns TRUE or FALSE depending on the
status of the deletion operation.

hasChild() Determines if the given category has a child category under
it and returns TRUE if it has at least one.

replaceParentCat() This method will replace the parent ID for one more sub
categories with a new parent ID. It returns TRUE or FALSE,
depending on the status of the update operation.

Chapter 9: Intranet Contact Manager 301

12 549669 ch09.qxd 4/4/03 9:25 AM Page 301

The Contact class
This Contact class provides the contact object, which is used to add, modify, delete,
or search contacts. The ch9/apps/class/class.Contact.php file in the CD-ROM
is an implement of this class. Following are the methods available in this class:

◆ Contact(): This is the constructor method, which performs the following
tasks:

■ Sets a member variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application.
dbi holds the DBI object that is used to communicate with the back-
end database.

■ Sets a member variable called cat_tbl to $CONTACT_CATEGORY_TBL,
which is loaded from the contact.conf file. $CONTACT_CATEGORY_TBL
holds the name of the category table.

■ Sets a member variable called contact_tbl to $CONTACT_INFO_TBL,
which is loaded from the contact.conf file. $CONTACT_INFO_TBL
holds the name of the contact table.

■ Sets a member variable called keyword_tbl to
$CONTACT_KEYWORD_TBL, which is loaded from the contact.conf file.
$CONTACT_KEYWORD_TBL holds the name of the contact keyword table.

■ Sets a member variable called reminder_tbl to
$CONTACT_REMINDER_TBL, which is loaded from the contact.conf file.
$CONTACT_REMINDER_TBL holds the name of the contact reminder table.

■ Sets a member variable called mail_tbl to $CONTACT_MAIL_TBL, which
is loaded from the contact.conf file. $CONTACT_MAIL_TBL holds the
name of the mail table.

■ Sets a member variable named ‘std_fields’, which is an associative
array to hold all the attributes (i.e. CAT_ID,CONTACT_FIRST,
CONTACT_INITIAL,CONTACT_LAST,EMAIL,PHONE,FAX,URL,
COMPANY_NAME,COMPANY_ADDRESS,HOME_ADDRESS,SOURCE,
REFERENCE,FLAG) of the CONTACT_INFO table and their types.

■ Sets a member variable named ‘fields’, which is a comma-separated
list of CONTACT_INFO table fields.

■ Calls setContactID()to set the contact ID of the object.

◆ loadContactInfo(): This is the constructor method. It performs the fol-
lowing functions:

■ It calls setContactID() to make sure that the passed contact ID (if
any) is set to the member variable.

302 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 302

■ It creates in $stmt a statement to select all the CONTACT_INFO table
attribute values for the given contact ID.

■ It uses the DBI object $this->dbi to run $stmt via the $this->dbi-
>query() method in the DBI object, and stores the result in $result.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ For each contact table field of type text, the data is stripped for
embedded slash characters, which are used to escape quotation marks
and slashes in the value of the field.

■ Each contact field data is stored as member variable using the $this-
>$fieldname run-time variable.

◆ searchContact(): This method returns a set of contacts for the given cri-
teria and/or keyword. This is how it works:

■ It checks whether the method has been called with keywords in the cri-
teria. The second parameter ($keyword_exists) to the method is
responsible for checking this. When the method is called with TRUE
value set for $keyword_exists, it knows that the criteria (the first
parameter) supplied includes keywords.

■ If it finds out that there is a keyword involved, the search query state-
ment includes the CONTACT_KEYWORD table in it. Otherwise the query
statement involves only the CONTACT_INFO table.

■ The query statement is prepared with the $criteria parameter, and is
run via the $this->dbi->query() method in the DBI object. The result
is stored in the $result variable.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ For each contact found, the CONTACT_INFO table attributes are stored in
a single associative array.

■ The method returns the array if the result set is not empty; otherwise, it
returns null.

◆ getKeywords(): This method returns keyword(s) for a given contact. It
works the following way:

■ It uses setContactID() to set the given contact ID

■ It creates in $stmt a statement to select the keyword for the given con-
tact ID.

■ It uses the DBI object $this->dbi to run $stmt via the $this->dbi-
>query() method in the DBI object, and stores the result in $result.

Chapter 9: Intranet Contact Manager 303

12 549669 ch09.qxd 4/4/03 9:25 AM Page 303

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ All keywords found in the result set are stored in an array.

■ The method returns the array if the result set is not empty; otherwise, it
returns null.

◆ addContact(): This method adds new contact information to the
CONTACT_INFO table. The category number, first name, middle initial,
last name, e-mail, phone, fax, URL, company name, company address,
home address, source, reference, and flag are passed in an associative
array as a parameter to the method. It works in the following manner:

■ From the given parameter, all the values of text type in the database
are escaped for characters such as quotation marks and slashes using
$this->dbi->quote(addslashes()) methods.

■ A variable called $values is assigned a comma-separated list of all the
parameter values.

■ A SQL statement, $stmt, is created to insert the new contact data into
the contact table using the member variable ‘fields’ (contains
attribute names) and $values.

■ The SQL statement is executed using $this->dbi->query(), and the
result of the query is stored in the $result object.

■ If the $result status is not okay, the method returns FALSE to indicate
an insert failure. Otherwise, it returns the newly created contact’s ID by
executing a second query.

◆ modifyContact(): This method updates the contact information for a
given contact. Update information is passed in an associative array as
parameter to this method. The method works as follows:

■ From the given parameter, all the values that are supposed to be of text
type in the database are escaped for characters such as quotation marks
and slashes using $this->dbi->quote(addslashes()) methods.

■ A SQL statement, $stmt, is created to update the given contact data to
the contact table using the associative array that has been passed as a
parameter.

■ The SQL statement is executed using the $this->dbi->query()
method.

■ The method returns TRUE on successful update operation; otherwise, it
returns FALSE.

304 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 304

◆ deleteContact(): This method deletes the contact from the database. It
takes the ID of the contact to be deleted as a parameter. This is how it
works:

■ It sets the given contact ID by the setContactID() method.

■ It executes the delete query statement to delete the given contact.

■ After successful deletion, it calls the deleteKeywordsByContactID()
method to delete all the related keywords, and the
deleteRemindersByContactID() method to delete all the related
reminders.

◆ getContactsByCatID(): This method returns all contacts that fall under
the given category. This is how it works:

■ A SQL statement, $stmt, is created to select the contacts that fall under
the given category ID.

■ The SQL statement is executed using $this->dbi->query(), and the
result is stored in $result.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ All contacts found in the result set are stored in an array. The method
returns the array if the result set is not empty; otherwise, it returns
null.

◆ getRelatedMOTDs(): This method returns MOTDs related to the given
contact. A MOTD message is only found for a contact when the adminis-
trator has set one or more reminders, which are displayed using MOTD
feature of the intranet. In other words, if an administrator creates one or
more reminders when adding a contact in the contact database, these
MOTD messages are going to have to be removed if the contact is to be
removed. The getRelatedMOTD method retrieves the ID(s) for such MOTD
messages (if any). It works as follows:

■ It sets the given contact ID using the setContactID() method.

■ A SQL statement, $stmt, is created to select the related MOTDs for the
given category ID.

■ The SQL statement is executed using the $this->dbi->query()
method and the result is stored in $result.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ All MOTD messages found in the result set are stored in an array.

■ The method returns the array if the result set is not empty; otherwise, it
returns null.

Chapter 9: Intranet Contact Manager 305

12 549669 ch09.qxd 4/4/03 9:25 AM Page 305

◆ getReminders(): This method returns all reminders for the given contact
ID. It works as follows:

■ First it sets the given contact ID using the setContactID() method.

■ A SQL statement, $stmt, is created to select all the reminder informa-
tion for the given contact ID.

■ The SQL statement is executed using $this->dbi->query(), and the
result is stored in $result.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ All reminders found in the result set are stored in an array.

■ The method returns the array if the result set is not empty; otherwise, it
returns null.

◆ getMails(): This method returns all e-mails for the given contact num-
ber. This is how it works:

■ It sets the given contact ID using the setContactID() method.

■ A SQL statement, $stmt, is created to select all the e-mails sent to the
given contact.

■ The SQL statement is executed using $this->dbi->query(), and the
result is stored in $result.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ All e-mails found in the result set are stored in an array.

■ The method returns the array if the result set is not empty; otherwise, it
returns null.

Here are the other methods in this class:

Method Description

addKeywords() Adds new keywords for the given contact. It
explodes the $keyword string passed as a
parameter and stores the different keywords in an
array; for each keyword in the array, it adds a new
entry in the CONTACT_KEYWORD table.

deleteKeywords() Deletes keywords for the given contact. It takes
contact ID as the parameter.

306 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 306

Method Description

modifyKeywords() Updates keyword information for the given
contact. It uses deleteKeywords() to delete the
previous keywords, and then uses
addKeywords() to add the new keywords. This
method takes the contact ID and the new keywords
array as parameters.

setContactID() Sets the contact ID. If the contact ID is passed to this
method, it sets the member variable cid to the given
contact ID. At the end it returns the contact ID.

getColumnValue() Returns the value of the given column from the
database for the current contact object. It takes the
column name as a parameter. This method uses
loadContactInfo() with the given contact ID to
set all the attributes for the contact, and then
returns the formatted value of the specified column.

deleteRemindersByContactID() Deletes all reminders from the reminder table for a
given contact ID. It takes the contact ID as the
input and returns TRUE or FALSE, depending on
the deletion status.

deleteKeywordsByContactID() Deletes all keywords from the keyword table for a
given contact ID. So it takes contact ID as the input
and returns TRUE or FALSE, depending on the
deletion status.

addReminder() Adds new reminders to the reminder table for the
given contact. It takes the contact ID, author ID,
the remind note, the publish date, and the message
ID as a parameter. Then it returns TRUE or FALSE,
depending on the status of the operation.

storeMail() Stores new mail in the database. Attributes such as
contact ID, CC To, subject, body, and send time
stamp are passed as parameters to this method.

replaceCategory() Replaces the old category with the given new one.
It takes the old and new category IDs as
parameters and returns TRUE or FALSE,
depending on the status of the operation.

getMailDetails() Returns detailed information of the given mail ID.
It takes the mail ID as a parameter and returns the
details of it.

Chapter 9: Intranet Contact Manager 307

12 549669 ch09.qxd 4/4/03 9:25 AM Page 307

The Application Configuration Files
Like all other applications we’ve developed in this book, the intranet contact man-
ager applications also use a standard set of configuration, message, and error files.
These files are discussed in the following sections.

The main configuration file
The primary configuration file for the contact manager is called contact.conf.
Table 9-2 discusses each configuration variable.

TABLE 9-2 THE CONTACT.CONF VARIABLES

Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR
package; specifically the DB module needed for
class.DBI.php in our application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the
PHPLIB packages; specifically the
template.inc package needed for template
manipulation.

$APP_FRAMEWORK_DIR Set to our application framework directory.

$PATH Set to the combined directory path consisting of
the $PEAR_DIR, the $PHPLIB_DIR, and the
$APP_FRAMEWORK_DIR. This path is used with
the ini_set() method to redefine the
php.ini entry for include_path to include
$PATH ahead of the default path. This allows
PHP to find our application framework, PHPLIB,
and PEAR-related files.

$AUTHENTICATION_URL Set to the central login application URL.

$LOGOUT_URL Set to the central logout application URL.

$HOME_URL Set to the top-most URL of the site. If the URL
redirection application does not find a valid URL
in the e-campaign database to redirect to for a
valid request, it uses this URL as a default.

$APPLICATION_NAME Internal name of the application.

$DEFAULT_LANGUAGE Set to the default two-character language code.

308 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 308

Variable Purpose

$ROOT_PATH Set to the root path of the application.

$REL_ROOT_PATH Relative path to the root directory.

$REL_APP_PATH Relative application path as seen from the web
browser.

$TEMPLATE_DIR The fully qualified path to the template
directory.

$THEME_TEMPLATE_DIR The fully qualified path to the theme template
directory.

$REL_PHOTO_DIR The Web-relative path to the photo directory
used to store user photos.

$PHOTO_DIR The fully qualified path to the photo directory.

$DEFAULT_PHOTO Name of the default photo file, which is used
when a user does not have a photo in the photo
directory.

$CLASS_DIR The fully qualified path to the class directory.

$REL_TEMPLATE_DIR The Web-relative path to the template directory
used.

$CATEGORY_CLASS Name of the Category class file.

$CONTACT_CLASS Name of the Contact class file.

$MESSAGE_CLASS Name of the Message class file. This class was
developed for the MOTD application discussed
in Chapter 8.

$CONTACT_MNGR Name of the application that shows the index
page of the application with the contact search
menu.

$CONTACT_CAT_MNGR Name of the application that manipulates all
functions related to contact category.

$INTRANET_DB_URL The fully qualified URL for the database used to
MOTD information.

$CONTACT_DB_URL The fully qualified URL for the database used to
store the contacts and categories.

Continued

Chapter 9: Intranet Contact Manager 309

12 549669 ch09.qxd 4/4/03 9:25 AM Page 309

TABLE 9-2 THE CONTACT.CONF VARIABLES (Continued)

Variable Purpose

$CONTACT_CATEGORY_TBL Name of the category table in the database.

$CONTACT_INFO_TBL Name of the contact info table in the database.

$CONTACT_KEYWORD_TBL Name of the contact keyword table in the
database.

$USER_PREFERENCE_TBL Name of the user preference table in the
intranet database.

$MESSAGE_TBL Name of the MOTD message table in the
intranet database.

$CONTACT_MAIL_TBL Name of the contact mail table in the database.

$MSG_VIEWER_TBL Name of the message viewer list table in the
intranet database.

$AUTH_DB_TBL Name of the user authentication table in the
auth database.

$STATUS_TEMPLATE Name of the status template file used to display
status messages.

$CONTACT_HOME_TEMPLATE Name of the contact index template file.

$CONTACT_CAT_HOME_TEMPLATE Name of the contact category index template
file.

$CONTACT_INFO_ADD_MOD_TEMPLATE Name of the add/modify contact entry form
template file.

$CONTACT_CAT_ADD_MOD_TEMPLATE Name of the add/modify category entry form
template file.

$CONTACT_DETAILS_TEMPLATE Name of the contact details template file.

ODD_COLOR Color defined for odd rows when displaying
tabular data.

EVEN_COLOR Color defined for even rows when displaying
tabular data.

USER_DB_URL The fully qualified authentication database URL.

310 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 310

Variable Purpose

$DEFAULT_THEME The default theme index in the
$THEME_TEMPLATE array.

$USER_DEFAULTS A user’s theme and auto tip default settings.

$TIP_SCRIPT The name of the tip script.

$TIP_URL The Web-relative path for the tip files.

$MAX_AVAILABLE_TIP The maximum number of tips from which to
display the tip.

$THEME_TEMPLATE[x] The list of theme templates

$PRINT_TEMPLATE[x] The list of print templates associated with the
theme templates.

The directory structure used in the contact.conf file (in the ch09 directory on
the CD-ROM) may need to be tailored to your own system’s requirements. Here is
how the current directory structure looks:

+---htdocs ($ROOT_PATH == %DocumentRoot%)
|
+---home (base intranet application discussed in chapter 7)
| |
| +--templates
| |
| +---themes (theme templates used by all intranet apps)
|
+---photos (user photos used by all intranet apps)
|
+---contact_mngr (Intranet Contact Manager Application)

|
+---apps (contact manager apps and configuration files)

|
+---class (contact manager apps and configuration)
|
+---templates (contact manager HTML templates)

|
+---themes (symbolic link to home/templates/themes)

Chapter 9: Intranet Contact Manager 311

12 549669 ch09.qxd 4/4/03 9:25 AM Page 311

By changing the following configuration parameters in contact.conf, you can
modify the directory structure to fit your site requirements:

$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$PEAR =$_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’;
$PHPLIB =$_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;
$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/contact_mngr’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;
$REL_PHOTO_DIR = ‘/photos’;
$PHOTO_DIR = $ROOT_PATH . $REL_PHOTO_DIR;
$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$THEME_TEMPLATE_DIR = $TEMPLATE_DIR . ‘/themes’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

The messages file
The messages displayed by the contact manager applications are stored in the
ch9/apps/contact.messages file in the CDROM. You can change the messages
using a text editor.

The errors file
The error messages displayed by the contact manager applications are stored in the
ch9/apps/contact.errors file in the CDROM. You can modify the error messages
using a text editor.

The Application Templates
The HTML interface templates needed for the contact manager system applications
are included on the CD-ROM. These templates contain various template tags to dis-
play necessary information dynamically. They are named in the contact.conf file.
These templates are discussed in Table 9-3.

TABLE 9-3 HTML TEMPLATES

Configuration Variable Template File Purpose

$STATUS_TEMPLATE contact_status.html Shows status message.

$CONTACT_HOME_TEMPLATE contact_home.html Contact index template.

312 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 312

Configuration Variable Template File Purpose

$CONTACT_CAT_HOME_ contact_cat_home.html Category index template.
TEMPLATE

$CONTACT_INFO_ADD_ contact_info_add_ Web form template to
MOD_TEMPLATE mod.html add or modify contacts.

$CONTACT_CAT_ADD_ contact_cat_add_ Web form template to
MOD_TEMPLATE mod.html add or modify categories.

$CONTACT_DETAILS_ Contact_details.html Contact details template.
TEMPLATE

$CONTACT_SEARCH_ contact_search_ Shows the search
INPUT_TEMPLATE input.html options.

$CONTACT_SEARCH_ contact_search_ Shows the search output.
RESULT_TEMPLATE result.html

$REMINDER_MSG_TEMPLATE reminder_contents.html Shows the reminder.

$CONTACT_MAIL_TEMPLATE contact_mail.html Takes input for the mail
to contact.

$CONTACT_MAIL_ contact_mail_ Shows details of each of
DETAIL_TEMPLATE detail.html the sent mails.

The Contact Category Manager
Application
The application contact_category_mngr.php is responsible for managing contact
categories. This application is included on the CD-ROM in the ch9/apps directory.

It implements the following functionality:

◆ Allows administrative users to create, modify, and delete categories.

◆ Does not allow non-administrative users to create, modify, or delete
categories.

This application has the following methods:

◆ run(): When the application is run, this method is called. It decides which
functionality is requested by the user and calls the appropriate driver
method to perform the desired operations:

Chapter 9: Intranet Contact Manager 313

12 549669 ch09.qxd 4/4/03 9:25 AM Page 313

■ Creates a theme object, $this->themeObj.

■ The current user’s theme choice is stored in $this->theme by calling
the getUserTheme() method of the theme object created.

■ Next, the appropriate driver is called according to the $cmd value. For
example, if the $cmd is set to ‘add’, then addDriver() is called.

◆ setUserType(): This method sets $this->isAdmin to TRUE if the user is
administrator; otherwise, it sets it to FALSE. Here is how it works:

■ It checks whether the user has a valid user ID. If she does, then it gets
the type of the user using the getType() method of the User class.

■ If the type of the user is the same as CONTACT_ADMIN_TYPE, which is
taken from the contact.conf, then it sets the isAdmin as TRUE.
Otherwise, it sets isAdmin as False.

◆ deleteCategory(): This method controls how categories are deleted. It
works as follows:

■ If del_opt is set to 1, it deletes the category and everything related to
that category, including subcategories and contacts, from the database.

■ If del_opt is set to 2, then siblings or children of this category are
assigned to the new given parent and only the category information is
deleted.

■ Whatever del_opt is, this method shows the appropriate confirmation
message at the end of the operation.

◆ addCategory(): This method adds a new category or subcategory to the
database. If it’s adding a subcategory, it assigns a parent to the category.
This is how it works:

■ It checks whether the new category to be added is a parent or a subcat-
egory. If it is chosen to be a subcategory, the method finds out the par-
ent category for the category.

■ Then it prepares an associative array with the necessary attribute name
and the values to add the category to the CONTACT_CATEGORY table. The
parent category ID is set to 0 if the new category is a parent; otherwise,
the parent category ID that has been specified is set.

■ The array is passed into the addCategory() method of the category
class.

■ The status (success/failure) of the add operation is shown to the user at
the end.

314 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 314

◆ displayDeleteOptions(): This method is used to display deletion
options (a deletion options page that contains two radio buttons and a list
box/combo box) to the user. This is how it works:

■ It checks whether there is a category ID supplied to the method. If there
is no category ID, it shows an alert message and returns to the previous
page.

■ A delete option menu template ($CONTACT_CAT_DEL_OPT_TEMPLATE) is
loaded in a template object called $template.

■ This template includes a Web form with two radio buttons. One of the
buttons is to delete all subcategories and contacts under the selected
category. The other button is to transfer all its subcategories and con-
tacts to some other category (to be selected from a combo box).

■ If the category to be deleted is a parent category, then the combo box
is loaded with all of the other parent categories.

■ If the category to be deleted is a subcategory, then the combo box is
loaded with the subcategories that fall under the subcategory’s parent.

■ The contents of the $template object are inserted into the
$themeTemplate object’s content block, and the results are printed on
user’s browser screen.

◆ displayAddModifyMenu(): This method displays the add or modify cate-
gory Web form as needed. It works as follows:

■ An add modify menu template ($CONTACT_CAT_ADD_MOD_TEMPLATE) is
loaded in a template object called $template.

■ The template includes a Web form that takes input such as category
name, category description, and category hierarchy (parent/sub). The
list of parent categories becomes enabled when the user chooses the
category to be a parent category.

■ Finally, the contents of the $template object are inserted into the
$themeTemplate object’s content block and the results are printed on
the user’s browser screen.

◆ modifyCategory(): This method is used to modify a given category. It
works as follows:

■ It checks whether there is category ID supplied to the method. If there
is no category ID, it shows an alert message and returns to the previous
page.

■ If the request is to change a parent category to a subcategory, this method
denies that if the parent (main) category already has subcategories (we’re
limited to one level of subcategory). Under this circumstance, it shows an
alert method and takes the administrator back to previous page.

Chapter 9: Intranet Contact Manager 315

12 549669 ch09.qxd 4/4/03 9:25 AM Page 315

■ It prepares an associative array with the necessary attribute name and
the values to update the category table.

■ The array is passed into the modifyCategory() method of the
Category class.

■ The status (success/failure) of the modify operation is shown to the user
at the end.

◆ showContents(): This method displays the given contents according to
the theme preferences of the user. This is how it works:

■ The user’s preferred theme template is loaded in a template object
called $themeTemplate.

■ The template contains a contentBlock that is to be filled by the para-
meter to this method.

■ After the passed content is set into the contentBlock, it is rendered to
the user.

The following are the other methods used by this application:

Method Description

authorize() Authorizes access to this application. It calls
setUserType() to set the member variable isAdmin
and returns the value of isAdmin. This means that only
users only with administrative authority can access this
application.

deleteDriver() Controls how delete operations are performed on
categories. If step is set to 1 or is not set, it calls
displayDeleteOptions() to display delete options. If
step is set to 2, it runs deleteCategory() to do the
category-deletion process.

modifyDriver() Controls how modify operations are performed on
documents and categories. If step is set to 1 or is unset,
it calls displayAddModifyMenu() with a modify
parameter to display the modify category Web form. If
step is set to 2, it runs modifyCategory() to start
the category modification process.

316 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 316

Method Description

addDriver() Controls how add operations are performed on contacts
and categories. If step is set to 1 or is unset, it calls
displayAddModifyMenu() with an add parameter to
display the new category Web form. If step is set to 2, it
runs addCategory() to start the category-creation
process.

deleteContactsByCatID() Deletes all contacts for the given category. All
information related to the contacts is also deleted. It
takes the category ID as the parameter and uses the
getContactsByCatID() and deleteContact()
methods of the Contact class to find and delete the
contacts, respectively.

The Contact Manager Application
The application contact_mngr.php is responsible for managing contacts. This
application is included on the CD-ROM in the ch9/apps directory.

Let’s take a look at its methods:

◆ run(): When the application is run, this method is called. It decides which
functionality is requested by the user and calls the appropriate driver
method to perform the desired operations:

■ Creates a theme object, $this->themeObj.

■ The current user’s theme choice is stored in $this->theme by calling
the getUserTheme() method of the theme object created. Remembers,
themes are part of the intranet as they allow users see the intranet
pages in a certain look and feel.

■ It decides which method to call depending on the value of cmd.

■ If no cmd is specified, it calls searchDriver() to show the search
menu.

◆ mailToContact(): This method gets e-mail information for the given
contact, such as e-mail address, CC To, subject, body, and so forth, and
sends e-mail to the contact. This is how it works:

■ It checks whether the e-mail body has been supplied or not. If not, it
shows an alert message and takes the user back to the previous page.

Chapter 9: Intranet Contact Manager 317

12 549669 ch09.qxd 4/4/03 9:25 AM Page 317

■ The storeMail() method of the Contact class is used to store the
e-mail information that includes the contact ID, CC address, subject of
the mail, and mail send time.

■ The PHP’s mail API is used to send the e-mail with appropriate headers.

■ The user receives a confirmation after the e-mail is sent successfully.

◆ showMail(): This method displays e-mail information of a previously sent
e-mail. This is how it works:

■ A mail content template (CONTACT_MAIL_DETAIL_TEMPLATE) is loaded
in a template object called $template.

■ The template contains different blocks for date, mail to, mail CC to,
mail subject, mail body, and so forth.

■ These blocks are set with appropriate values retrieved using the
getMailDetails() method of the Contact class.

■ The template is parsed and printed to the user.

◆ showDetail(): This method shows detailed information of the given con-
tact. This is how it works:

■ It checks whether the contact ID has been provided. If not, it shows an
alert message and returns to previous page.

■ A contact detail template (CONTACT_DETAILS_TEMPLATE) is loaded in a
template object called $template.

■ A new contact object is created and stored in $contactObj. The
getKeywords() method of the Contact object is used to retrieve the
keywords for the given contact and all keywords are stored into an
array named $keywordArr.

■ The values of $keywordArr are taken into a string after separating
them with commas. This string is set into appropriate blocks in the
template later.

■ Reminders for the contact are also retrieved and set in the template.

■ All the attribute values of the CONTACT_INFO table are retrieved using
the getColumnValue() method of the Contact object, and are ren-
dered in the template file.

■ The sent e-mails are retrieved using getMails(). Sent e-mails are
shown only to users having admin privilege. For non administrative
users, this mail block is set to null to hide it from her.

■ showContents() is called to show the output of this template in the
preferred theme template of the user.

318 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 318

◆ displayContactMngrHome(): This method shows the administrator home
page for the contact manager application. It shows all add, delete, and
modify options for contacts and categories. This is how it works:

■ A contact home template (CONTACT_HOME_TEMPLATE) is loaded in a
template object called $template.

■ The template includes combo boxes for category, subcategory, and con-
tacts, and add, delete, modify links for both contacts and categories.

■ When the user first comes to this page, she sees the subcategory and
contact lists to be empty and the category list loaded with all the par-
ent categories that are retrieved using the getParentCategories()
method of category class.

■ After she chooses a main category, the subcategory list loads with that
category’s subcategories, retrieved using the getSubCategories()
method of the Category class. Similarly, all the contacts of a chosen
subcategory are shown using the getContactsByCatID() method of
the Contact class.

■ Then showContents()is called to render the template with the appro-
priate theme.

◆ deleteContact(): This method deletes the given contact and all related
information such as: e-mails, reminders, keywords, and so on from the
database. This is how it works:

■ It checks whether the category ID has been supplied. If not, it returns to
previous page and shows an alert message.

■ It finds the MOTDs related to this contact using the
getRelatedMOTDs() method of the Contact class, and then uses the
deleteMessage() and deleteViewers() methods of the Message class
to delete the messages and their viewers.

■ It calls the deleteContact() method of the Contact class to delete the
contact.

■ It shows a confirmation message to the user depending on the status of
the delete operation.

◆ addContact(): This method s adds new contacts to the database. It works
as follows:

■ It creates an associative array with the given values such as first name,
last name, phone, address, and so forth.

■ It uses the addContact() method of the Contact class and passes the
array as parameter to add the new contact to the contact table.

Chapter 9: Intranet Contact Manager 319

12 549669 ch09.qxd 4/4/03 9:25 AM Page 319

■ It adds the keywords for this contact using the addKeywords() method
of Contact class.

■ It adds reminder messages in the MOTD table, using the addMessage()
and addViewer() methods of the Message class, if there are any
reminders for this contact. A reminder entry is also added in the
reminder table in this case using addReminder() method of the
Contact class.

◆ modifyContact(): This method updates the database with the modified
information. It works as follows:

■ It creates an associative array with the given values like contact ID,
first name, last name, phone, address, and so on. The array contains all
the attributes of the contact table as index and the modified contact
information as values to those indexes.

■ It uses the modifyContact() method of the Contact class with this
array to add the new contact to the CONTACT_INFO table.

■ It modifies the keywords for this contact using the modifyKeywords()
method of the Contact class.

■ It deletes the previous messages from the MESSAGE table in the
INTRANET database and previous reminders from the
CONTACT_REMINDER table in the CONTACT database using
deleteMessage(), deleteViewers(), and
deleteRemindersByContactID().

■ It adds the new reminder messages using the addMessage() and
addViewer() methods of the Message class, if there are any reminders
for this contact. The new reminder is also added in the
CONTACT_REMINDER table in this case using the addReminder() method
of the Contact class.

◆ displayAddModifyMenu(): This method displays the add or modify con-
tact Web form, as needed. It works as follows:

■ A contact add/modify template (CONTACT_INFO_ADD_MOD_TEMPLATE) is
loaded in a template object called $template.

■ The template includes a Web form to take personal information of
the contact, the keywords for the contact, and the reminders for this
contact.

■ The template also includes category and subcategory lists from which
the user has to choose the appropriate category and subcategory for
this contact. The lists are loaded using the getParentCategories()
and getSubCategories() methods of the Category class.

■ Then the showContents() method is called to render the template with
appropriate theme.

320 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 320

◆ displaySearchResult(): This method displays the result of the search
performed according to the user’s query. The result shows a list of con-
tacts that matches the search criteria. This is how it works:

■ A search result template (CONTACT_SEARCH_RESULT_TEMPLATE) is
loaded in a template object called $template.

■ The ‘where’ clause of the search query is prepared using the informa-
tion given by the user.

■ The ‘where’ clause is passed into the searchContact() method of the
Contact class to search for the contact. searchContact() returns an
array of contacts if it finds a match.

■ The array of contacts is then fed into the contact block of the template.
If no match is found, the array is empty, the contact block is set with a
message indicating that no match was found.

■ showContents() is called to render the template with the appropriate
theme.

◆ displaySearchMenu(): This method displays the contact search Web
form as needed. It works as follows:

■ A search input template (CONTACT_SEARCH_INPUT_TEMPLATE) is loaded
in a template object called $template.

■ The template includes a Web form to take input such as company
name, contact name, subcategory, category, and keywords to search for
contacts.

■ The subcategory list is empty until the user chooses a category.

■ showContents() is called to render this template with the appropriate
theme.

◆ displayMailMenu(): This method displays the e-mail menu where the
user can write her e-mail to send to a contact. This is how it works:

■ A mail template (CONTACT_MAIL_TEMPLATE) is loaded in a template
object called $template.

■ The template includes a Web form to take input (CC address, mail sub-
ject, mail body, and so forth).

■ The ID of the contact that is the target of this mail is stored as hidden
HTML field in this template for later use.

■ showContents()is called to render this template with appropriate
theme.

Chapter 9: Intranet Contact Manager 321

12 549669 ch09.qxd 4/4/03 9:25 AM Page 321

Here are the other methods used in this application:

Method Description

authorize() Authorizes the user access to this application. It
authorizes all users only when the cmd value is search,
detail, or null. (Other cmds (add/modify/delete) are
available only to users with administrative privilege.) It
returns TRUE if it finds the cmd to be one of the three.
Otherwise, it depends on setUserType() to get the
value of the isAdmin variable that identifies whether
the user is an administrator or not and returns TRUE or
FALSE depending on that value.

setUserType() Sets $this->isAdmin to TRUE if the user is an
administrator; otherwise, it sets it to FALSE. It checks
whether the user has a valid user ID. If she does, it gets
the type of the user using the getType() method of the
User class. If the type of the user is the same as
CONTACT_ADMIN_TYPE, which is taken from the
conact.conf, then it sets the isAdmin to TRUE.
Otherwise, it sets isAdmin to FALSE.

mailDriver() Controls how e-mail operations are performed on
contacts. If step is set to 1 or step is unset, it calls
displayMailMenu() to show the e-mail input menu. If
step is set to 2, it calls mailToContact() to send
e-mail to the contact. If step is set to 3, it runs
showMail() to display e-mail information.

addDriver() Controls how new contacts are created. If step is set to
1 or step is unset, it calls displayAddModifyMenu()
with mode as ‘add’ to display the create contact Web
form. If step is set to 2, it runs addContact() to do
the contact-creation process.

modifyDriver() Controls how modify operations are performed on
contacts. If step is set to 1 or step is unset, it calls
displayAddModifyMenu() with mode as ‘modify’ to
display the create contact Web form. If step is set to 2, it
runs modifyContact() to do the contact creation
process.

322 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 322

Method Description

searchDriver() Controls how search operations are performed on
contacts. If step is set to 1 or step is unset, it calls
displaySearchMenu() to display the search contact
Web form. If step is set to 2, it runs
displaySearchResult() to display search output.

showContents() Displays the given contents according to the theme
preferences of the user. The user’s preferred theme
template is loaded in a template object called
$themeTemplate. The template contains a
contentBlock that is to be filled by the parameter to
this method. After the passed content is set into the
contentBlock, it is rendered to the user.

Installing Intranet Contract Manager
Here I assume the following:

◆ You’re using a Linux system with MySQL and Apache server installed.

◆ You’ve followed the instructions in Chapters 5, 6, and 7 to create a base
intranet system with user home page applications.

◆ Your intranet web server document root directory is /evoknow/
intranet/htdocs. Of course, if you have a different path, which is
likely, you should change this path whenever you see it in a configuration
file or instruction in this chapter. During the installation process, I refer
to this directory as %DocumentRoot%.

◆ You’ve installed the PHPLIB and PEAR library. Normally, these get
installed during PHP installation. For your convenience, I’ve provided
these in the lib/phplib.tar.gz and lib/pear.tar.gz directories on the
CD-ROM. In these sample installation steps, I assume that these are
installed in %DocumentRoot%/phplib and %DocumentRoot%/pear directo-
ries. Because your installation location for these libraries is likely to differ,
make sure you replace these paths in the configuration files.

◆ You have installed the INTRANET database (see Chapter 7 for details).

Chapter 9: Intranet Contact Manager 323

12 549669 ch09.qxd 4/4/03 9:25 AM Page 323

Here is how you can get your contact manager applications up and running:

1. Install base intranet applications. If you haven’t yet installed the base
intranet user home application and the messaging system discussed in
Chapter 7, you must do so before proceeding further.

2. Install intranet contact database tables. The ch9/sql/contact.sql file
in the CDROM can be used to create the CONTACTS database. The quickest
way to create this database is to run the following commands:

mysqladmin –u root –p create CONTACTS
mysql –u root –p –D CONTACTS < contact.sql

3. Install intranet contact manager applications. From the ch9 directory of
the CD-ROM, extract ch9.tar.gz in %DocumentRoot%. This will create
contact_mngr in your document root. Configure %DocumentRoot%/
contact_mngr/apps/contact.conf for path and database settings. The
applications are installed in the %DocumentRoot%/contact_mngr/apps
directory and the templates are stored in
%DocumentRoot%/contact_mngr/apps/templates.

Your MySQL server is hosted on the intranet web server and, therefore, it
can be accessed via localhost. However, if this is not the case, you can
easily modify the database URLs in each application’s configuration files.
For example, the contact.conf file has a MySQL database access URLs
such as:

$INTRANET_DB_URL= ‘mysql://root:foobar@localhost/INTRANET’;

$CONTACT_DB_URL = ‘mysql://root:foobar@localhost/CONTACTS’;

$USER_DB_URL = ‘mysql://root:foobar@localhost/auth’;

Say your database server is called db.domain.com and the user name and
password to access the INTRANET and auth databases (which you will cre-
ate during this installation process) are admin and db123. You would
modify the database access URLs throughout each configuration file as

$INTRANET_DB_URL =
‘mysql://admin:db123@db.domain.com/INTRANET’;

$CONTACT_DB_URL=
‘mysql://admin:db123@db.domain.com/CONTACTS’;

$USER_DB_URL = ‘mysql://admin:db123@db.domain.com auth’;

4. Set file/directory permissions. Make sure you have changed file and
directory permissions so that your intranet web server can access all the
files.

324 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 324

The default theme template (std_blue) has links to the document publish-

ing application. If you’ve installed the document publishing applications

anywhere other than %DocumentRoot%/contact_mngr/apps directory

(default), you’ll need to modify the %DocumentRoot%/themes/
std_blue/home_left_nav.html file. Similarly, you have to modify the

other (std_aqua,std_wheat) themes.

After you’ve performed these steps, you’re ready to test your contact manager
applications.

Testing Contract Manager
Log in to your intranet via http://yourserver/index.php or http://yours-
erver/home/home.php using the user name and password you created in Chapter 6
and tested in Chapter 7.

Click on the Contact Manager link in the left navigation bar of your intranet
home page or point your web browser to http://yourserver/contact_mngr/
apps/contact_mngr.php after you’re logged in to the intranet.

This displays the contact search interface, as shown in Figure 9-3.

Figure 9-3: Contact manager search interface.

Chapter 9: Intranet Contact Manager 325

12 549669 ch09.qxd 4/4/03 9:25 AM Page 325

Because there are no contacts entered into the system yet, searching will result
in no matches. Before contacts can be added, categories and subcategories have to
be created. As an administrative user, you can create categories by clicking on the
Contact Manager Admin link in the upper-left of the search interface. The interface
shown in Figure 9-4 displays.

Figure 9-4: The contact manager administrative interface.

From here you can add, modify, and delete categories and contacts.

Adding categories
To add a new category, click the Add Category link, which brings up an interface as
shown in Figure 9-5.

Filling out the new category information (name, description) and clicking the
Add button creates the new category. Note that first you have to create a primary
(parent) category to create a subcategory. Only subcategories hold contact informa-
tion. The example in Figure 9-5 shows a category called Vendors being created.
Create a new subcategory by clicking on the Add Category link from the adminis-
trative menu shown in Figure 9-4. Once again you will see a screen like Figure 9-5.
Figure 9-6 shows that we are creating a sub-category called Communication Vendors
as a sub-category of Vendors.

326 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 326

Figure 9-5: Adding a new category information.

Figure 9-6: Adding a new subcategory (Communication Vendors) under a
parent category (Vendors).

Chapter 9: Intranet Contact Manager 327

12 549669 ch09.qxd 4/4/03 9:25 AM Page 327

Adding a contact
To add a contact in a subcategory, do the following:

1. Go to the search interface as an administrative user and click on the
Contact Manager Admin link.

2. Click on the Add Contact link, which shows a Web form similar to the
one shown in Figure 9-7.

3. Select the category and then select the subcategory. Do not enter any
information until you’ve selected the appropriate subcategory.

4. Enter all the contact information you have available in the data fields.
If you want to find this contact via certain keywords, make sure you add
the keywords in a comma-separated list in the appropriate keyword field
in this form.

5. If you want to set reminders for yourself regarding future meetings or
calls that you want to be reminded of via the intranet messaging sys-
tem, add the reminders in the reminder fields with the appropriate
data.

6. After you’ve filled in the contact’s information, submit the contact data
to be added in the database.

Figure 9-7: Adding a new contact.

328 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 328

Searching for a contact
To find a contact in your contact database, click on the Contact Manager link on
your home page and enter the contact’s first name or company name or select a cat-
egory or keywords. Currently, the address fields (company/home) are not searchable
but you should try to add search capability for these fields as a learning experience.

To find a contact by first name, for example, enter the name in the search inter-
face’s Contact Name field and click the Find button. Figure 9-8 shows a user enter-
ing joe as the name in the search interface.

The result of the search is shown in Figure 9-9.

Figure 9-8: Searching for a contact.

Figure 9-9: Brief search results.

Chapter 9: Intranet Contact Manager 329

12 549669 ch09.qxd 4/4/03 9:25 AM Page 329

To view a detailed version of the search results, click on the name of the contact.
A detailed result screen displays, as shown in Figure 9-10.

Figure 9-10: Detailed search results.

Sending e-mail to a contact
When you view detailed information about a contact, you can click on the Email
link and send an e-mail to the contact, as shown in Figure 9-11.

The e-mail will be stored in the contact database along with the contact. When
you search for this contact again, the e-mail will be available for review. This is a
great way to keep in touch with leads in your contact database.

Searching for contacts in a subcategory
You can find all the contacts in a subcategory by selecting the subcategory on the
Contact Search screen. For example, Figure 9-12 shows that a user wants to find
all the contacts in Communication Vendors subcategory of the Vendors parent
category.

330 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 330

Figure 9-11: Sending e-mail to a contact.

Figure 9-12: Searching for all contacts in a subcategory.

Chapter 9: Intranet Contact Manager 331

12 549669 ch09.qxd 4/4/03 9:25 AM Page 331

An abridged result of the search is shown in Figure 9-13.
Clicking on a contact name brings up the details as discussed earlier. Figure 9-14

shows a detailed contact information page that includes e-mail history.

Figure 9-13: Search results for a subcategory’s contacts.

Figure 9-14: E-mail history of a contact.

332 Part II: Developing Intranet Solutions

12 549669 ch09.qxd 4/4/03 9:25 AM Page 332

Summary
In this chapter, you developed a central contact manager tool for your intranet.
This tool enables your intranet users to search and manage contacts in a very effi-
cient way compared to individual contact files. This application can be extended to
include private and public contacts, or you can even consider extending it to allow
groups of users to view a category (or prevent them from viewing a category).

Chapter 9: Intranet Contact Manager 333

12 549669 ch09.qxd 4/4/03 9:25 AM Page 333

12 549669 ch09.qxd 4/4/03 9:25 AM Page 334

Chapter 10

Intranet Calendar Manager
IN THIS CHAPTER

◆ Developing an intranet event calendar

◆ Installing an intranet event calendar

◆ Using an intranet event calendar

WORK MEANS SCHEDULES, and schedules mean important dates. Everyone has
important family- and work-related dates that they need to remember. Many use a
calendar as a tool to remind themselves of such events. In this chapter, we look at
an intranet calendar system that enables a company to publish important events
via a central calendar, and enables users to keep track of their personal events and
dates.

Identifying Functionality
Requirements
The calendar system that you’ll put together in this chapter will have the following
functionality:

◆ Global events: These events can be predefined in a configuration file to
show up on the calendar every year. These may include annual company
events.

◆ Holiday events: These events can be predefined in a configuration file to
show up on the calendar every year. These are standard holidays with
fixed dates, such as Independence Day, Christmas, New Year’s Day, and so
forth. Holidays that are not on a fixed date such as Thanksgiving, Labor
Day, etc. will have to be set up manually.

◆ Weekends: Weekends can be configured to be any days and any number
of days using a configuration file. Some parts of the world don’t follow
the Saturday-Sunday weekend system used in the U.S. and Europe.

◆ Repeatable events: Users can configure events to repeat weekly, monthly,
or yearly. 335

13 549669 ch10.qxd 4/4/03 9:25 AM Page 335

◆ Sharing and assigning events among users: Users can create events for
themselves or assign events to others or even share events with multiple
users.

◆ Automatic reminders: Users can choose to be reminded about an event
when they log in to the intranet on the day of the event.

Let’s look at the prerequisites of the calendar system.

Understanding Prerequisites
The event calendar builds on the intranet classes discussed in the Chapters 4
through 7. For example, it uses the Message class (discussed in Chapter 7) to
announce event reminders. That class enables the application to create and delete
messages.

The intranet calendar applications that you’ll develop require the central
login/logout, user management, and intranet home applications discussed in those
earlier chapters.

Now let’s look at the database design and implementation needed for creating
the intranet calendar manager.

Designing the Database
Figure 10-1 shows the database diagram for the intranet calendar manager. Here
the CALENDAR_EVENT table holds the event data, CALENDAR_EVENT_VIEWER
table holds the viewer list for an event in the CALENDAR_EVENT table. The
CALENDAR_REPETITIVE_EVENTS table stores information about how an event is
repeated.

Figure 10-1: Intranet calendar manager database diagram.

336 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 336

Table 10-1 provides the details of the database tables.

TABLE 10-1 CALENDAR DATABASE TABLES

Table Description

CALENDAR_EVENT This table is the integral part of this database. It holds
the event number (EVENT_ID), user ID (USER_ID),
event title (EVENT_TITLE), event date
(EVENT_DATE), event description (EVENT_DESC),
reminder ID (REMINDER_ID), and a check flag (FLAG).
The event number (EVENT_ID) is automatically
generated by the database.

CALENDAR_EVENT_VIEWER Holds the calendar event viewer information. The
calendar event viewer consists of the EVENT_ID and
VIEWER_ID.

CALENDAR_REPETITIVE_EVENTS Holds the calendar repetitive event information. The
calendar repetitive event consists of EVENT_ID and
repeat mode (REPEAT_MODE).

The ch10/sql/calendar.sql file in the CDROM contains all the table creation
statements for the CALENDAR database. You can create this CALENDAR database
in your MySQL server by running the following commands.

mysqladmin -u root -p create CALENDAR
mysql -u root -p -D CALENDAR < calendar.sql

Make sure you change the user name (root) to whatever is appropriate for your
system.

With the intranet calendar manager database established, it’s time to look at the
PHP classes that are needed to implement the applications.

The Intranet Calendar Application
Event Class
We need only one new object, the Event object, to implement the intranet calendar
manager, as you can see in Figure 10-2, which shows the system diagram. The
Message object was discussed in Chapter 7.

Chapter 10: Intranet Calendar Manager 337

13 549669 ch10.qxd 4/4/03 9:25 AM Page 337

Figure 10-2: Intranet calendar manager system diagram.

The Event class provides the Event object. The class is used to manipulate each
event. It allows an application to create and delete events. The ch10/apps/class/
class.Event.php in the CDROM is an implementation of this class.

This class implements the following methods:

◆ Event (): This is the constructor method. It performs the following
functions:

■ Sets an object variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application.
dbi holds the DBI object that is used to communicate with the back-
end database.

■ Sets a member variable named event_tbl to $CALENDAR_EVENT_TBL,
which is loaded from the calendar.conf file. $CALENDAR_EVENT_TBL
holds the name of the calendar event table.

■ Sets a member variable named event_view_tbl to $CALENDAR_EVENT_
VIEW_TBL, which is loaded from the calendar.conf file. $CALENDAR_
EVENT_VIEW_TBL holds the name of the event view table.

■ Sets a member variable named event_repeat_tbl to $CALENDAR_
EVENT_REPEAT_TBL, which is loaded from the calendar.conf file.
$CALENDAR_EVENT_REPEAT_TBL holds the name of the event repeat
table.

■ Sets a member variable called ‘std_fields’ as an associative array to
hold the attributes of the calendar event table and their data types
(text/number).

Central
Login/Logout

Messages

Calendar Events

User Home Interface

PHP Application Framework

Message Object

Intranet Calendar Applications

Event Object

class.Message.php

class.Events.php

338 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 338

■ Sets a member variable named ‘fields’, which is a comma-separated
list of calendar event table fields.

■ Calls setEventID() to set the given event ID to this object.

◆ loadEventInfo (): This method sets all the attribute values for a given
event as member variables to this class. This is how it works:

■ The given event ID is set to a member variable called to eid using
setEventID().

■ A statement to select all the event table fields for the given event ID is
created in $stmt.

■ Using the DBI object $this->dbi, the $stmt statement is run via the
$this->dbi->query() method in DBI object. The result of the query is
stored in the $result variable.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ For each message field of type text, the data is stripped for embedded
slash characters.

■ Each message field data is stored as object variable using $this-
>$fieldname run-time variable.

◆ getEvents (): This method returns all the events that are to be shown to
the given user on a given date. It works as follows:

■ The date string (mm-dd-yyyy format) passed to this method is used to
find out these three formats of the given date: the day of the week
string, the day of the month string, and the month-day string. These
formats are later used to check whether the given date is a weekly,
monthly, or yearly repetitive date.

■ A statement to select all the events that are to be viewed by the given
user on the given date is prepared. This statement also selects the events
viewable by the given user that fall on this day because of the repetitive
event feature. The statement is stored in a variable named $stmt.

■ Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the
query is stored in the $result variable.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ An associative array is prepared using each row’s event ID and Event
Title.

■ The method returns the array. If the result set is found to be empty, the
method returns null.

Chapter 10: Intranet Calendar Manager 339

13 549669 ch10.qxd 4/4/03 9:25 AM Page 339

◆ getOwnEvents (): This method returns the events that are created by the
given user for a given day. This is how it works:

■ The date string parameter is formatted using addslashes and the
quote() method of the DBI object.

■ A statement to select all the events that are created by this user for the
given date is prepared and stored in $stmt.

■ Using the DBI object $this->dbi, the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the
query is stored in the $result variable.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ An associative array is prepared using each row’s event ID and event title.

■ The method returns the array. If the result set is empty, the method
returns null.

◆ getViewers (): This method returns all viewer IDs for a given event. This
is how it works:

■ It sets the event ID using setEventID().

■ A statement to select all the viewer IDs (user ID) of the event viewer
table for the given event ID is prepared and stored in $stmt.

■ Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the
query is stored in the $result variable.

■ If there are more than zero rows in the $result object, each row is
fetched in the $row variable.

■ An associative array is prepared using each row’s event ID and event title.

■ The method returns the array. In case the result set found is empty, the
method returns null.

◆ addEvent (): This method adds a new event into to the CALENDAR_EVENT
table. Attributes such as user ID, event title, event date, event description,
reminder ID, and flag are passed as an associative array to this method. It
works as follows:

■ From the given parameter, all the values of text type in the database
are escaped for characters such as quotation marks and slashes using
$this->dbi->quote(addslashes()).

340 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 340

■ A variable called $values is assigned a comma-separated list of all the
parameter values.

■ A SQL statement, $stmt, is created to insert the new event data into
the event table using the member variable ‘fields’ (contains attribute
names) and $values.

■ The SQL statement is executed using $this->dbi->query(), and the
result of the query is stored in the $result object.

■ If the $result status is not okay, the method returns FALSE to indicate
an insert failure. Otherwise, it returns the newly created event’s ID by
executing a second query.

◆ modifyEvent (): This method updates modified event information to the
database. Attributes such as event ID, user ID, event title, event date,
event description, reminder ID, and flag are passed as an associative array
to this method. This is how it works:

■ From the given parameter, all the values that of text type in the data-
base are escaped for characters such as quotation marks and slashes
using $this->dbi->quote(addslashes()).

■ A SQL statement, $stmt, is created to update the event table using the
parameter attributes and values.

■ The SQL statement is executed using $this->dbi->query(), and the
result of the query is stored in the $result object.

■ If the $result status is not okay, the method returns FALSE to indicate
an insert failure. Otherwise, it returns the newly created event’s ID by
executing a second query.

◆ addViewer (): This method adds a viewer to a given event. This is how it
works:

■ It takes the event ID and an array containing the viewer IDs (users ID)
as a parameter.

■ setEventID()is called to set the given event ID.

■ It checks whether there is an entry of zero in the given array. If there
is, it means that the event is viewable by all, and only a zero is added
to the viewer table with the given event ID.

■ When the array has all the entries greater than zero, each of the array
entries is added to the event viewer table with the given event ID.

Chapter 10: Intranet Calendar Manager 341

13 549669 ch10.qxd 4/4/03 9:25 AM Page 341

◆ getRepeatMode (): This method returns the repeat mode for a given
event. This is how it works:

■ The given event ID is set using setEventID().

■ A statement is prepared to select the repeat mode for a given event
from the repetitive event table. The statement is stored in a variable
named $stmt.

■ Using the DBI object $this->dbi, the $stmt statement is run via the
$this->dbi->query() method in the DBI object, and the result is
stored in the $result variable.

■ If the result set is not empty, the row is fetched using the fetchRow()
method of the DBI object, and REPEAT_MODE is returned from there.
Otherwise, it returns null.

Here are the other methods of this class:

Method Description

setEventID() Sets the event ID (eid) of the event object. It takes the
event ID from the user and, after setting it to member
variable ‘eid’, returns the same. This setting is not
done when the method is called without an event ID.
In that case, the previously set event ID is returned.

getEventTitle() Returns the title of the given event from the
CALENDAR_EVENT table. It uses loadEventInfo()
to set all the attribute members for the event, and
returns the title of the event by getting the value from
$this->EVENT_TITLE. This method takes the event
ID as a parameter.

getEventDate() Returns the date of the given event from the
CALENDAR_EVENT table. It uses loadEventInfo()
to set all the attribute members for the event, and
returns the date of the event by getting the value
from $this->EVENT_DATE. This method takes the
event ID as a parameter.

342 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 342

Method Description

getEventDesc() Returns the description of the given event from the
CALENDAR_EVENT table. It uses loadEventInfo()
to set all the attribute members for the event, and
returns the title of the event by getting the value from
$this->EVENT_DESC. This method takes the event
ID as a parameter.

getEventReminder() Returns the reminder (MOTD) ID of the given event
from the CALENDAR_EVENT table. It uses
loadEventInfo() to set all the attribute members
for the event, and returns the title of the event by
getting the value from $this->REMINDER_ID. This
method takes the event ID as a parameter.

deleteEvent() Deletes the event from the CALENDAR_EVENT table.
It takes the event ID as a parameter and returns TRUE
or FALSE, depending on the status of the deletion
operation.

deleteViewers() Deletes all viewers for a given event. It takes the event
ID as a parameter and returns TRUE or FALSE,
depending on the status of the deletion operation.

addRepeatMode() Adds repeat mode for a given event into the
CALENDAR_REPETITIVE_EVENTS table. It takes the
event ID and the event mode as parameters and
returns TRUE or FALSE depending on the status of
the insertion operation.

deleteRepeatMode() Deletes all repeat modes for a given event. It takes the
event ID as a parameter and returns TRUE or FALSE
on the success or failure of the deletion operation.

The Application Configuration Files
Like all other applications we’ve developed in this book, the intranet calendar man-
ager applications also use a standard set of configuration, message, and error files.
These files are discussed in the following sections.

Chapter 10: Intranet Calendar Manager 343

13 549669 ch10.qxd 4/4/03 9:25 AM Page 343

The main configuration file
The primary configuration file for the entire intranet calendar manager is called
calendar.conf. Table 10-2 discusses each configuration variable.

TABLE 10-2 CALENDAR.CONF VARIABLES

Configuration Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR package;
specifically the DB module needed for
class.DBI.php in our application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the
PHPLIB packages; specifically the template.inc
package needed for template manipulation.

$APP_FRAMEWORK_DIR Set to our application framework directory.

$PATH Set to the combined directory path consisting of the
$PEAR_DIR, $PHPLIB_DIR, and the
$APP_FRAMEWORK_DIR. This path is used with
ini_set() to redefine the php.ini entry for
include_path to include $PATH ahead of the
default path. This allows PHP to find our application
framework, PHPLIB, and PEAR-related files.

$AUTHENTICATION_URL Set to the central login application URL.

$LOGOUT_URL Set to the central logout application URL.

$HOME_URL Set to the topmost URL of the site. If the URL
redirection application does not find a valid URL in the
e-campaign database to redirect to for a valid request,
it uses this URL as a default.

$APPLICATION_NAME Internal name of the application.

$DEFAULT_LANGUAGE Set to the default two-digit language code.

$ROOT_PATH Set to the root path of the application.

$REL_ROOT_PATH Relative path to the root directory.

$REL_APP_PATH Relative application path as seen from the web
browser.

$TEMPLATE_DIR The fully qualified path to the template directory.

344 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 344

Configuration Variable Purpose

$THEME_TEMPLATE_DIR The fully qualified path to the theme template
directory.

$REL_PHOTO_DIR The Web-relative path to the photo directory used to
store user photos.

$PHOTO_DIR The fully qualified path to the photo directory.

$DEFAULT_PHOTO Name of the default photo file, which is used when a
user does not have a photo in the photo directory.

$CLASS_DIR The fully qualified path to the class directory.

$REL_TEMPLATE_DIR The Web-relative path to the template directory used.

$EVENT_CLASS Name of the Event class file.

$MESSAGE_CLASS Name of the Message class file. This class is
developed for the MOTD application discussed in
Chapter 9.

$CALENDAR_DB_URL The fully qualified URL for the database used to store
the calendar events.

$CALENDAR_EVENT_TBL Name of the calendar event table in the database.

$CALENDAR_EVENT_VIEW_TBL Name of the event viewer table in the database.

$CALENDAR_EVENT_REPEAT_TBL Name of the event repeat table in the database.

$USER_PREFERENCE_TBL Name of the user preference table in the database.

$MESSAGE_TBL Name of the MOTD message table in the intranet
database.

$MSG_VIEWER_TBL Name of the message viewer list table in the intranet
database.

$AUTH_DB_TBL Name of the user authentication table in the auth
database.

$STATUS_TEMPLATE Name of the status template file used to display status
messages.

$CALENDAR_HOME_TEMPLATE Name of the calendar index template file.

$CALENDAR_EVENT_TEMPLATE Name of the calendar event details template file.

Continued

Chapter 10: Intranet Calendar Manager 345

13 549669 ch10.qxd 4/4/03 9:25 AM Page 345

TABLE 10-2 CALENDAR.CONF VARIABLES (Continued)

Configuration Variable Purpose

TODAY_COLOR Color defined for current day when displaying
calendar.

WEEKEND_COLOR Color defined for weekends when displaying calendar.

HOLIDAY_COLOR Color defined for holidays when displaying calendar.

GLOBAL_EVENT_COLOR Color defined for global events when displaying
calendar.

PERSONAL_EVENT_COLOR Color defined for personal events when displaying
calendar.

SECONDS_PER_DAY Defines amount of seconds per day.

USER_DB_URL The fully qualified authentication database URL.

$DEFAULT_THEME The default theme index in the $THEME_TEMPLATE
array.

$USER_DEFAULTS A user’s theme and auto tip default settings.

$TIP_SCRIPT The name of the tip script.

$TIP_URL The Web-relative path for the tip files.

$MAX_AVAILABLE_TIP The maximum number of tips from which to display
the tip.

$THEME_TEMPLATE[x] The list of theme templates.

$PRINT_TEMPLATE[x] The list of print templates associated with the theme
templates.

The directory structure used in the calendar.conf file supplied in ch10 direc-
tory on the CD-ROM might need to be tailored to your own system’s requirements.
Here’s how the current directory structure looks:

htdocs ($ROOT_PATH same as %DocumentRoot%)
|
+---home (base intranet application discussed in chapter 7)
| |
| +---templates
| |

346 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 346

| +---themes (theme templates used by all intranet apps)
|
+---photos (user photos used by all intranet apps)
|
+---calendar_mngr (Intranet Calendar Applications)

|
+---apps (calendar apps and configuration files)

|
+---class (calendar classes)
|
+---templates (publisher HTML templates)

|
+---themes (symlink to %DocumentRoot%/home/templates/themes)

By changing the following configuration parameters in calendar.conf, you
can modify the directory structure to fit your site requirements:

$APP_FRAMEWORK_DIR=$_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$PEAR =$_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’;
$PHPLIB =$_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;

$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/calendar_mngr’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;
$REL_PHOTO_DIR = ‘/photos’;
$PHOTO_DIR = $ROOT_PATH . $REL_PHOTO_DIR;
$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$THEME_TEMPLATE_DIR = $TEMPLATE_DIR . ‘/themes’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

The messages file
The messages displayed by the calendar manager applications are stored in the
ch10/apps/calendar.messages file in the CDROM. You can change the messages
using a text editor.

The errors file
The error messages displayed by the calendar manager applications are stored in
the ch10/apps/calendar.errors file in the CDROM. You can modify the error
messages using a text editor.

Chapter 10: Intranet Calendar Manager 347

13 549669 ch10.qxd 4/4/03 9:25 AM Page 347

The Application Templates
The HTML interface templates needed for the applications are included in the
ch10/apps/templates directory in the CD-ROM. These templates contain various
template tags to display necessary information dynamically. The templates are
named in the calendar.conf file. These templates are listed in Table 10-3.

TABLE 10-3 HTML TEMPLATES

Configuration Variable Template File Purpose

$STATUS_TEMPLATE calendar_status.html Used to show status
message.

$CALENDAR_HOME_TEMPLATE calendar_home.html The calendar index
template.

$CALENDAR_EVENT_TEMPLATE calendar_events.html The calendar event–related
template.

The Calendar Manager Application
This calendar manager application is responsible for displaying an intranet calen-
dar page to each user. The application, calendar_mngr.php, is included on the
CD-ROM in the ch10/apps directory.

It implements the following functionality:

◆ When the user logs in, he is shown a calendar of the current month.

◆ Dates of the month are highlighted and colored according to events
scheduled for those days.

◆ The user can use the navigator buttons to browse forward and backward
through different months.

This application has the following methods:

◆ run(): This method is responsible for running this application. This is
how it works:

■ It creates an object of the Theme class called $themeObj and sets it as a
member variable.

348 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 348

■ It finds out the preferred theme for the current user using the
getUserTheme() method of the Theme class.

■ It calls displayCalendar() to render the calendar along with all the
events and holidays.

◆ authorize(): This method authorizes everyone on the intranet to view
the page and, therefore, always returns TRUE.

◆ displayCalendar(): This method displays the calendar to the user. This
is how it works:

■ A calendar template ($CALENDAR_HOME_TEMPLATE) is loaded in a tem-
plate object called $template.

■ The method checks whether a time stamp has been supplied; if not, the
current time stamp is stored in $ts. An array named $date is filled
with the information of the time stamp using the getDate() API.

■ A static array $weekDays is declared to store the weekdays and their
indexes.

■ For each day of the given time stamp’s month, the events and holidays
are retrieved from the database and the configuration file. Holidays and
global events are loaded from the calendar.conf file.

■ Each day is also checked if it’s on weekend or not. (The weekend defin-
ition is configurable in the calendar.conf file.)

■ Personal events are loaded into an array using the getEvents()
method of the Event class.

■ After getting all information of each day, the day of the month is set
with events, holidays, weekend, cell color, and so on. If the total num-
ber of events to be shown for the day is less than or equal to four, they
are set to the corners of the day cell. Otherwise, three corners are filled
with the first three events and the fourth corner is set with a link to the
other events.

■ After the template is set with all the information for each day of the
month, the template is parsed and the output is fed into
showContents() to render it to the user.

◆ showContents(): This method is used to display the given contents
according to the theme preferences of the user. This is how it works:

■ The user’s preferred theme template is loaded in a template object
called $themeTemplate.

■ The template contains a contentBlock that is to be filled by the para-
meter to this method.

■ After the passed content is set into the contentBlock, it is rendered to
the user.

Chapter 10: Intranet Calendar Manager 349

13 549669 ch10.qxd 4/4/03 9:25 AM Page 349

The Calendar Event Manager
Application
This application, calendar_event_mngr.php, is responsible for managing calendar
events. This application is included on the CD-ROM in the ch10/apps directory.

The application has the following methods:

◆ run(): This method is responsible for running the application. It works as
follows:

■ It creates an object of the Theme class called $themeObj and sets it as a
member variable.

■ It finds out the preferred theme for the current user using the
getUserTheme() method of the Theme class.

■ It calls displayCalendarEventMngrHome() to show the event manager
menu with the given mode (add/modify).

◆ authorize(): This method authorizes everyone on the intranet to view
the page and, therefore, always returns TRUE.

◆ displayCalendarEventMngrHome(): This method displays the calendar
event manager menu, enabling users to add, delete, and modify calendar
events. This is how it works:

■ The mode passed to this method decides which operation to perform. If
the mode is add and step is set to 1, it only has to show an empty Web
form to take the input from the user. When the step is set to 2, it calls
addEvent() to add a new event.

■ If the mode is set to modify with step set as 1, it preloads the Web form
with the event’s previous information. When step is set to 2, it calls
modifyEvent() to modify the event.

■ When the mode is delete, it calls deleteEvent() to delete the event.

■ It uses the getOwnEvents() method of the Event class to shows a list
of the events created by the current user. Each event is followed by a
delete link that allows the user to delete the event. There is also a radio
button with each event that the user can select to start the modification
process.

■ To show the contents of the event manager menu, a calendar event
template (CALENDAR_EVENT_TEMPLATE) is loaded in a template object
called $template.

350 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 350

■ The template file includes a Web form that takes the input for a new
event to be added or an old event to be modified.

■ When the method is called with mode modify, it loads the Web form
using the getEventTitle(), getEventDesc(), getViewers(),
getRepeatMode(), and getEventReminder() methods of the Event
class.

■ After setting appropriate blocks and variables of the template,
showContents() is called to render the output using the proper theme
for the user.

◆ deleteEvent(): This method is responsible for deleting events when
requested. This works in the following manner:

■ It creates objects for the Event and Message classes.

■ The message ID (MOTD ID) for the event is retrieved using the
getEventReminder() method of the Event class, and fed into the
deleteMessage() and deleteViewers() methods of the Message class
to delete the message.

■ All entries related to this event are eliminated from the
CALENDAR_EVENT_VIEWER and CALENDAR_REPETITIVE_EVENTS tables
using the deleteViewers() and deleteRepeatMode() methods of the
Event class.

■ After deleting all the related data, the event itself is deleted using the
deleteEvent() method of the Event class.

■ Depending on the outcome of the deletion process, a success or fail
message is shown to the user.

◆ modifyEvent(): This event modifies a given event. Its functionalities are
as follows:

■ It checks whether the option to show the event to other users is turned
on. If it’s not, it takes only the current user’s ID to add to the viewer
table.

■ It validates the user inputs by checking if the publish date and event
title have been supplied. If not, it shows an alert message and returns
null.

■ If the event’s reminder option is turned on, it checks for previous mes-
sages related to the event ID. If it finds a message, the message is mod-
ified using the modifyMessage() method of the Message class.
Otherwise, the new message is added using addMessage() and
addViewer().

Chapter 10: Intranet Calendar Manager 351

13 549669 ch10.qxd 4/4/03 9:25 AM Page 351

■ If the event’s reminder option is turned off, all the messages and mes-
sage viewers related to the event are deleted using deleteMessage()
and deleteViewers().

■ The event attributes are modified using the modifyEvent() method of
the Event class.

■ If the status of the modifyEvent() is successful, the new viewers and
repeat mode (if any) are added for the event after deleting the previous
ones.

■ The user is shown the appropriate confirmation message on the basis of
success or failure of the modification operation.

◆ addEvent(): This method adds a new event to the calendar. It works in
the following way:

■ It checks whether the option to show the event to other users is turned
on. If it’s not, it takes only the current user’s ID to add to the viewer
table.

■ It validates the user inputs by checking if the publish date and event
title have been supplied or not. If not, it shows an alert message and
returns null.

■ If the event’s reminder option is turned on, a new message is added
using the addMessage() and addViewer() methods of the Message
class.

■ The event attributes are added into the event table using the
addEvent() method of the Event class.

■ If the status of addEvent() is successful, the viewers and repeat mode
(if any) are added for the event.

■ The user is shown an appropriate confirmation message on the basis of
the success or failure of the insertion operation.

◆ showContents(): This method displays the given contents according to
the theme preferences of the user. This is how it works:

■ The user’s preferred theme template is loaded in a template object
called $themeTemplate.

■ The template contains a contentBlock that is to be filled by the para-
meter to this method.

■ After the passed content is set into the contentBlock, it is rendered to
the user.

352 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 352

Installing the Event Calendar on
Your Intranet
The event calendar installation process assumes the following:

◆ You’re using a Linux system with MySQL and Apache server installed.

◆ Your intranet web server document root directory is /evoknow/intranet/
htdocs. Of course, if you have a different path, which is likely, you should
change this path whenever you see it in a configuration file or instruction
in this chapter. During the installation process, I refer to this directory as
%DocumentRoot%.

◆ You’ve installed the PHPLIB and PEAR library. Normally, these get
installed during PHP installation. For your convenience, I’ve provided
these in the lib/phplib.tar.gz and lib/pear.tar.gz directories on the
CD-ROM. In the example installation steps, I assume that these are
installed in the /%DocumentRoot%/phplib and / %DocumentRoot%/pear
directories. Because your installation location for these libraries is likely
to differ, make sure you replace these paths in the configuration files.

◆ You’ve installed the base intranet user home application, the messaging
system, and the INTRANET database (see Chapter 7 for details).

Here is how you can get your intranet calendar applications up and running:

1. Install intranet calendar database tables. You need to create the CALEN-
DAR database. The ch10/sql/calendar.sql file in the CDROM has all
the create table scripts needed for the CALENDAR database. The quickest
way to create the database is to run the following commands:

mysqladmin –u root –p create CALENDAR
mysql –u root –p –D CALENDAR < calendar.sql

2. Install intranet calendar applications. Now from the ch10 directory of
the CD-ROM, extract ch10.tar.gz in %DocumentRoot%. This will create
calendar_mngr in your document root. Configure %DocumentRoot%/cal-
endar_mngr/apps/calendar.conf for path and database settings. The
applications are installed in the %DocumentRoot%/calendar_mngr/apps
directory and the templates are stored in
%DocumentRoot%/calendar_mngr/apps/templates.

Chapter 10: Intranet Calendar Manager 353

13 549669 ch10.qxd 4/4/03 9:25 AM Page 353

Your MySQL server is hosted on the intranet web server and can be
accessed via localhost. However, if this is not the case, you can easily
modify the database URLs in each application’s configuration files. For
example, the home.conf file has MySQL database access URLs such as

$INTRANET_DB_URL = ‘mysql://root:foobar@localhost/INTRANET’;

$CALENDAR_DB_URL = ‘mysql://root:foobar@localhost/CALENDAR’;

$USER_DB_URL = ‘mysql://root:foobar@localhost/auth’;

Say your database server is called db.domain.com and the user name and
password to access the INTRANET and auth databases (which you will cre-
ate during this installation process) are admin and db123. You would
modify the database access URLs throughout each configuration file as

$INTRANET_DB_URL =
‘mysql://admin:db123@db.domain.com/INTRANET’;

$CALENDAR_DB_URL =
‘mysql://admin:db123@db.domain.com/CALENDAR’;

$USER_DB_URL = ‘mysql://admin:db123@db.domain.com/auth’;

3. Adding the calendar to theme navigation bar. You need to update your
theme navigation bar files stored in %DocumentRoot%/themes/%theme%/
home_left_nav.html whenever you add a new application. For example,
to update the std_blue theme, you need to update the %DocumentRoot%/
themes/std_blue/ home_left_nav.html file to include the following
line in the HTML table:

<tr><td width=”100%”>Calendar</fo
nt></td> </tr>

This creates a new HTML table row in the left navigation bar.

4. Set file/directory permissions. Make sure you’ve changed file and direc-
tory permissions such that your intranet web server can access all the
files.

After you’ve performed these steps, you’re ready to test your calendar applications.

Testing the Event Calendar
Log in to your intranet via http://yourserver/index.php or http://yourserver/
home/home.php using the user name and password you created in Chapter 6 and
tested in Chapter 7.

354 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 354

Click on the Calendar link in the left navigation bar of your intranet home page
or point your web browser to http://yourserver/calendar_mngr/apps/
calendar_mngr.php. This shows you the current month, like the example shown in
Figure 10-3.

Figure 10-3: The current month calendar.

The current day (October 16, in my example) is shown is its own color (orange by
default), weekends are shown in gray, and a global event (October 22) is shown in
cream color. You can configure these colors using calendar.conf parameters such as

define(‘TODAY_COLOR’, ‘FF8800’);
define(‘WEEKEND_COLOR’, ‘CCCCCC’);
define(‘HOLIDAY_COLOR’, ‘ABCDEF’);
define(‘GLOBAL_EVENT_COLOR’, ‘FFCC99’);
define(‘PERSONAL_EVENT_COLOR’, ‘dfefcf’);

The colors are stored in standard RGB format in hex numbers ranging from
000000 (black) to FFFFFF (white).

Adding a new event
To add an event, find the appropriate month using the Next or Previous links on the
top, and then click on the day of the event. For example, to add an event on July 7,
2003, move forward to July 2003 using the Next button and click on the day (7).
After you’ve clicked on a date, a screen similar to the one in Figure 10-4 displays.

Chapter 10: Intranet Calendar Manager 355

13 549669 ch10.qxd 4/4/03 9:25 AM Page 355

Figure 10-4: Adding an event.

To add a reminder, add an event title, description, frequency (weekly, monthly,
yearly, default is once only), who can view the event, and also if you want to view
a reminder on that day. After all these fields are entered, you can add the event by
clicking the Add button.

Modifying an existing event
To modify an existing event, select the day of the event and you’ll see a screen sim-
ilar to the one in Figure 10-5.

A list of events on that day appears at the top. (There’s only one event in this
example.) Select the event you want to modify by clicking its radio button. When
you select it, you can delete it by clicking the Delete button, or make changes to the
event and resubmit it by clicking the Modify button.

Viewing an event reminder
When you log in, any reminder for an event that day shows up automatically
because the Calendar system sets up the reminder using the central messaging
mechanism that you developed earlier. Figure 10-6 shows an event reminder.

356 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 356

Figure 10-5: Modifying an event.

Figure 10-6: Viewing an event reminder at login.

Chapter 10: Intranet Calendar Manager 357

13 549669 ch10.qxd 4/4/03 9:25 AM Page 357

Summary
In this chapter, you saw how to create a central event calendar for your intranet.
This calendar tool allows users to remind themselves of important personal and
shared events.

358 Part II: Developing Intranet Solutions

13 549669 ch10.qxd 4/4/03 9:25 AM Page 358

Chapter 11

Internet Resource Manager
IN THIS CHAPTER

◆ Developing an Internet Resource Manager system

◆ Installing an Internet Resource Manager system

◆ Using an Internet Resource Manager system

ALL OF US MAKE bookmarks of Web resources that are useful or entertaining to us.
Storing useful bookmarks on desktop computers is helpful but often leads to a lots
of e-mails among co-workers who need to share resources that they find on the
Web or via FTP. In this case, a central Internet Resource (Web sites or FTP sites)
Management (IRM) tool can be a great help. It can help organize the commonly
needed resources on a central database, which all users can share and also search to
locate sites by keywords. In this chapter, we’ll design such a tool.

Functionality Requirements
The IRM tool will do the following:

◆ It will have a central database to store all Internet resources.

◆ It will allow administrators to organize resources in categories. All
resources will be stored in subcategories of main categories.

◆ It will allow all users to add new resources without duplicating. The user
can specify a rank (1 star to 5 stars) for the resource to indicate the value
of the resource.

◆ It will allow all users to search resources by keywords entered during
resource creation. It will also allow users to find resources by creator
(user) name or resource visitor (user) name. This is very helpful in finding
resources created and visited by people in an organization.

◆ It will track click-through to identify the most frequently requested
resources. This is a great way to know which resources are most
widely used.

Now let’s look at the prerequisites of this system. 359

14 549669 ch11.qxd 4/4/03 9:25 AM Page 359

Understanding the Prerequisites
This Internet Resource Manager builds on the Intranet classes discussed in Chapters 4
through 7. It uses the message class to announce event reminders.

The intranet calendar applications that we will develop here require the central
login/logout, user management, and home applications of the intranet discussed in
the previous chapters in this section.

Now let’s look at the database design and implementation needed for creating
this Internet Resource Manager.

Designing the Database
Figure 11-1 shows the database diagram for the IRM. The central table in this data-
base is RESOURCE, which stores the details of the Internet site. Each resource stored
in this table can be created by a user. The user, who adds the resource, information
is store din USER table. Each resource belongs to a resource category stored in
CATEGORY table. Each category can have one or more resources in the RESOURCE
table and therefore the CATEGORY table has a one to many relationship with the
RESOURCE table. Each resource in the RESOURCE table can have one or more key-
words, which are stored in the RESOURCE_KEYWORD table. Similarly, each resource
can be visited by one or more visitors. The tracking information for the visitors are
stored in the RESOURCE_VISITOR table.

In the following section I will describe each of these tables in details.

CATEGORY table
The CATEGORY table is an integral part of this database. This table holds the cate-
gory number (CATEGORY_ID), category name (CATEGORY_NAME), parent category
(P_CATEGORY_ID), created by (CREATED_BY), and creation timestamp (CREATE_TS).
The category number (CATEGORY_ID) is automatically generated by the database.

RESOURCE table
The RESOURCE table contains the resource information. This table holds the resource
number (RESOURCE_ID), resource title (RESOURCE_TITLE), resource location
(RESOURCE_LOCATION), resource category (RESOURCE_CATEGORY), resource rating
(RESOURCE_RATING), resource description (RESOURCE_DESCRIPTION), resource added
by (RESOURCE_ADDED_BY), creation timestamp (CREATE_TS), and flag (FLAG). The
resource number (RESOURCE_ID) is automatically generated by the database.

360 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 360

RESOURCE_KEYWORD table
The RESOURCE_KEYWORD table holds the resource keyword information. The resource
keyword consists of resource number (RESOURCE_ID) and keyword (KEYWORD).

Figure 11-1: A Resource Manager database diagram.

RESOURCE_VISITOR table
The RESOURCE_VISITOR table contains visitor(s) of resources. This table holds the
resource number (RESOURCE_ID), visitor ID (VISITOR_ID), and visit timestamp
(VISIT_TS).

The ch11/sql/irm.sql file in the CDROM has a set of create table statements,
which can be used to create the IRM database in MySQL. To create the IRM data-
base and its tables run the following commands:

mysqladmin -u root -p create IRM
mysql -u root -p -D IRM < irm.sql

Make sure you change the user name (root) to whatever is appropriate for your
system.

After you have the Resource Manager database designed, you need to design the
PHP classes that will be needed to implement the applications. In the following sec-
tions, I discuss these classes.

Chapter 11: Internet Resource Manager 361

14 549669 ch11.qxd 4/4/03 9:25 AM Page 361

Designing and Implementing
the Internet Resource Manager
Application Classes
As shown in the system diagram, Figure 11-2, there are three objects that are
needed to implement the Internet Resource Manager.

Figure 11-2: A system diagram for the IRM.

Here you will develop three classes that will provide these objects for your
resource applications.

Designing and implementing
the IrmCategory class
The IrmCategory class is used to manipulate each category. It allows an applica-
tion to create and delete a category. The ch11/apps/class/class.IrmCategory.
php file in the CDROM is an implementation of this class. This class implements the
following methods.

IrmCategory()
This is the constructor method. It performs the following functions:

◆ Sets a member variable named category_tbl to $IRM_CATEGORY_TBL,
which is loaded from the irm.conf file. The $IRM_CATEGORY_TBL holds
the name of the category table.

Central
Login/Logout

Messages

IRM

User Home Interface

PHP Application Framework

Message Object

IRM Applications

IrmCategory Object

IrmContact Object

class.Message.php

class.IrmCategory.php

class.IrmContact.php

362 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 362

◆ Sets a member variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application.
The dbi member variable holds the DBI object, which is used to communi-
cate with the back-end database.

getCategoryList()
This method returns the list of main categories or categories that do not have any
parent categories. It works as follows:

◆ First, it initializes an array named $listArr, which will be used for storing
the category list.

◆ A SQL statement is created in $stmt, which queries the category table for
the entire main category list. It returns all the names and IDs of the main
category.

◆ Then It fetches the result of the query and return the $listArr array con-
taining the list of category IDs and category names.

If the result of the query is empty, then it returns null.

getSubCategoryList()
This method returns the list of all subcategories for a given category. It works as
follows:

◆ This method is called with category ID ($p_id).

◆ It initializes an array named $listArr for containing the list of subcate-
gory ID and name.

◆ A SQL select statement, $stmt, is created to return all the category IDs
and their names for which the parent category ID matches the given
category ID ($p_id).

◆ If the result of the SQL query returns no rows, the method returns null.

◆ Otherwise, the list of subcategory IDs and names are returned in an array
called $listArr.

getCategoryName()
This method returns the name of the category from the CATEGORY table. This method
takes the category ID ($catID) as a parameter.

getParentCategory()
This method returns the parent category of the given category from the CATEGORY
table. This function takes category ID ($catID) as a parameter.

Chapter 11: Internet Resource Manager 363

14 549669 ch11.qxd 4/4/03 9:25 AM Page 363

existInList()
This method determines the existence of a category in the CATEGORY table. It takes
category name ($catName) as a parameter. It returns the category ID if the given
name matches with the existing category name in the CATEGORY table; otherwise, it
return zero.

addCategory()
This method adds a new category into to the CATEGORY table. This method is called
with category name ($name), parent category ID ($pcat), and created by ($uid).
Along with this, information about the new category adding time is also entered
into the database. If the category is successfully added, then it returns TRUE; other-
wise, it returns FALSE.

deleteCategory()
This method deletes the category from the database. This method is called with
category ID ($catID). If it successfully deletes the category, then it returns TRUE;
otherwise, it returns FALSE.

modifyCategory()
This method updates the category information for a given category. This method is
called with category ID ($catID), name ($newcategory), parent category ID ($pid)
and the user ID ($uid). If it updates successfully, then it returns TRUE; otherwise, it
returns FALSE.

Designing and implementing
the IrmResource class
This class provides the Resource object. The Resource object is used to manipulate
Internet resources. The ch11/apps/class/class.IrmResource.php file in the
CDROM is an implementatio of this class. In the following section, I discuss the
methods available in this class below.

IrmResource()
This is the constructor method, which performs the following tasks:

◆ Sets a member variable called resource_tbl to $IRM_RESOURCE_TBL,
which is loaded from the irm.conf file. The $IRM_RESOURCE_TBL variable
holds the name of the resource table.

◆ Sets a member variable called resource_track_tbl to
$IRM_RESOURCE_VISITOR, which is loaded from the irm.conf file.
The $IRM_RESOURCE_VISITOR variable holds the name of the resource
visitor table.

364 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 364

◆ Sets a member variable called resource_keyword_tbl to
$IRM_RESOURCE_KEYWORD_TBL, which is loaded from the irm.conf file.
The $IRM_RESOURCE_KEYWORD_TBL variable holds the name of the
resource keyword table.

◆ Sets a member variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application.
The dbi member variable holds the DBI object, which is used to com-
municate with the back-end database.

◆ Sets an object variable called $std_map_fields to field names of the
RESOURCE table. The std_map_fields variable is an associative array,
which contains both field names and field types in a key = value format.

◆ A comma-separated list of RESOURCE table field names are created in the
$fields variable using the $this->std_map_fields.

◆ Sets an object variable called $resource_track_map_fields to field
names of the RESOURCE_VISITOR table. The std_map_fields variable
is an associative array, which contains both field names and field types
in a key = value format.

◆ A comma-separated list of RESOURCE_VISITOR table field names are
created in the $resource_track_fields variable using the $this->
resource_track_map_fields.

addResource()
Called with an associative array ($params), which contain the field names of the
table and the field value, the method adds new resource in the RESOURCE table. It
works as follows:

◆ The given resource title ($params[RESOURCE_TITLE]), resource
location ($params[RESOURCE_LOCATION]), and resource description
($params[RESOURCE_DESCRIPTION]) are escaped for characters such as
quotation marks and slashes using $this->dbi->quote(addslashes())
methods.

◆ A SQL statement, $statement, is created to insert the new resource data
into the RESOURCE table.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ Another SQL statement, $stmt, is created to select the newly added
resource from the RESOURCE table and execute the SQL statement in the
$this->dbi->query() method.

◆ This method returns the resource ID if it inserts the resource successfully;
otherwise, it return FALSE.

Chapter 11: Internet Resource Manager 365

14 549669 ch11.qxd 4/4/03 9:25 AM Page 365

addKeywords()
This method inserts keywords in the RESOURCE_KEYWORD table. This method is called
with resource ID ($rid) and an array ($params), which contains the keywords. Each
keyword is inserted into the table using a foreach loop. It returns TRUE if it adds
keywords successfully; otherwise, it returns FALSE.

deleteKeywords()
This method deletes all the keywords for the given resource from the database. This
method is called with the resource ID ($rid). It returns TRUE if it successfully
deletes all the keywords; otherwise, it returns FALSE.

getKeywords()
This method returns keyword(s) for the given resource. It works as follows:

◆ This method is called with the resource ID ($rid).

◆ A SQL statement, $stmt, is created which queries the RESOURCE_KEYWORD
table for all keywords for the given resource ID.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ If no rows are returned in the $result object, the method returns null.

◆ On the other hand, it fetches the $result object and each row is stored in
the $row object and the keyword is stored in the $retArr array. Then the
array $retArr is returned.

searchResource()
This method searches resource in the RESOURCE table. This method works as follows:

◆ This method is called with an associative array ($params), which contains
search criteria.

◆ If the resource category ($params[RESOURCE_CATEGORY]) is provided in
the parameter, then the method checks whether the given category is the
main category or not. If it is the main category, then it generates SQL
conditions for each subcategory of the given category along with the main
category. On the other hand, it generates the SQL condition only for the
main category. These conditions are stored in a variable called $category.

◆ Then It checks whether the rating $params[RESOURCE_RATING] criteria is
provided or not. If the rating criteria is provided, then the SQL condition
is generated and stored in a variable called $rating.

◆ If the resource added by criteria $params[RESOURCE_ADDED_BY] is given,
then it generates the SQL condition for the resources, which is added by a
particular user.

366 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 366

◆ If the resource visited by criteria $params[RESOURCE_VISITED_BY] is
given, then it generates the SQL condition for the resources, which is
visited by a particular user.

◆ Next This method checks whether the keywords are provided for searching
or not. If they are provided, then it generates the SQL condition that will
search for resources that have the given keywords.

◆ A SQL statement, $stmt, is created which queries for the resources falling
under all the given criterion.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ If no rows are returned in the $result object, the method returns null.

◆ On the other hand, it fetches the $result object and each row is stored in
the $row object and the $row object is stored in the $retArr array. Then
the array $retArr is returned.

modifyResource()
This method updates existing resource information in the database. It works as
follows:

◆ The method is called with an associative array ($params), which contains
the fields name of the RESOURCE table, its new value, and the resource ID
($resource_id) for which it will update.

◆ The given resource title ($params[RESOURCE_TITLE]), resource
location ($params[RESOURCE_LOCATION]), and resource description
($params[RESOURCE_DESCRIPTION]) are escaped for characters such as
quotation marks and slashes using $this->dbi->quote(addslashes())
methods.

◆ A SQL statement, $statement, is created to update the new resource data
into the RESOURCE table.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ If the resource is successfully updated, then this method returns TRUE;
otherwise, it returns FALSE.

trackResourceVisit()
When a user clicks on a URL for a resource displayed in a category or as a search
result, the URL click event is tracked. This method is responsible for inserting a track
record in the RESOURCE_TRACK table for such URL clicks.

Chapter 11: Internet Resource Manager 367

14 549669 ch11.qxd 4/4/03 9:25 AM Page 367

deleteResource()
This method deletes a resource from RESOURCE table of the database. It deletes a
resource by the given resource ID ($rid).

getNumOfResourceInCat()
This method returns the number of resources that reside in the given category. This
method is called with a category ID ($catID) as parameter.

getResourceByCategory()
This method returns all the resources that fall under the given category. This method
is called with a category ID ($catID).

getResourceUrl()
This method returns URL of the resource. This method is called with a resource ID
($rid).

getTotalResourceNum()
This method returns the total number of resources in the RESOURCE table.

getResourceInfo()
This method returns information related to the given resource. This method is called
with resource ID ($rid).

getNewResource()
This method returns the number of newly added resources. This method is called
with category ID ($catid) and time limit ($timeLimit). It finds the number of the
resources that fall under the given category ID and are added after the given time
limit.

getTopRankingList()
This method returns the top-ranking resource list. This method is called with a
parameter that can be considered as the lower bound of the top ranking list (that is,
this method finds all the resources that have ranking higher than or equal to this
parameter). It returns an associative array, which contain the resource ID and its
information.

Designing and implementing the Message class
The Message class is used to manipulate each message. It allows an application to
create and delete messages. This class is discussed in Chapter 7.

368 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 368

Creating Application
Configuration Files
Like all other applications we’ve developed in this book, the Internet Resource
Manager applications also use a standard set of configuration, message, and error
files. These files are discussed in the following sections.

Creating the main configuration file
The primary configuration file for the entire Internet Resource Manager is called
irm.conf. Table 11-1 discusses each configuration variables.

TABLE 11-1 IRM.CONF VARIABLES

Configuration Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR package;
specifically the DB module needed for class.DBI.php
in our application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the
PHPLIB packages; specifically the template.inc
package needed for template manipulation.

$APP_FRAMEWORK_DIR Set to our application framework directory.

$PATH Set to the combined directory path consisting
of the $PEAR_DIR, $PHPLIB_DIR, and
$APP_FRAMEWORK_DIR. This path is used with the
ini_set() method to redefine the php.ini entry for
include_path to include $PATH ahead of the default
path. This allows PHP to find our application framework,
PHPLIB, and PEAR-related files.

$AUTHENTICATION_URL Set to the central login application URL.

$LOGOUT_URL Set to the central logout application URL.

$HOME_URL Set to the topmost URL of the site. If the URL
redirection application doesn’t find a valid URL in the
e-campaign database to redirect to for a valid request,
it uses this URL as a default.

$APPLICATION_NAME The internal name of the application.

Continued

Chapter 11: Internet Resource Manager 369

14 549669 ch11.qxd 4/4/03 9:25 AM Page 369

TABLE 11-1 IRM.CONF VARIABLES (Continued)

Configuration Variable Purpose

$DEFAULT_LANGUAGE Set to the default (two characters) language code.

$ROOT_PATH Set to the root path of the application.

$REL_ROOT_PATH Relative path to the root directory.

$REL_APP_PATH Relative application path as seen from Web browser.

$TEMPLATE_DIR The fully qualified path to the template directory.

$THEME_TEMPLATE_DIR The fully qualified path to the theme template directory.

$REL_PHOTO_DIR The Web-relative path to the photo directory used to
store user photos.

$PHOTO_DIR The fully qualified path to the photo directory.

$DEFAULT_PHOTO Name of the default photo file, which is used when a
user does not have a photo in the photo directory.

$CLASS_DIR The fully qualified path to the class directory.

$REL_TEMPLATE_DIR The Web-relative path to the template directory used.

$IRM_CATEGORY_CLASS Name of the Category class file.

$IRM_RESOURCE_CLASS Name of the Resource class file.

$IRM_MESSAGE_CLASS Name of the Message class file. This class is developed
for the MOTD application discussed in Chapter 10.

$IRM_RESOURCE_MNGR Name of the application that manages resources.

$IRM_SEARCH_MNGR Name of the application that is used to search for
resources.

$IRM_RESOURCE_TRACK_MNGR Name of the application that tracks user visits to
resources.

$IRM_CAT_MNGR Name of the application that manages categories.

$IRM_DB_URL The fully qualified URL for the database used to store
the resources and categories.

$IRM_CATEGORY_TBL Name of the category table in the database.

$IRM_RESOURCE_TBL Name of the resource table in the database.

$IRM_RESOURCE_KEYWORD_TBL Name of the resource keyword table in the database.

370 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 370

Configuration Variable Purpose

$USER_PREFERENCE_TBL Name of the user preference table in the database.

$MESSAGE_TBL Name of the MOTD message table in the database.

$IRM_RESOURCE_VISITOR Name of the resource visitor table in the database.

$MSG_VIEWER_TBL Name of the message viewer list table in the database.

$AUTH_DB_TBL Name of the user authentication table in the database.

$IRM_RESOURCE_ Name of the resource description template file.
DES_TEMPLATE

$IRM_RESOURCE_ Name of the resource menu template file.
MENU_TEMPLATE

$IRM_RESOURCE_MODIFY_ Name of the resource modify form template file.
MENU_TEMPLATE

$IRM_MOTD_TEMPLATE Name of the live note template file.

$IRM_CAT_HOME_TEMPLATE Name of the category index template file.

$IRM_CAT_ADD_MODTEMPLATE Name of the add/modify category entry form template
file.

$IRM_SEARCH_RESULT_ Name of the search result showing template file.
TEMPLATE

$IRM_SEARCH_TEMPLATE Name of the resource searching template file.

$IRM_STATUS_TEMPLATE Name of the status template file used to display status
messages.

ODD_COLOR Color defined for odd rows when displaying tabular data
such as document track listing.

EVEN_COLOR Color defined for even rows when displaying tabular
data such as document track listing.

$RATINGS Defines an associative array used to display response
rating information.

USER_DB_URL The fully qualified authentication database URL.

CAT_PER_LINE’ Number of categories per row to show in a navigation
table, which is created in the navigation file.

Continued

Chapter 11: Internet Resource Manager 371

14 549669 ch11.qxd 4/4/03 9:25 AM Page 371

TABLE 11-1 IRM.CONF VARIABLES (Continued)

Configuration Variable Purpose

SEPARATOR The characters that separate each navigation entry
(category) in the navigation, which is created in the
navigation file.

$DEFAULT_THEME The default theme index in the $THEME_TEMPLATE
array.

$USER_DEFAULTS A user’s theme and auto tip default settings.

$TIP_SCRIPT The name of the tip script.

$TIP_URL The Web-relative path for the tip files.

$MAX_AVAILABLE_TIP The maximum number of tips from which to display
the tip.

$THEME_TEMPLATE[x] The list of theme templates.

$PRINT_TEMPLATE[x] The list of print templates associative with the theme
templates.

The directory structure used in the irm.conf file supplied in the ch11 directory
on the CD-ROM might need to be tailored to your own system’s requirements. Here
is how the current directory structure looks:

htdocs ($ROOT_PATH = %DocumentRoot%)
|
+---home (base intranet application discussed in chapter 7)
| |
| +---templates (templates used by intranet apps)
| |
| +---themes (theme templates used by all intranet apps)
|
+---photos (user photos used by all intranet apps)
|
+---irm (IRM Applications)

|
+---apps (IRM apps and configuration files)

|
+---class (IRM classes)
|

372 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 372

+---templates (IRM HTML templates)
|
+---themes (symlink to %DocumentRoot%/home/templates/themes)

By changing the following configuration parameters in irm.conf, you can mod-
ify the directory structure to fit your site requirements:

$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;
$APP_FRAMEWORK_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/framework2’;
$PATH = $PEAR_DIR . ‘:’ . $PHPLIB_DIR . ‘:’ .

$APP_FRAMEWORK_DIR;

$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/irm’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;

$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;

$THEME_TEMPLATE_DIR = $TEMPLATE_DIR . ‘/themes’;
$REL_PHOTO_DIR = ‘/photos’;
$PHOTO_DIR = $ROOT_PATH . $REL_PHOTO_DIR;

Creating a messages file
The messages displayed by the IRM applications are stored in the ch11/apps/
calendar.messages file in the CDROM. You can change the messages using a text
editor.

Creating an errors file
The error messages displayed by the IRM applications are stored in the /ch11/
apps/calendar.errors file in the CDROM. You can modify the error messages
using a text editor.

Creating Application Templates
The HTML interface templates needed for the applications are included in the
ch11/apps/templates directory in the CD-ROM. These templates contain vari-
ous template tags to display necessary information dynamically. The templates are
named in the irm.conf file. These templates are discussed in Table 11-2.

Chapter 11: Internet Resource Manager 373

14 549669 ch11.qxd 4/4/03 9:25 AM Page 373

TABLE 11-2 HTML TEMPLATES

Configuration Variable Template File Purpose

$IRM_STATUS_TEMPLATE irm_status.html This template is used to
show status message.

$IRM_RESOURCE_ irm_resource_des.html This template is used to
DES_TEMPLATE display resource description.

$IRM_RESOURCE_ irm_resource_mngr.html This is the template used
MENU_TEMPLATE to show/create resources.

$IRM_RESOURCE_MODIFY_ irm_resource_modify_ This is the Web form
MENU_TEMPLATE mngr.html template to modify

resource information.

$IRM_CAT_HOME_TEMPLATE irm_cat_home.html This is the category index
template.

$IRM_CAT_ADD_ irm_cat_add_mod.html This is the Web form
MODTEMPLATE template to add or modify

a category.

$IRM_SEARCH_ irm_search_result.html This template is used to
RESULT_TEMPLATE show search results.

$IRM_SEARCH_TEMPLATE irm_search.html This template is used to
show search options.

$IRM_MOTD_TEMPLATE irm_motd.html This template is used to
generate the live note
message.

Creating a Category
Manager Application
This application, irm_cat_mngr.php, is responsible for managing categories. This
application is included on the CD-ROM in the ch11/apps directory.

It implements the following functionality:

◆ Allows administrative users to create, modify, and delete categories.

◆ Allows non-administrative users to create categories. Non-administrative
users cannot modify or delete categories.

374 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 374

The ch11/apps/irm_cat_mngr.php in the CDROM is an implementaiton of this
application. This application has the following methods.

run()
When the application is run, this method is called. It does the following:

◆ Creates a theme object, $this->themeObj.

◆ The current user’s theme choice is stored in $this->theme by calling the
getUserTheme() method of the theme object created.

◆ Next, if the application is called with cmd set to add query parameter,
the addDriver() method starts running. If cmd is set to modify then the
modifyDriver() method is called. Similarly, if cmd is set to delete then it
invokes deleteCategory() method. If the cmd is set to null then it calls
the showMenu() method.

In other words, the run() method decides which functionality is requested by
the user and calls the appropriate driver method to perform the desired operations.

addDriver()
This method controls how add operations are performed on categories. It works as
follows:

◆ If step is set to 1 in the query parameter when the application is called,
this method calls the displayAddCategoryMenu() method to show the
category creation options.

◆ If step is set to 2 in the query parameter when this application is called,
this method runs the addCategory() method to add the new category.

modifyDriver()
This method controls how modify operations are performed on categories. It works
as follows:

◆ If step, query parameter, is set to 1, then it calls the
displayModifyCategoryMenu() method to show the category
modification options.

◆ If step, query parameter, is set to 2, then it runs the modifyCategory()
method to start the category modification process.

addCategory()
This method adds new category to the database. It works as follows:

Chapter 11: Internet Resource Manager 375

14 549669 ch11.qxd 4/4/03 9:25 AM Page 375

◆ First, this method checks whether the category name ($newcategory) is
provided or not. If it is not provided, then an error message is shown and
it returns null.

◆ Next it checks whether the category is already existing in the category list
of the database or not. If it already exists in the database, then it gives an
appropriate message. Otherwise, it follows the following processes.

◆ Next It creates a category object called $categoryObj and calls the
addCategory() with the category name and parent category ID (if given)
and the user ID.

◆ If the addCategory() method returns TRUE status, an appropriate status
message is shown. The status message is created using the getMessage()
method.

◆ In case of failure to add, a failure status message is shown.

◆ Finally, the showWithTheme() method is called with the status message
embedded in the user theme template.

modifyCategory()
This method updates modified information to the database. It works as follows:

◆ First, this method checks whether the category name ($newcategory) is
provided or not. If it is not provided, then an error message is shown and
returns null.

◆ Next, it checks whether the name of the category is changed or not. If
the name is changed, then it checks whether the new given name already
exists in the CATEGORY table or not using the existInList() method. If
the name exists, then it gives an appropriate message and returns null.

◆ Next, it creates a category object called $categoryObj and calls the
modifyCategory() with the category ID, category name, parent category
ID (if given), and the user ID.

◆ If the modifyCategory() method returns TRUE status, a successful
modification massage is shown. The message is constructed using the
getMessage() method.

◆ In case of failure to modify, a failure status message is shown.

◆ Finally the showWithTheme() method is called with the status message
embedded in the user theme template.

deleteCategory()
This method deletes category information. It works as follows:

376 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 376

◆ This method first checks whether the category ID is provided or not. If it is
not given, then it shows an error message and returns null.

◆ If the given category has resources or its subcategories have resources or
more subcategories, then it shows an error message and returns null.

◆ Next it calls deleteCategory() method of the Category object with
the given category ID. If it successfully deletes the category from the
CATEGORY table, then it gives the category a successfully deleted message;
otherwise, it gives the deletion failure message.

◆ Finally, it calls the showWithTheme() method to show the message with
the user’s theme.

displayModifyCategoryMenu()
This method displays the modify category Web form. It works as follows:

◆ This method first checks whether any category is selected by the user to
modify or not. If it is not provided, then an error message is shown and
returns null.

◆ A template object called $menuTemplate is created. To load the template
file, $templateFile is passed to this method as input.

◆ Next it creates a Category object called $catObj.

◆ If the selected category is a main category, then it calls the
getCategoryName() to get the selected main category name; otherwise, it
calls getCategoryName() for getting the main category and the selected
sub-category name.

◆ Next it calls the populateCategory() method to generate the main cate-
gory names.

◆ Then it parses the main block of the template and calls the
showWithTheme() method with the output template, which is embedded
in the user’s theme template.

displayAddCategoryMenu()
This method displays the add new category Web form. It works as follows:

◆ A template object called $menuTemplate is created. To load the template
file, $templateFile is passed to this method as input.

◆ Then it calls the populateCategory() method to generate the list of
parent (main) categories as an HTML drop-down list.

◆ Finally, parsing the main block, it calls the showWithTheme() method
with the output template, which is embedded in the user’s theme template.

Chapter 11: Internet Resource Manager 377

14 549669 ch11.qxd 4/4/03 9:25 AM Page 377

populateCategory()
This method is used to populate the list of all available main categories. It works as
follows:

◆ This method is called with the template name ($template), the block
name ($blockName), and the default selected value ($selectValue).

◆ A new category object called $categoryObj is created and the
getCategoryList() method of that object is called to generate the avail-
able main categories name and stored in a array named $categoryList.

◆ If the category list is not empty, then it sets the category ID and name for
each category in the list; otherwise, it returns null.

◆ If $blockName is set to jsblock block, then it parses the
jsCategoryBlock and sets the output into the $category variable.
Otherwise, if the category ID is not equal to the $selectValue, it parses
the categoryBlock block and sets the output in the $category variable.

◆ Finally, this method returns the value of the $category variable.

populateSubCategory()
This method is used to populate the subcategory list for the given category. It works
as follows:

◆ This method is called with the template name ($template), category ID
($cat_id), and the HTML template block name ($blockName) in which
block the subcategory will be populated.

◆ A new object of category class is created named $subcatagoryObj and
from that class, the getSubCategoryList() method is called with the
given category ID ($cat_id) as a parameter. The subcategory list is stored
in the array named $subcategoryList.

◆ If the subcategory list is not there, it checks the given HTML template block
name. Then it sets the subcategory name and ID in respective variables in
the given block and sets the output in the $subCategory variable parsing
the block.

◆ Finally, this method returns the subcategory list stored in the
$subCategory.

showMenu()
This method displays add, delete, and modify category options. It works as follows:

378 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 378

◆ A template object called $menuTemplate is created. To load the template,
a file named $IRM_CAT_HOME_TEMPLATE (configurable via irm.conf) is
passed to the method.

◆ Then it defines all the HTML template block names using set_block()
method of the $menuTemplate object and assigns values to the HTML
template variables using set_var() method of the $menuTemplate object.

◆ Next it calls the populateCategory() and sets the return value in the
required blocks.

◆ Finally it parses the main block and calls the showWithTheme() method
to show output with the user’s theme.

showWithTheme()
This method is used to show user’s theme template. It works as follows:

◆ It creates a theme template object called $themeTemplate.

◆ The user’s theme template is loaded into the $themeTemplate object.

◆ This method is called with a parameter called $output, which will
be shown with the theme template. This $output is set into in the
‘CONTENT_BLOCK’ block.

◆ Then it parses all the blocks and shows the final output.

authorize()
This method authorizes everyone on the intranet to view the resource manager and,
therefore, always returns TRUE.

Creating a Resource
Manager Application
This application, irm_resource_mngr.php, is responsible for managing resources.
This application is included on the CD-ROM in the ch11/apps directory. It imple-
ments the following functionality:

◆ It allows administrators to create, modify, and delete resources.

◆ Non-administrative users can only create resources.

The ch11/apps/irm_resource_mngr.php file in the CDROM is an implementa-
tion of this application. This application has the following methods.

Chapter 11: Internet Resource Manager 379

14 549669 ch11.qxd 4/4/03 9:25 AM Page 379

run()
When the application is run, this method is called. It does the following:

◆ Creates a theme object, $this->themeObj.

◆ The current user’s theme choice is stored in $this->theme by calling the
getUserTheme() method of the theme object created.

◆ Next if the query parameter cmd is set to add, then it calls the
addDriver() method; if $cmd is set to delete, then the delete() method
starts running. If $cmd is set to modify, then it calls the modifyDriver()
or if $cmd is set to the disdes (short for display description) then it calls
the displayDescription() method.

In other words, the run() method decides which functionality is requested by
the user and calls the appropriate driver method to perform the desired operations.

addDriver()
This method controls how add operations are performed on resources. It works as
follows:

◆ If $step, query parameter, is set to 2, when called this method is called.
It invokes the addResource() method to insert the resource then.

◆ Otherwise, this method calls the showAddMenu() method to show the
resource creation options.

modifyDriver()
This method controls how modify operations are performed on categories. It works
as follows:

◆ If query parameter, $step is set to 1, then it calls the selectResource()
to show the option for selecting the resource to be modified.

◆ If $step is set to 2, then it calls the showModifyMenu() to show the
selected resource property where the user is able to modify the resource.

◆ If the $step is set to 3, it calls the modifyResource() method to modify
the resource property.

populateCategory()
This method is used to populate the list of all available main categories. It works as
follows:

380 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 380

◆ This method is called with the template name ($template), HTML
template block name ($blockName) and the default selected value
($selectValue).

◆ A new category object called $categoryObj is created and the
getCategoryList() method of that object is called to generate the avail-
able main categories name and stored in a array named $categoryList.

◆ If the category list is not empty, then it sets the category ID and name for
each category in the list; otherwise, it returns null.

◆ If $blockName is set to jsblock then it parses the jsCategoryBlock and
sets the output into the $category variable. Otherwise, it parses the
categoryBlock block to see whether the category ID is equal to the
$selectValue or not and sets the output in the $category variable.

◆ Finally this method returns the value of $category variable.

populateSubCategory()
This method is used to populate the subcategory list for the given category. It works
as follows:

◆ This method is called with the template name ($template), category ID
($cat_id), and block name ($blockName) where the subcategory will be
populated.

◆ A new object of category class is created named $subcatagoryObj and
the getSubCategoryList() method is called of the class with the given
category ID ($cat_id) as the parameter. The subcategory list is stored in
the array named $subcategoryList.

◆ If the subcategory list is not there, then it checks the given block name.
Then it sets the subcategory name and ID in respective variables in the
given block and parses the block and sets the output in the $subCategory
variable.

◆ Finally, this method returns the subcategory list stored in the
$subCategory.

showAddMenu()
This method displays the Web form to add new resources. It works as follows:

◆ A template object called $menuTemplate is created. To load the template,
a file named $IRM_CAT_HOME_TEMPLATE (configurable via irm.conf) is
passed to the method.

Chapter 11: Internet Resource Manager 381

14 549669 ch11.qxd 4/4/03 9:25 AM Page 381

◆ Next this method creates an object of user class named $userObj. Then
it calls the getUserList() method of that object to get all users’ e-mail
addresses. The user’s name is taken from each e-mail address field.

◆ Then This method calls populateCategory to generate the category list.

◆ Finally, the showWithTheme() method is called with the output of parsing
main block to embed the message in the user theme template.

addResource()
This method adds the new resource to the database. It works as follows:

◆ First, this method checks whether it is called with valid and required input
or not. It checks where the category is provided or not. If it is not provided,
then it gives an error message of “category name missing” and returns null.

◆ Next, it checks if the resource name and URL are given or not. If they are
not given, then an error message is shown and returns immediately.

◆ It checks the validity of the given URL. If it is not valid, then it shows the
appropriate error message to the user and returns from the method.

◆ If a new category name is provided by the user of his own, then it checks
whether the category is already existing or not. If not, then it adds the
new category in the CATEGORY table.

◆ Now it creates an object of resource class and call the addResource()
method with the proper parameter in the RESOURCE table. If it can success-
fully add the resource, then it returns the resource ID. If it fails to add,
then a message is shown that the resource could not be added.

◆ If the resource is added successfully, then it generates intranet MOTD
messages for the requested users.

◆ Finally, it calls the displayWithTheme() method to show the message
with the user’s theme.

showModifyMenu()
This method displays the modify resource Web form. It works as follows:

◆ First, this method checks whether any resource name ($resource) is
selected or not. If not, it gives an error message and returns from the
method.

◆ A template object called $menuTemplate is created. To load the template,
a file named $IRM_CAT_HOME_TEMPLATE (configurable via irm.conf) is
passed to the method.

382 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 382

◆ Then an object of Resource class is created named $resourceObj. It calls
getResourceInfo() with the resource ID to get the information about the
selected resource and calls getKeywords() to get keywords for the
resource.

◆ Next it sets the resource information in the template.

◆ It calls populateCategory() to generate the category list.

◆ Finally, the showWithTheme() method is called with the output of parsing
the main block to embed the message with the user theme template.

modifyResource()
This method updates modified resource information to the database. It works as
follows:

◆ First, this method checks whether the category is provided. If the category
is not provided, then it gives an error message and returns null.

◆ Next, the method checks whether the resource name and URL is given.
If the resource name is not given, then an error message is shown and
it returns null.

◆ Then It checks the validity of a given URL. If the URL is not valid, then it
shows the appropriate error message to the user (“incorrect URL given”)
and returns from the method.

◆ If a new category name is provided by the user of his own, then it checks
whether the category already exists. If it doesn’t exist, then it adds the
new category in the CATEGORY table.

◆ Then It creates an object of Resource class and calls the
modifyResource() method with the proper parameter to resource in the
RESOURCE table. If it successfully modifies the resource, then it returns the
resource ID. If it fails to modify, then a message is shown that the resource
is not modified.

◆ If the resource is modified successfully, then it deletes all the previous
keywords and adds new keywords in the RESOURCE_KEYWORD table.

◆ Finally, it calls the displayWithTheme() method to show the message
with the user’s theme.

delete()
This method deletes resource information. It works as follows:

◆ This method first checks whether any resource is selected to delete or not.
If it is not given, then an error message is shown and returns null.

Chapter 11: Internet Resource Manager 383

14 549669 ch11.qxd 4/4/03 9:25 AM Page 383

◆ Then it creates an object of Resource class and calls deleteKeywords()
with the selected resource ID as a parameter.

◆ If it successfully deletes the keywords, then it calls the deleteResource()
method to delete the resource information from the RESOURCE table.

◆ Finally, it calls the displayWithTheme() method to show the status
message of deletion with the user’s theme.

displayDescription()
This method is used to display the description of the given resource. It works as
follows:

◆ A template object is created named $menuTemplate. This method then
loads the $IRM_RESOURCE_DES_TEMPLATE template.

◆ Then It creates an object of Resource class and calls getResourceInfo()
with the selected resource ID as a parameter, which returns the resource
information.

◆ Next it sets the title and description in the template.

◆ Finally, it parses the main block and calls the displayWithTheme()
method to show output with the user’s theme.

selectResource()
This method is used to give the user an option to choose a resource for modification.
The method works as follows:

◆ First, the method creates an object of Category class named $catObj.

◆ Next it populates the main category by calling the populateCategory()
method.

◆ If the $category is assigned any value, then it finds the subcategory list
by calling the getSubCategoryList().

◆ Then It checks whether the variable $change is assigned any value or not.
If $change has any value, then it generates the resource list according to
the main category or the subcategory changes.

◆ Finally the showWithTheme() method is called with the output of parsing
the main block to embed the message with the user theme template.

displayWithTheme()
This method is used to show the user’s theme template. It works as follows:

384 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 384

◆ It creates a theme template object called $themeTemplate.

◆ The user’s theme template is loaded into the $themeTemplate object.

◆ This method is called with a parameter called $output, which will
be shown with the theme template. This $output is set into in the
‘CONTENT_BLOCK’ block.

◆ Then it parses all the blocks and shows the final output.

authorize()
This method authorizes everyone on the intranet to view the resource manager and,
therefore, always returns TRUE.

Creating a Resource
Tracking Application
This application, irm_resource_track_mngr.php, is responsible for resources
tracking. This application is included on the CD-ROM in the ch11/apps directory.
The application has the following methods.

run()
This method is responsible for running the application. First it sets the user ID into
a variable named $uid. Then it calls the keepTrack() method.

keepTrack()
This method keeps track of resource visits and updates the database. It works as
follows:

◆ First it defines an array named $params containing the resource ID, visitor
ID (user ID), and current time.

◆ Then it creates an object of Resource class and calls the
trackResourceVisit() method with the $params array to insert records
in the RESOURCE_VISITOR table.

◆ If it successfully inserts the data, then it calls the getResourceUrl()
method to get the URL of the resource.

◆ Finally, it redirects the page to the resource URL.

Chapter 11: Internet Resource Manager 385

14 549669 ch11.qxd 4/4/03 9:25 AM Page 385

authorize()
This method authorizes everyone on the intranet to view the resource manager and,
therefore, always returns TRUE.

Creating a Search
Manager Application
This application, irm_search_mngr.php, is responsible for managing search oper-
ations. This application is included on the CD-ROM in the ch11/apps directory.
This application has the following methods.

run()
When the application is run, this method is called. It does the following:

◆ It creates a theme object, $this->themeObj.

◆ The current user’s theme choice is stored in $this->theme by calling the
getUserTheme() method of the theme object created.

◆ Next, if the query parameter $cmd is set to search, it calls the
displaySearchResult() method; if $cmd is set to previous or next,
then it calls displaySearResultNextandPrevious(); if it is set to
mostvisited, then it calls showMostVisitedResource() to show
the most visited resources; if it is set to topranking, then it calls
showTopRankingResource() to show the top-ranking resources; if the
$cmd is set to title, rating, or addedby, then it calls sortAndDisplay();
and if $cmd is set to nothing then it calls showMenu().

In other words, the run() method decides which functionality is requested by
the user and calls the appropriate driver method to perform the desired operations.

populateCategory()
This method is used to populate the list of all available main categories. It works as
follows:

◆ This method is called with the template name ($template), the block
name ($blockName), and the default selected value ($selectValue).

◆ A new Category object called $categoryObj is created and the
getCategoryList() method of that object is called to generate the avail-
able main categories name and stored in an array named $categoryList.

386 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 386

◆ If the category list is not empty, then it sets the category ID and name for
each category in the list; otherwise, it returns null.

◆ If $blockName is set to jsblock, then it parses the jsCategoryBlock
and sets the output into the $category variable. Otherwise, it parses the
categoryBlock block if the category ID is not equal to the $selectValue
and sets the output in the $category variable.

◆ Finally, this method returns the value of $category variable.

populateSubCategory()
This method is used to populate the subcategory list for the given category. It works
as follows:

◆ This method is called with the template name ($template), category ID
($cat_id), and block name ($blockName), where the subcategory will be
populated.

◆ A new object of the Category class is created named $subcatagoryObj,
and the getSubCategoryList() method is called from the class with the
given category ID ($cat_id) as a parameter. The subcategory list is then
stored in the array named $subcategoryList.

◆ If the subcategory list is not there, then it checks the given block name.
Then it sets the subcategory name and ID in respective variables in the
given block and sets the output in the $subCategory variable parsing
the block.

◆ Finally, this method returns the subcategory list stored in the $subCategory.

populateResource()
This method is used to display resources to show the search result. It works as follows:

◆ This method is called with a template name ($template), resource display
starting point ($startingPoint), and block name ($blockName) where the
resource information is displayed.

◆ Next it sets the resource information in the template.

◆ Then It sets the alternative different colors in rows to display, parses each
row, and stores it in the $resource variable.

◆ Finally, it returns the value of $resource.

showMenu()
This method is used to display the menu shown in the search index page. It works
as follows:

Chapter 11: Internet Resource Manager 387

14 549669 ch11.qxd 4/4/03 9:25 AM Page 387

◆ A template object is created named $menuTemplate. To load, the template
file named $IRM_SEARCH_TEMPLATE (configurable via irm.conf) is passed
to the method.

◆ It creates an object of the Category class named $catObj and shows the
category and subcategory names with the number of resources belonging
to respective categories.

◆ Then It calls the populateCategory() method to show the category list
in the drop-down list in the template.

◆ It creates an object of the User class named $userObj and calls the
getUserList() method to populate all the user lists.

◆ Next it checks whether the viewer is an administrator of the IRM applica-
tion or not. If she is not an administrator, it gives only the add resource
link. On the other hand, If she is an administrator, it gives the category and
resource manager link along with the add resource.

◆ Finally, the showWithTheme() method is called with the output of parsing
the main block to embed with the user’s theme template.

displaySearchResult()
This method is used to display the results after executing a search operation. It works
as follows:

◆ A template object is created named $menuTemplate. To load, the template
file named $IRM_SEARCH_RESULT_TEMPLATE (configurable via irm.conf)
is passed to the method.

◆ Then it creates a Resource class object named $resourceObj and calls
the searchResource() method with the search criteria given by the user
and stores it in the array named $resourceList.

◆ It creates a User class object named $userObj and calls the
getUserInfo() method to get the name of the user who added the
resource.

◆ Next, it assigns the search result in the SESSION_SEARCH_LIST session
variable and assigns the value in the SESSION_PAGE_SIZE session variable
if it is given by the user from the search interface. If it is not given by the
user, then it assigns the default value (DEFAULT_PAGE_SIZE), which is con-
figurable via irm.conf.

◆ Then It calls the populateResource() method to show the search result.

◆ Finally, the showWithTheme() method is called with the output of parsing
the main block to embed with the user’s theme template.

388 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 388

sortAndDisplay()
This method is used to sort the search result according to user’s criteria. This method
works as follows:

◆ A template object is created named $menuTemplate. To load, the template
file named $IRM_SEARCH_RESULT_TEMPLATE (configurable via irm.conf)
is passed to the method.

◆ This method stores the value of the session variable in an array object
named $data, which is used to sort the data.

◆ Next it checks the $cmd value, which contains sorting criteria. If $cmd is
set to ‘title’, then it calls usort() with ‘sortByResourceTitle’ as
the function parameter to sort the search result according to resource title
and checks the $sorttype value. Depending on the value of $sorttype,
array_reverse() is called to reverse the sorting result.

◆ If the $cmd is set to rating, then it calls usort() with
sortByResourceRating as the function parameter to sort the result
depending on the $sorttype value according to the resource rating.

◆ If the $cmd is set to addedby, then it calls usort() with
‘sortByResourceAddedBy’ as the function parameter.

◆ Then the method registers the SESSION_SEARCH_LIST session variable and
assigns the sorted result in that variable.

◆ Next it calls the populateResource() method to show the sorted result.

◆ Finally, the showWithTheme() method is called with the output of parsing
the main block to embed with the user’s theme template.

displaySearResultNextandPrevious()
This method is used to display the previous/next page results after executing a
search operation. This method works as follows:

◆ A template object is created named $menuTemplate. To load, the template
file named $IRM_SEARCH_RESULT_TEMPLATE (configurable via irm.conf)
is passed to the method.

◆ Now it checks the $cmd value. If it is set to ‘next’, then it generates the
next page resource starting point. If $cmd is set to ‘previousBlock’, then
it generates the previous page starting point.

◆ Next it calls the populateResource() method to show the sorted result.

◆ Finally, the showWithTheme() method is called with the output of parsing
the main HTML template block to embed with the user’s theme template.

Chapter 11: Internet Resource Manager 389

14 549669 ch11.qxd 4/4/03 9:25 AM Page 389

showTopRankingResource()
This method is used to display the top-ranked resources. It works as follows:

◆ A template object is created named $menuTemplate. To load, the template
file named $IRM_SEARCH_RESULT_TEMPLATE (configurable via irm.conf)
is passed to the method.

◆ Next it registers the session variables SESSION_SEARCH_LIST and
SESSION_PAGE_SIZE to store the search output and number of resources
that needs to be shown each page, respectively.

◆ Then it creates a Resource class object named $resourceObj and calls the
getTopRankingList() method with the defined variable ‘TOPRANKING’
(which is configurable in the irm.conf) to get the top-ranking resource.

◆ It creates a User class object named $userObj and calls getUserInfo()
method to get the name of the user who added the resource.

◆ It sets the result and parses the main block. Then it calls the
showWithTheme() method to embed the output with the user’s theme
template.

showMostVisitedResource()
This method is used to display the most visited resources. It works as follows:

◆ A template object is created named $menuTemplate. To load, the template
file named $IRM_SEARCH_RESULT_TEMPLATE (configurable via irm.conf)
is passed to the method.

◆ Next it registers the session variables SESSION_SEARCH_LIST and
SESSION_PAGE_SIZE to store the search output and number of resources
to be shown in each page, respectively.

◆ Then It creates an object of Resource class named $resourceObj and
calls the getMostVisitedResource() method with a arameter called
MOSTVISITED, which specifies the number of the most visited resource
to be shown (configurable in the irm.conf).

◆ It calls the getResourceInfo() method to get information for each
resource and stores in the session variable SESSION_SEARCH_LIST and
displays the search result.

◆ Finally the showWithTheme() method is called with the output of parsing
the main block to embed with the user’s theme template.

showWithTheme()
This method is use to show the user’s theme template. It works as follows:

390 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 390

◆ It creates a theme template object called $themeTemplate.

◆ The user’s theme template is loaded into the $themeTemplate object.

◆ This method is called with a parameter called $output, which will
be shown with the theme template. This $output is set into in the
‘CONTENT_BLOCK’ block.

◆ Then it parses all the blocks and shows the final output.

authorize()
This method authorizes everyone on the intranet to view the resource manager and,
therefore, always returns TRUE.

sortByResourceTitle()
This method is used to sort resources by their titles according to alphabetical order.
It takes two arrays as inputs and compares their RESOURCE_TITLE element using the
strcmp() method.

sortByResourceAddedBy()
This method is used to sort resources by its creator name according to alphabetical
order. It takes two arrays as input and compares their ‘RESOURCE_ADDED_BY’ element
using the strcmp() method.

sortByResourceRating()
This method is used to sort resources by their rating. It takes two arrays as input
and compares their ‘RESOURCE_RATING’ element. If the first array’s resource rating
is greater than the second one then it returns –1; if they are equal, it returns 0; oth-
erwise, it returns 1.

sortByResourceVisitor()
This method is used to sort resources by their visitor numbers. It takes two arrays as
input and compares them. If the first array’s visitor number is greater than the second
one, then it returns –1; if they are equal, then it returns 0; otherwise, it returns 1.

Installing an IRM on Your Intranet
Here we will assume that you’re using a Linux system with MySQL and Apache
server installed. The following installation process assumes the following:

Chapter 11: Internet Resource Manager 391

14 549669 ch11.qxd 4/4/03 9:25 AM Page 391

◆ Your intranet Web server document root directory is /evoknow/intranet/
htdocs. Of course, if you have a different path, which is likely, you should
change this path whenever you see it in a configuration file or instruction
in this chapter. During the installation process, I will refer to this directory
as %DocumentRoot%.

◆ Finally I also assume that You have installed the PHPLIB and PEAR library.
Normally, these gets installed during PHP installation. For your convenience,
I have provided these in the lib/phplib.tar.gz and lib/pear.tar.gz
directories on the CD-ROM. In these sample installation steps, we will
assume that these are installed in the /%DocumentRoot%/phplib and
/%DocumentRoot%/pear directories. Because your installation locations
for these libraries are likely to differ, make sure you replace these paths
in the configuration files.

Here is how you can get your IRM applications up and running:

◆ Install Base Intranet Applications. If you haven’t yet installed the base
intranet user home application and the messaging system discussed in
Chapter 7, you must do so before proceeding further.

◆ Install Intranet Calendar Database Tables. I make the assumption that you
have already installed the INTRANET database (see Chapter 7 for details).
You need to install the ch11/sql/irm.sql database. The quickest way to
create the database is to run the following commands:

mysqladmin –u root –p create IRM
mysql –u root –p –D IRM < irm.sql

◆ Install IRM Applications. Now from the ch11 directory on the CD-ROM,
extract ch11.tar.gz in %DocuemntRoot%. This will create irm in your
document root. Configure %DocumentRoot%/irm/apps/irm.conf for path
and database settings. The applications are installed in the %DocumentRoot%/
irm/apps directory and the templates are stored in %DocumentRoot%/irm/
apps/templates.

Your MySQL server is hosted on the intranet Web server and, therefore, it
can be accessed via localhost. However, if this is not the case, you can
easily modify the database URLs in each application’s configuration files.
For example, the home.conf file has a MySQL database access URLs such
as the following:

$INTRA_DB_URL = ‘mysql://root:foobar@localhost/INTRANET’;

$IRM_DB_URL = ‘mysql://root:foobar@localhost/CALENDAR’;

$APP_DB_URL = ‘mysql://root:foobar@localhost/auth’;

392 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 392

Say your database server is called db.domain.com and the user name and
password to access the INTRANET and auth databases (which you will create
during this installation process) are admin and db123. In such a case, you
would modify the database access URLs throughout each configuration file
as follows:

$INTRA_DB_URL = ‘mysql://admin:db123@db.domain.com/INTRANET’;

$IRM_DB_URL = ‘mysql://admin:db123@db.domain.com/IRM’;

$APP_DB_URL = ‘mysql://admin:db123@db.domain.com/auth’;

◆ Add IRM to the Theme Navigation Bar. You need to update your theme
navigation bar files stored in %DocumentRoot%/themes/%theme%/
home_left_nav.html, whenever you add a new application. For example,
to update the std_blue theme, you need to update the %DocumentRoot%/
themes/std_blue/home_left_nav.html file to include the following line
in the HTML table:

<tr><td width=”100%”><a href=”/irm/apps/
irm_search_mngr.php”>IRM</td> </tr>

This will create a new row in the left navigation bar created with the
HTML table.

◆ Set File/Directory Permissions. Make sure you have changed file and
directory permissions such that your intranet Web server can access all
the files.

After you’ve performed the preceding steps, you’re ready to test your IRM
applications.

Testing IRM
Log in to your intranet via http://yourserver/index.php or http://yourserver/
home/home.php.

Click on the Calendar link on the left navigation bar of your intranet home page,
or point your Web browser to http://yourserver/irm/apps/irm_search_mngr.
php after you’re logged in to the intranet.

This will show you the IRM search interface as shown in Figure 11-3.
You will notice that there are no resources set up, because we haven’t yet set up

categories.
To set up categories, click on the Category Manager as an administrative user.

You will see a screen similar to Figure 11-4.

Chapter 11: Internet Resource Manager 393

14 549669 ch11.qxd 4/4/03 9:25 AM Page 393

Figure 11-3: The IRM search interface.

Figure 11-4: The Category Manager.

394 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 394

Click on the Add Category button and you will see a screen similar to Figure 11-5.

Figure 11-5: Adding a new category.

Enter a new category name. If this is a subcategory of an existing category,
select the parent category from the available categories. Finally, click on the Add
Category button to add the new category.

As mentioned in the functionality requirements, the Internet resources are only
added in subcategories. There can be only one-level subcategories for each main
category. So you should add at least one subcategory per main category. Figure 11-6
shows a new category called Languages with the PHP subcategory.

Keep adding categories and subcategories as you need. Figure 11-7 shows a list
of categories with subcategories that we’ve created for this test.

Chapter 11: Internet Resource Manager 395

14 549669 ch11.qxd 4/4/03 9:25 AM Page 395

Figure 11-6: A category with a single subcategory.

Figure 11-7: A list of categories with subcategories shown on the search interface.

396 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 396

To add a new resource, click on the Add URL link (http://server//irm/apps/
irm_resource_mngr.php?cmd=add&step=1) shown on the title bar of the search
interface. This brings up a screen similar to Figure 11-8.

Figure 11-8: Adding a new Internet resource.

First, select the main category and subcategory before adding any data. Make
sure you enter a valid URL, because the system will try to contact the URL and if it
fails it will not add it in the database. Enter keywords, descriptions, titles, and rat-
ing as appropriate. If you want the resource to be announced to others via the
intranet messaging system, you should select the Auto Announce option and select
the users who should receive this announcements. Finally submit the form. The
resource will be added to the appropriate subcategory.

After adding a resource, you can access it via the search interface by clicking on
the subcategory or using keywords or other search parameters to locate it. Figure 11-9
show that we have added a new resource under the PHP subcategory in the Language
category.

Clicking on the PHP subcategory shows what you see in Figure 11-10.

Chapter 11: Internet Resource Manager 397

14 549669 ch11.qxd 4/4/03 9:25 AM Page 397

Figure 11-9: A new resource in the search interface.

Figure 11-10: Contents of a subcategory.

398 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 398

You can use the result titles such as Resource Title, Resource Rating, and Added By
User to sort the results. To view the description of the resource, click on the Desc link.

Figure 11-11 shows that the same resource can be found by entering a search
parameter in the search interface.

Figure 11-11: Using search parameters to find resources.

To find the most visited resources, click on the Show Most Visited Resources link
on the search interface. You will see a screen similar to Figure 11-12.

Remember that whenever a user clicks on a resource, it is tracked and this infor-
mation is used to generate the most-visit data.

To find the highest-ranking resources, click on the Show Top Ranking Sites on
the Search interface. You will see a screen similar to Figure 11-13.

Chapter 11: Internet Resource Manager 399

14 549669 ch11.qxd 4/4/03 9:25 AM Page 399

Figure 11-12: The most visited Internet resources.

Figure 11-13: The top-ranking Internet resources.

400 Part II: Developing Intranet Solutions

14 549669 ch11.qxd 4/4/03 9:25 AM Page 400

Security Concerns
Now you have a set of intranet applications that allow you to add/modify/delete
Internet site resources. Since these applications are run from your intranet they are
only accessible to your intranet users who must authenticate using the central
authentication system developed in Chapter 5. However, if you needed to restrict
access to these applications even further using some other special schema such as
IP subnet or time, you can incorporate such custom authorization requirements in
the authorize() methods for each of these applications.

Summary
In this chapter, you learned to create an Internet Resource Manager for your
intranet. This application allows users to organize the resources on a shareable and
searchable central database.

Chapter 11: Internet Resource Manager 401

14 549669 ch11.qxd 4/4/03 9:25 AM Page 401

14 549669 ch11.qxd 4/4/03 9:25 AM Page 402

Chapter 12

Online Help System
IN THIS CHAPTER

◆ Developing an online help system

◆ Installing an online help system

◆ Using an online help system

HAVING ONLINE HELP with your Web or intranet applications can be a great blessing,
because it may reduce user support calls and, therefore, cost. In this chapter, you’ll
develop an online help system that can be used for any of the Web or intranet appli-
cations developed in this book.

First, let’s look at the functionality you want the help system to offer.

Functionality Requirements
The help system will offer the following features.

◆ Structured help contents: The system will assume a structured help con-
tent design where help for an application will be divided into sections.
Each section will be represented with one or more HTML pages, which
may or may not have embedded images. Each section will have a number
like x.y.z where x is the section number, y is the second level subsection
number, and z is the third level subsection number. For example, 1.0.0.html,
1.1.0.html, and 1.1.1.html are pages for section 1. The images for all the
help contents will be stored in an images directory.

◆ Automatic table of contents page: The system should generate the table
of contents page automatically. This feature is very good to have because
you can then add or remove sections.

◆ Automatic navigation: The system should generate automatic navigation
links from section to section and also have a link to the table of contents
from each page.

403

15 549669 ch12.qxd 4/4/03 9:26 AM Page 403

◆ Keyword search: The system will allow keyword-based searches using the
logic operators AND and OR.

◆ Template-based interface: The system should support a central help tem-
plate to display help pages but also allow individual sections to have their
own templates to alter the look and feel of the help as needed.

Understanding the Prerequisites
The help system requires the application framework classes that were discussed in
Chapter 4. You must have the application framework classes along with PHPLIB
and PEAR packages installed.

Designing and Implementing the
Help Application Classes
As shown in the system diagram, Figure 12-1, there is one new object, Help object,
which is needed to implement the online help system.

Figure 12-1: The help system diagram.

Here you will develop the class that will provide the help object for the online
help applications.

Designing and implementing the Help class
The Help class is used by all help applications. It allows help applications to display,
search, and index help contents. The ch12/apps/class/class.Help.php file on
the CD-ROM implements this class. This class implements the following methods.

Help Application

Make Index Application

PHP Application Framework

Help Applications

Help Object class.Help.php

404 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 404

Help()
This is the constructor method. It works as follows:

◆ It sets the object variable _APP to the given application name. The name
of the application for which help will be displayed is passed to this method
using the $params[‘app’] parameter.

◆ It sets the object variable _MAP to the given application’s map file name.
The name of the map file that will be used to locate help contents for the
current application is passed to this method using the $params[‘map’]
parameter.

◆ The object variable _FORCE is set using the $params[‘force’] parameter,
which indicates if the help index should be forcefully created again even
if the current index is up to date.

◆ The object variable _OPERATORS is set to an array of two logical operators:
OR and AND. These are the logical operators that are supported in keyword
search operations.

◆ The object variable _LOADED is set to false, which indicates that the object
has not yet loaded the help map information from the named map file.

◆ If the application for which help contents is to be displayed, searched,
indexed is named (that is, $this->_APP is set) and the map file name is
given (that is, $this->_MAP is set), then the method calls the loadMap()
method to load the map information for the named application. The map
file contains help contents information for the named application.

getApp()
This method returns the value of the _APP object variable, which is the name of the
application for which the help object is to display, search, or index the help contents.

getRelHelpDir()
This method returns the relative help directory path stored in the _REL_HELP_DIR
object variable, which is set in the loadMap() method.

getSectionContents()
This method returns the contents of a section of the help contents. The section num-
ber is passed as a parameter ($section) to this method. The contents are stored in a
hash called $contents. It works as follows:

◆ The $contents[‘output’] is set to show_section, which indicates to the
help display application (help.php) that it needs to show the help content
for a given section.

◆ A local variable called $tocLink is created to store the table of contents
link. The table of contents link is simply the path to the help application

Chapter 12: Online Help System 405

15 549669 ch12.qxd 4/4/03 9:26 AM Page 405

with the app=current_application query parameter. For example, if the
application name is irm, then this link can be http://server/path/to/
help.php?app=irm. The $tocLink value is stored in $contents hash
using $contents[‘toc_link’].

◆ A local variable called $prevSection is used to store the previous section
of the $section. The previous section number is retrieved by calling the
getPreviousSection() method. If the previous section is available, then
a URL is created to point to the previous section and the URL is stored in
$contents[‘previous_section’]. Otherwise, the $contents[‘previous_
section’] is set to null. Similarly, a URL is created for the next section
by calling the getNextSection() method and the value is stored in
$contents[‘next_section’].

◆ The body of the help contents for the current section is stored in $contents
[‘next_section’], which is populated using the contents returned by the
_loadFile() method. The _loadFile() loads the help contents for the
current section when it is given a fully qualified help file name using the
$this->getFQPNofSection($section)) method.

◆ A local array variable called $search is set up with a set of regular
expression (RE) patterns that identifies embedded image sources in HTML
contents. Another local array variable called $replace is set up with
a set of path replacements for RE patterns stored in $search. The idea
is to replace image sources with relative paths such as src=images,
src=”images, background=images, background=”images with the proper
relative path generated using the getRelHelpDir() method. When the
help contents are displayed by the help application, the relative paths of
the HTML image sources must be modified this way to ensure that images
are visible. The built-in preg_replace() function is used replace all
$search patterns with $replace in $contents[‘body’].

◆ The template path for the current section is set to $contents[‘template’]
using the getSectionTemplate() method.

◆ Similarly, the base URL path for the current section is set to $contents
[‘base_url’] using the getBaseURL() method.

◆ Finally, the method returns the $contents associative array.

getPreviousSection()
This method returns the previous section number for a given section. It works as
follows:

◆ First it stores the total number of sections, $totalSections, in the current
help map by counting the entries in $this->_SECTIONS, which is the list
of sections.

406 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 406

◆ Then it finds the array index of the current section ($section) in the
$this->_SECTIONS array using the _indexOfSection() method. This
array index is stored in $thisSectionIndex.

◆ If the current section’s array index, $thisSectionIndex, is greater than
zero, which means the current section is not the first section, than the
method returns the previous section number by subtracting 1 from the
current section’s array index and calling the getSectionAtIndex()
method to return the section number at this index.

◆ If the current section is the first section, the method returns null.

getNextSection()
This method returns the next section number for a given section. It works as follows:

◆ First it stores the total number of sections, $totalSections, in the current
help map by counting the entries in $this->_SECTIONS, which is the list
of sections.

◆ Then it finds the array index of the current section ($section) in the
$this->_SECTIONS array using the _indexOfSection() method. This
array index is stored in $thisSectionIndex.

◆ If the current section’s array index, $thisSectionIndex, is less than the
total index count, which means the current section is not the last section,
then the method returns the next section number by adding 1 to the current
section’s array index and calling the getSectionAtIndex() method to
return the section number at this index.

◆ If the current section is the last section, the method returns null.

getSectionAtIndex()
This method returns the section number from the $this->_SECTIONS hash for a
given section array index. It works as follows:

◆ First it creates a list called $list, which stores the section names from the
$this->_SECTIONS hash.

◆ If the given array index number, $index, is within the range of the $list
array, it returns the section number at the index; otherwise, it returns null.

_indexOfSection()
This method returns the array index of a given section number. It works as follows:

◆ First it creates a list called $list, which stores the section names from the
$this->_SECTIONS hash.

◆ A local variable called $index is initialized to null.

Chapter 12: Online Help System 407

15 549669 ch12.qxd 4/4/03 9:26 AM Page 407

◆ Then it loops through the list of sections and checks whether the given
section number matches with one in the list. If a match is found, the loop
is stopped and the index of the matched section is stored in $index.

◆ The $index value is returned.

getTOCContents()
This method returns the table of contents in a hash. It works as follows:

◆ It sets a hash called $contents to an empty array.

◆ The $contents[‘output’] is set to show_toc, which indicates to the help
display application (help.php) that it needs to show the table of contents.

◆ It creates a hash called $sections with the list of sections using
getSectionHash. If there are no sections, the method returns the empty
$contents. Otherwise, the section hash is stored in $contents[‘sections’].

◆ For each section of the help contents, it creates a URL and stores the URL
in $sectionLinks, which is later stored in $contents[‘section_links’].

◆ Then it gets the template for the table of contents using the
getTOCTempalte() method and stores the template path in
$contents[‘template’].

◆ Similarly, the base URL path for the current section is set to
$contents[‘base_url’] using the getBaseURL() method.

◆ Finally, the method returns the $contents hash.

isLoaded()
This method returns the value of object variable _LOADED, which indicates if the help
map is loaded or not.

isSection()
This method returns TRUE if a given section name belongs to the current section list.

search()
This method performs a keyword search using the help index. It receives keywords
as a parameter. It works as follows:

◆ It creates a keyword list called $keywordList using the getKeywordList()
method. Note that the given keyword parameter, $kwords, might contain
duplicates; the getKeywordList() method removes these duplicates and
also removes the OR operator, because whenever multiple words are
searched, the default operation is logical OR.

◆ It creates a list of sections, $allSections, using the getSectionList()
method.

408 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 408

◆ It initializes an array called $matchedSections to an empty list.

◆ It sets $keywordCount to the number of keywords in $keywordList.

◆ For each keyword in the list, it runs through a while loop to find matching
sections. When looping through the list of keywords, each keyword is com-
pared with ‘and’ (for an AND operation). If the current keyword is ‘and’,
the next keyword is searched only in the section list of already matched
sections for all previous keywords. If the keyword is not ‘and’, then the
keyword is searched in all sections ($allSections). This effectively creates
the AND operation.

◆ All found matches are consolidated in the $matchedSections list. If the
$matchedSections array has a size greater than zero, that indicates that
a match for the given keywords was found. In such a case, the matched
sections are stored in an object variable called _SEARCH_RESULT and the
match count is stored in another object variable called
_SEARCH_MATCH_COUNT.

◆ Based on whether a match was found or not, the method returns TRUE or
FALSE.

getSearchMatchCount()
This method returns the number of matches found in a search. The number of
matches is stored in the _SEARCH_MATCH_COUNT object variable.

getSearchResults()
This method returns the match results in a hash. It works as follows:

◆ An associative array variable called $contents is initialized to an empty
array.

◆ The $contents[‘output’] is set to search_result, which indicates to
the help display application (help.php) that it needs to show the search
results.

◆ A string version of the keyword array is stored in
$contents[‘keyword_string’].

◆ The $contents[‘sections’] is assigned to a hash that represents the
matching sections stored in $this->_SEARCH_RESULT. This hash is created
by passing $this->_SEARCH_RESULT to the getSectionHash() method.

◆ A local variable called $linkPrefix is set to the URL prefix needed to
access the help for the current application. This URL has a syntax such
as http://server/path/to/help.php?app=current_application.

◆ For each matching section in the search result, a link is created in the
$sectionLinks array using the $linkPrefix and section ID information

Chapter 12: Online Help System 409

15 549669 ch12.qxd 4/4/03 9:26 AM Page 409

so that the URL has a syntax of http://server/path/to/help.
php?app=current_application§ion=section_number.

◆ The list of matched section links is stored in $contents[‘section_links’].
The total match count is stored in $contents[‘match_count’].

◆ The template for showing the results is retrieved by the
getSearchResultTempalte() method and stored in $contents
[‘template’].

◆ The base URL path for the current section is set to $contents[‘base_url’]
using the getBaseURL() method.

◆ The most recent search history hash is retrieved using the
getRecentSearchList() method and stored in $contents
[‘recent_search’].

◆ Finally, the updateRecentSearchList() method is used to update the
recent search history using the current keyword string returned by the
getKeywordString() method.

getRecentSearchList()
This method returns a hash with recent search history. It works as follows:

◆ It creates an empty hash called $hash.

◆ The fully qualified history file name for the current help content is
retrieved using the getFQPNSearchHistoryFile() method and stored
in the $historyFile variable.

◆ The serialized contents of the history file, $historyFile, is loaded in
$serializedHistory using the _loadFile() method.

◆ If the history is not empty, then the $asis parameter is checked to see
how the data should be returned. If $asis is set to FALSE, then the history
data is unserialized in the $history variable and, using a loop, each his-
tory element is parsed. The key of each history hash element is the search
keyword; the value consists of a time stamp and relative URL link that can
be used to search for the keyword. The $hash is populated with search
keywords from the history, and the relative URL is stored as a value.

◆ On the other hand, if $asis is TRUE, then the unserialized history hash is
returned as is.

updateRecentSearchList()
This method adds the given keywords to the recent search history if they aren’t
already in the history. It works as follows:

410 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 410

◆ If no keyword is passed as a parameter to the method, it returns FALSE.

◆ If the keywords have been supplied, it reads the recent search history
as a hash in $hash using the getRecentSearchList() method. The
getRecentSearchList() is called with TRUE as a $asis parameter so
that it returns the search history as an unmodified hash.

◆ If the current keywords already exist in $hash, then the method returns
FALSE since there is no need to add duplicate keywords in the history.

◆ If the current history does not exceed the SEARCH_HISTORY_SIZE size
specified in the configuration file (help.conf), then the current keywords
are inserted into the a new hash called $outHash along with the existing
history data.

◆ Finally, the new $outHash is written to the history file using the
writeSearchHistory() method, and the method returns TRUE.

getKeywordMatch()
This method checks to see whether the given keyword ($keyword) exists in the key-
word index of the given sections ($sections) and returns the matching section list.
It works as follows:

◆ The given keyword is lowercased because the keyword index stores all
keywords in lowercase format.

◆ A list called $matchedSections is initialized as an empty array.

◆ For each given section, the given keyword is searched in the keyword
index cache stored in the keyword index file.

◆ In the loop, for each given section, a keyword index cache file called
$keywordCacheFile is set using the getKeywordFile() method.

◆ A hash object (that is, keyword index cache) called $cache is loaded using
the readKeywordCacheFile() method.

◆ If the current keyword is found in the $cache object, the current section is
stored in $matchedSections.

◆ Finally, the matched section list is returned.

getSectionNumberList()
This method returns the section numbers from the current section hash.

getSectionHash()
This method returns a hash that has section numbers as keys and section names as
values. If a section list is given, the method only returns the hash for the given sec-
tion list. Otherwise, it returns the entire list of sections for the current help contents.

Chapter 12: Online Help System 411

15 549669 ch12.qxd 4/4/03 9:26 AM Page 411

getSectionList()
This method returns the list of sections.

getKeywordString()
This method creates a string out of the list of keywords and returns the string.

getKeywordList()
This method sets the object variable _KEYWORDS with given keywords. However, it
removes duplicates and any instance of the word ‘or’. The ‘or’ operator is implied
automatically when multiple keywords exist in the keyword list and, therefore, it is
removed.

getSections()
This method returns the section hash stored in the object variable _SECTIONS.

getHelpDir()
This method returns the help directory path stored in _HELP_DIR. If _HELP_DIR is
empty, it returns null.

makeKeywordIndex()
This method creates the keyword index cache object for a given section and stores
the cache as a serialized hash object in a file. It works as follows:

◆ First, it creates a local variable called $helpFile that is set to the fully
qualified pathname of the given section’s ($section) help file returned
by the getFQPNofSection() method.

◆ If the help file (that is, the help contents) does not exist for the current
section, the method returns FALSE.

◆ If the help file exists, a local variable called $keywordCacheFile is set to
the fully qualified pathname of the current section’s keyword index cache
file returned by the getKeywordFile() method.

◆ If this keyword index cache exists, the help file’s modification time
($helpFileModifyTimeStamp) is compared with the modification time
($keywordIndexCreateTimeStamp) of the keyword index. If the help file
modification time is older than the keyword index file modification time,
the keyword index is up to date and therefore not needed to be re-created,
unless the object variable _FORCE is set to true. When the keyword index
is up to date and the index doesn’t need to be forcefully re-created, the
method returns TRUE, indicating that index creation was a success.

◆ On the other hand, if the keyword index doesn’t exist or the modification
time of the help file is newer than the existing keyword index file, then the
method must continue and create the index cache from the help contents.

412 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 412

◆ The _getWords() is called with the help file ($helpFile) and the returned
word list is stored in the $words variable.

◆ The _removeExcludedWords() method is called with the $words to
remove words that need to be excluded. The words are compared to words
stored in the EXCLUDED_WORD_FILE file and matching words are removed
from the $words list.

◆ The resulting $words list and the $keywordCacheFile file name are passed
as a parameter to the writeKeywordCacheFile() method to write the
cache file.

◆ If the file is written successfully, the method returns TRUE; otherwise, it
returns FALSE.

getFQPNSearchHistoryFile()
This method returns the fully qualified search history file name.

getFQPNofSection()
This method returns the fully qualified section file name.

getHelpTemplateDir()
This method returns the fully qualified help template directory path.

getDefaultSectionTemplate()
This method returns the default section template path.

getTOCTempalte()
This method returns the table of contents template path.

getSearchResultTempalte()
This method returns the search result template path.

getSectionTemplate()
This method returns the template path for a given section if it exists; otherwise, it
returns the default section template path.

getBaseURL()
This method returns the base URL.

loadMap()
This method loads the help map file, which defines all the information needed to
provide help for an application. It works as follows:

◆ First, it sets $mapFile to the fully qualified pathname of the map file
returned by the getMapFile() method.

◆ If the map file does not exist, the method returns FALSE.

Chapter 12: Online Help System 413

15 549669 ch12.qxd 4/4/03 9:26 AM Page 413

◆ The method then uses the built-in require_once() function to load the
map file, which is a PHP script.

◆ If the $HELP_DIR variable in the map file has a value that does not start
with leading slash character, the $HELP_DIR is a relative path and ROOT_PATH
from help.conf is added as a prefix to this path; finally, it is stored in the
object’s _HELP_DIR variable. Similarly, _REL_HELP_DIR is constructed using
REL_ROOT_PATH (from help.conf) and the current application’s name.

On the other hand, if the $HEL_DIR value does start with a leading slash,
it is stored as is along with $REL_HELP_DIR in _HELP_DIR and the
_REL_HELP_DIR object variables, respectively.

◆ The other variables in the map file — $REL_TEMPLATE_DIR, $DEFAULT_
SECTION_TEMPLATE, $TOC_TEMPLATE, $SEARCH_RESULT_TEMPLATE,
$TEMPLATES, and $SECTIONS— are assigned to _REL_TEMPLATE_DIR,
_DEFAULT_SECTION_TEMPLATE, _TOC_TEMPLATE, _SEARCH_RESULT_
TEMPLATE, _TEMPLATES, and _SECTIONS, respectively.

getMapFile()
This method returns the fully qualified pathname of the map file.

readKeywordCacheFile()
This method returns the named keyword file ($file), unserializes the contents, and
returns the hash object.

writeKeywordCacheFile()
This methods writes the given word list, $words, in the named keyword file, $file.
It first creates a hash called $cache using each of the keywords in the $words list
and serializes the $cache object before writing to the file.

writeSearchHistory()
This method writes the keyword history hash ($hash) into the keyword search history
file returned by the getFQPNSearchHistoryFile() method. The $hash is serialized
before writing to the file.

getKeywordFile()
This method returns the fully qualified keyword index cache file name for the given
section.

_removeExcludedWords()
This method removes words from the $words list if they are found in the
EXCLUDED_WORD_FILE file.

_getWords()
This method reads the named file ($file), parses out text from HTML tags, creates
a list of unique words, and returns the list.

414 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 414

_getUniqueWords()
This method removes duplicates from the given word list ($words) and returns the
duplicate-free word list.

_loadFile()
This method loads the given file ($file) if it exists and returns the contents as a
string.

HTMLtoText()
This method removes HTML tags from the given string ($contents) and returns the
HTML tag–free contents.

Creating Application
Configuration Files
Like all other applications you’ve developed in this book, the online help applica-
tions also use a standard set of configuration, message, and error files. These files are
discussed in the following sections.

Creating a main configuration file
The primary configuration file for the entire system is called help.conf. Table 12-1
discusses each configuration variables.

TABLE 12-1 THE help.conf VARIABLES NEED TO BE CHANGED

Configuration Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR package; specifically
the DB module needed for class.DBI.php in our application
framework. By default, this is set to the
%DocumentRoot%/pear.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the PHPLIB
packages; specifically the template.inc package needed for
template manipulation. By default this is set to the
%DocumentRoot%/phplib.

$APP_FRAMEWORK_DIR Set to our application framework directory. By default this is
set to the %DocumentRoot%/framework.

Continued

Chapter 12: Online Help System 415

15 549669 ch12.qxd 4/4/03 9:26 AM Page 415

TABLE 12-1 THE help.conf VARIABLES NEED TO BE CHANGED (Continued)

Configuration Variable Purpose

$PATH Set to the combined directory path consisting of the $PEAR_DIR,
the $PHPLIB_DIR, and the $APP_FRAMEWORK_DIR. This
path is used with the ini_set() method to redefine the
php.ini entry for include_path to include $PATH ahead
of the default path. This allows PHP to find our application
framework, PHPLIB, and PEAR-related files.

$APPLICATION_NAME Internal name of the application.

$DEFAULT_LANGUAGE Set to the default (two-character) language code.

ROOT_PATH Set to the root path of the application. By default this is set to
the %DocumentRoot%.

REL_ROOT_PATH Relative path to the root directory. By default this is set to the
%DocumentRoot%/help.

REL_APP_PATH Relative application path as seen from the Web browser.

TEMPLATE_DIR The fully qualified path to the template directory.

CLASS_DIR The fully qualified path to the class directory.

REL_TEMPLATE_DIR The Web-relative path to the template directory used.

HELP_MAP_DIR The fully qualified pathname of the help map directory where
application-specific help map files are stored.

EXCLUDED_WORD_FILE The fully qualified pathname of the word file, which contains
the words that are to be excluded from help index caching.

The directory structure used in the help.conf file supplied in the ch12 directory
on the CD-ROM may need to be tailored to your own system’s requirements. Here is
what the current directory structure looks like:

+---%DocumentRoot% (Your Web document Root)
|
+---help (Help Applications)

|
+---apps (apps and configuration files)

416 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 416

| |
| +---class (class files)
| |
| +---templates (HTML templates)
| |
| +---maps (help maps for your applications)
|
+--self (the help on help system itself)

By changing the following configuration parameters in ld.conf, you can modify
the directory structure to fit your site requirements:

define(ROOT_PATH , $_SERVER[‘DOCUMENT_ROOT’]);
define(REL_ROOT_PATH , ‘/help’);
define(REL_APP_PATH , REL_ROOT_PATH . ‘/apps’);
define(TEMPLATE_DIR , ROOT_PATH . REL_APP_PATH .
‘/templates’);
define(CLASS_DIR , ROOT_PATH . REL_APP_PATH .
‘/class’);
define(REL_TEMPLATE_DIR , REL_APP_PATH . ‘/templates/’);
define(‘HELP_MAP_DIR’ , ROOT_PATH . REL_APP_PATH . ‘/maps’);

Creating a messages file
The messages displayed by the help applications are stored in the CDROM/ch12/
apps/help.messages file. You can change the messages using a text editor.

Creating an error message file
The error messages displayed by the help applications are stored in the CDROM/ch12/
apps/help.errors file. You can modify the error messages using a text editor.

Creating Application Templates
The HTML interface templates needed for the applications are included on the
CD-ROM. These templates contain various template tags to display the necessary
information dynamically. The templates are named in the help.conf file. These
templates are discussed in Table 12-2.

Chapter 12: Online Help System 417

15 549669 ch12.qxd 4/4/03 9:26 AM Page 417

TABLE 12-2 HTML TEMPLATES

Configuration Variable Template File Purpose

GLOBAL_DEFAULT_TOC_ toc.html This template is used to
TEMPLATE_FQPN display the table of contents

when an application-specific
TOC template is not found.
The application-specific TOC
template is specified using
$TOC_TEMPLATE in the
application help map file.

GLOBAL_DEFAULT_SECTION_ section.html This template is used to
TEMPLATE_FQPN display section contents when

an application-specific section
template is not found. The
application-specific section
template is specified using
$TEMPLATES in the
application help map file.

GLOBAL_DEFAULT_SEARCH_ search_result.html This template is used to
RESULT_TEMPLATE_FQPN display search results contents

when an application-specific
search result template is not
found. The application-specific
section template is specified
using $SEARCH_RESULT_
TEMPLATE in the application
help map file.

Creating the Help
Indexing Application
This application, makeindex.php, is responsible for creating keyword indexes for
each help section of an application’s help contents. This application is included on
the CD-ROM in the ch12/apps directory.

418 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 418

It implements the following functionality:

◆ Automatically generates keyword indexes for each section of a given
application

◆ Automatically excludes given keywords from adding into a help index

This application has the following methods.

run()
When the application is run, this method is called. It calls the makeIndex() method
to create a keyword index cache.

makeIndex()
This method is the heart of this application. It creates the keyword index cache.
Here’s how it works:

◆ A hash called $mapHash is loaded with the map file and application name
for the given application or all the applications whose map files are known
in the $APP_HELP_MAP configuration variable. If the user wants to create
an index for only a single application, she must call the makeindex.php
application with app=application_name per $APP_HELP_MAP stored in
help.conf. If the app parameter is not provided in the query string, when
this application is called, all the applications in $APP_HELP_MAP are
indexed.

◆ For each application in the $mapHash, a message is displayed showing
which application is being indexed.

◆ A help object, $helpObj, is created and if the object was not successful
in loading the current application map (that is, $helpObj->isLoaded()
returns FALSE), then the current application is not indexed. If the map
cannot be loaded, a message is shown and the application is skipped.

◆ For an application whose map is successfully loaded by $helpObj,
the keyword index cache is created for each section using the
$helpObj->makeKeywordIndex() method.

◆ Status messages are shown onscreen based on the success or failure of the
index creation process for each section. Errors are stored in the $errors
array.

◆ If there are errors, the method returns FALSE; otherwise, it returns TRUE.

Chapter 12: Online Help System 419

15 549669 ch12.qxd 4/4/03 9:26 AM Page 419

getMapHash()
This method returns a hash with application names as keys and map file names as
values. If the method is called with an application list, it only returns the hash
appropriate for the given application list. If the application list is empty, it returns
the hash for all the known applications based on the $APP_HELP_MAP configuration
variable.

authorize()
This method decides if the makeindex.php application can be run by the requesting
user. The IP address of the user is compared against the ACL_ALLOW_FROM and
ACL_DENY_FROM lists stored in the configuration file using an ACL object.

The ACL object is created using the current IP address of the request, as well as
the ACL_ALLOW_FROM and ACL_DENY_FROM information. Once created, the $aclObj
is used to call its isAllowed() method, which returns TRUE only if the requesting
IP is allowed access to the application.

Note that by default, access is allowed.

Creating the Help Application
This application, help.php, is responsible for displaying help contents and search
operations. This application is included on the CD-ROM in the ch12/apps directory.

It implements the following functionality:

◆ Automatically generates a table of contents page based on the help map
for a given application.

◆ Displays help contents for each section and provides automatic navigation
from one section to another.

◆ Performs search operations on the help contents using the keyword index
generated by the makeindex.php application.

This application has the following methods.

run()
When the application is run, this method is called. It does the following:

◆ It calls the getCommand() method to determine what the application is
to do. Based on the given command ($cmd), it calls the appropriate method
dynamically using a $this->$cmd() call.

◆ If no command is given by the user, the application displays an alert
message and terminates.

420 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 420

authorize()
This method is used to authorize access to this application. Because we want every-
one to access the help file, the method simply returns TRUE.

getCommand()
This method’s purpose is to determine what the user wants to do with the help
application. There are two operations user can request: show help or perform search
on an application’s help contents.

However, for both operations, the user must supply the application name,
because without an application name, the help system does not know what to show
or what to search on. The application name is passed as a query parameter (for
example, http://server/path/help.php?app=app_name) and, therefore, must be
found as an entry called $_REQUEST[‘app’] in the associative array called
$_REQUEST provided by PHP. If the application name is not found, the method
returns null.

If the application name is found, the method checks to see whether the user has
provided any keyword in the query string (http://server/path/help.
php?app=app_name&keyword=keywords). If a keyword is found in $_REQUEST
[‘keyword’], then the method returns ‘doSearch’ as the command because the
user wants to do a search operation on the named application help contents. If no
keyword is found, the method returns ‘showHelp’ as the default command, which
makes the help application display help contents.

getAppInfo()
This method returns a hash object with user-supplied information.

showHelp()
This method displays help contents. It works as follows:

◆ The user-supplied keyword and application name are stored in $info hash
by retrieving them using the getAppInfo() method.

◆ A help object, $helpObj, is created.

◆ If a valid section number is supplied by the user, the method retrieves the
section contents using the $helpObj->getSectionContents() method
and stores the contents in $contents hash.

◆ If no valid section number is given, the method retrieves the table of
contents information using the $helpObj->getTOCContents() method
and stores the contents in $contents hash.

◆ It displays the contents in $contents hash using the displayOutput()
method.

Chapter 12: Online Help System 421

15 549669 ch12.qxd 4/4/03 9:26 AM Page 421

displayOutput()
This method displays a page, be it a section contents page, search results, or a table
of contents based on the contents[‘output’] field information in the $contents
hash. It works as follows:

◆ It creates a template object called $template and loads the $contents
[‘template’] template. It then sends the base URL and app parameter.

◆ If the content to be displayed is the search result (that is, the $contents
[‘output’] is set to ‘search_result’), the history block of the template
is configured.

◆ If the content to be displayed is help section contents (that is, the
$contents[‘output’] is set to ‘show_section’), the navigation
blocks (prevBlock, nextBlock) of the template are configured.

◆ If there are URL links to sections to be displayed (that is, $contents
[‘section_links’] is not empty), then each section to be displayed is
inserted and parsed into the template from the data stored in $contents
[‘section_links’].

◆ If the recent search history is to be displayed (that is, $contents
[‘recent_search’]) is not empty), then each recent keyword to be
displayed is inserted and parsed into the template from the data stored
in $contents[‘recent_search’]. Otherwise, the history block is set to
null, which is appropriate since only the search result page has the history
block data.

◆ If the page to be displayed is search results (that is, match count,
$contents[‘match_count’], not empty), then match count data is
entered into the template by replacing the MATCH_COUNT tag.

◆ If the body of the contents, $contents[‘body’], is not empty, the body is
inserted into the template. Otherwise, an appropriate message is inserted to
indicate the body is missing.

◆ The previous and next blocks (prevBlock, nextBlock) are populated with
URL links using $contents[‘previous_section’] and $contents
[‘next_section’], respectively. This is needed for the section contents
page. If the current page to be displayed is not a section contents page,
these blocks are set to null.

◆ The template is parsed and the resulting page is stored in the $documents
variable as a string.

422 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 422

◆ Now if the $documents page has embedded links to other sections using
the label HTML tags, they are
replaced using appropriate relative URLs built-in using the
preg_replace() function.

◆ Finally, the contents of the $documents page are displayed.

doSearch()
This method performs a keyword search and displays the output. It works as follows:

◆ The user-supplied keyword and application name are stored in $info hash
by retrieving them using the getAppInfo() method.

◆ A help object, $helpObj, is created.

◆ The user-supplied keywords are stored in $keyword. The keywords are
lowercased and stripped of any slashes, if there are any.

◆ The $helpObj->search() method is called using the keywords, and
if the search results in any matches the results are retrieved using the
$helpObj->getSearchResults() method into a hash called $contents
and displayed using displayOutput().

◆ On the other hand, if no match is found, an alert window is shown.

Installing Help Applications
Here we’ll assume that you’re using a Linux system with MySQL and Apache server
installed. During the installation process, I refer to this directory as %DocumentRoot%.

I also assume that you have installed the PHPLIB and PEAR library. Normally,
these get installed during PHP installation. For your convenience, I’ve provided
these in the lib/phplib.tar.gz and lib/pear.tar.gz directories on the CD-ROM.
In these sample installation steps, we’ll assume that these are installed in the
/evoknow/phplib and /evoknow/pear directories. Because your installation loca-
tions for these libraries are likely to differ, make sure you replace these paths in the
configuration files.

Here is how you can get your help applications up and running:

◆ Install the applications framework. If you haven’t yet installed the
application framework discussed in Chapter 4, you must do so before
proceeding further.

◆ Install help applications. From the ch12 directory on the CD-ROM, extract
ch12.tar.gz in %DocumentRoot%. This will create a help directory in your
document root.

Chapter 12: Online Help System 423

15 549669 ch12.qxd 4/4/03 9:26 AM Page 423

◆ Set file/directory permissions. Make sure you’ve changed the file and
directory permissions such that your intranet Web server can access all the
files. The makeindex.php script must write to the help contents directory
to store the generated help indexes. Make sure your Web server has write
access to the help contents directory you create for your application-
specific help files.

After you’ve performed the preceding steps, you’re ready to test your online help
applications.

Testing the Help System
If you’ve installed the applications properly, it came with help on itself. Therefore,
you can run it immediately without needing to create help contents first.

Run http://yourserver/help/apps/help.php?app=self

You should see a screen similar to Figure 12-2.

Figure 12-2: The table of contents page for the help system itself.

Now click on any of the sections and you’ll see the sections page. For example,
Figure 12-3 shows the section that introduces the help system to you.

424 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 424

Figure 12-3: A section page.

Now you can enter search key words in any of the screens to see if there is any
match. For example, I entered the keyword “built-in” in the search keyword entry
and clicked on the GO button. The result is shown in Figure 12-4.

Figure 12-4: A sample search output.

Chapter 12: Online Help System 425

15 549669 ch12.qxd 4/4/03 9:26 AM Page 425

As you can see, you can easily click on the appropriate links to view the match-
ing sections. Now let’s try a more complex search using the AND operator, as shown
in Figure 12-5.

Figure 12-5: A search with the AND operator.

The search for “built-in and nature” found the results shown in Figure 12-6.

Figure 12-6: Search results for “built-in and nature.”

426 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 426

Notice that previous searches are shown as recent search links. This allows you
to view a previous search result without reentering the keywords. Also, if the appli-
cation is used by other users, this will show you what are the most recent keywords
that have been searched by other users.

The help provided as the Help on Help System serves as a guide to how you

can set up help for your own application.

If you update your help files and want to regenerate the keyword index, you
can run the makeindex.php script. This will update all applications. For example,
Figure 12-7 shows a sample run of makeindex.php.

Figure 12-7: Creating a keyword index for all applications.

To limit creating an index to a single application, use app=application_name in
the query string. For example, http://yourserver/help/apps/makeindex.
php?app=self will only create an index for the help application itself. To create
keyword indices for multiple but not all applications, use the URL calls such as:

http://yourserver/help/apps/makeindex.php?app[]=app_name1&app[]=app_name2

Security Considerations
Like all other applications you’ve developed in this book, the online help system has
some security considerations that you need to be aware of. They are discussed here.

Chapter 12: Online Help System 427

15 549669 ch12.qxd 4/4/03 9:26 AM Page 427

Restricting access to makeindex.php script
The makeindex.php writes keyword index cache files in each application’s help
directory. Therefore, you must make this directory writable by the Web server.

Any time you have an application that is writing new files to your Web site, you
need to ensure that this isn’t going be abused in any way. One of the best ways to
protect against abuse is to make sure the application has limited access.

You can limit the use of the makeindex.php to your own network by utilizing
the following help.conf parameters: ACL_ALLOW_FROM and ACL_DENY_FROM.

For example

define(‘ACL_ALLOW_FROM’, ‘192.168.0.10’);
define(‘ACL_DENY_FROM’, ‘0.0.0.0’);

Here, the allow list specifies that access to makeindex.php is allowed from
192.168.0.10 and denied from every host of every network. The 0 octet in the net-
work address in ACL_DENY_FROM can be thought of as “don’t care.” Because I spec-
ified 0.0.0.0, I stated that I deny all hosts, and then I opened the access for
192.168.0.11.

Similarly, if you want to allow everyone but deny one IP address, you can make
configuration such as:

define(‘ACL_ALLOW_FROM’, ‘0.0.0.0’);
define(‘ACL_DENY_FROM’, ‘192.168.0.11,192.168.0.12’);

Here access is allowed to everyone but 192.168.0.11 and 192.168.0.12. You
can also specify network IP addresses when defining these rules. For example:

define(‘ACL_ALLOW_FROM’, ‘192.168.0’);
define(‘ACL_DENY_FROM’, ‘0.0.0.0’);

Here access is granted for all hosts in the 198.168.0.x network. That means
192.168.0.1 to 192.168.0.254 can access the makeindex.php script.

Summary
In this chapter, you learned to develop an online help system that allows you to
provide a central help facility for all your Web or intranet applications. It gives you
a structured approach to designing online help for your applications, which is great
for developers who are often reluctant to write help for the users.

428 Part II: Developing Intranet Solutions

15 549669 ch12.qxd 4/4/03 9:26 AM Page 428

Developing E-mail Solutions
CHAPTER 13

Tell-a-Friend System

CHAPTER 14
E-mail Survey System

CHAPTER 15
E-campaign System

Part III

16 549669 PP03.qxd 4/4/03 9:26 AM Page 429

16 549669 PP03.qxd 4/4/03 9:26 AM Page 430

Chapter 13

Tell-a-Friend System
IN THIS CHAPTER

◆ Developing a tell-a-friend system

◆ Installing a tell-a-friend system

◆ Using a tell-a-friend system

SENDING E-MAILS TO EXISTING customers or prospective customers has become stan-
dard business practice among modern companies. After all, e-mail is cheap and
more reliable than direct mail, especially when you consider the entire world as
your market. Marketing departments have been coming up with creative ways of
using e-mail to increase companies’ exposure and customer base via e-mail. In this
process, the Tell-a-Friend concept was invented. This process involves embedding a
small HTML form within HTML messages that are sent out to customers or leads
and encouraging them to tell their friends about the company’s product and/or
services. This viral marketing technique is widely used to increase Web site visits
and even sell new products and services.

In this chapter, you’ll develop a Tell-a-Friend system that you can use with your
in-house or outsourced e-mail campaign solution.

Let’s look at the functionality requirements of this system.

Functionality Requirements
The Tell-a-Friend that we will build in this chapter will have the following features:

◆ Central Tell-a-Friend database: A single database will be used to store all
Tell-a-Friend information. The database will store Tell-a-Friend forms, a
friends list (name, e-mail) submitted per form by each user who fills out
the forms, and subscription information (each friend who subscribes via a
link embedded in the e-mail sent by the system).

431

17 549669 ch13.qxd 4/4/03 9:26 AM Page 431

◆ Central Tell-a-Form form management application: The system will
have a form-management application that will allow valid users (who
make requests from a set of given IP addresses, which is configured in a
central configuration file) to register an HTML form name to a form ID
and a message ID along with other information, such as maximum indi-
vidual submissions, score per friend’s e-mail, and score per subscription
by a friend. The user will also define which message to send to friends
and which message to send to the submission originator (that is, the
friend forwarder).

◆ Central Tell-a-Friend form processor application: A single application
will process all registered forms. The form data will be stored in the cen-
tral Tell-a-Friend database. Each submission will also track the request IP,
time stamp, and user agent (that is, the web browser) preferences.

◆ Central message editor: The user can add, modify, and delete HTML mes-
sages that can be used as automatic responses to a Tell-a-Friend submis-
sion request or Tell-a-Friend introductory/forward message (that is, a
message sent to a friend).

◆ Friend subscription application: Each friend receiving an e-mail due to
another friend’s submission of her name in the Tell-a-Friend database has
a choice to subscribe or not subscribe for future mailing. She will be given
a link embedded in the automatic e-mail she received that allows her to
say yes or no to the future mailing. When she clicks this link, she’ll be
shown an interface where she will select yes or no for future e-mailing
along with other information such as the frequency of e-mail she prefers
and the type of mail she prefers (HTML or Text).

◆ Easy reporting: For each Tell-a-Friend form, there will be a report show-
ing how many e-mail recipients have submitted their friends’ names and
e-mail addresses. This report can only be accessed by IP addresses listed in
central configuration files.

◆ Score-card reporting: Each person who signs up friends using the Tell-a-
Friend receives a thank-you mail whenever a new friend is added to the
database. This thank-you message includes a link that allows the user to
view her total score per form. In other words, she’ll know how many of
her forms she has submitted via the Tell-a-Friend form, as well as how
many of her friends have actually subscribed. There are two scores: the
score related to each friend submission (which is limited to a maximum
value set per form) and the score related to each friend subscription. The
report also tells her where she stands among other users who have sub-
mitted friends using this same form.

432 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 432

Understanding Prerequisites
This is an Internet application and does not require central authentication tech-
niques. Therefore, it is not dependent on intranet tools discussed in earlier chapters.

However, it does require the application framework classes that are discussed in
Chapter 4. You must have the application framework classes installed, along with
PHPLIB and PEAR packages.

Designing the Database
Figure 13-1 shows the database diagram for the Tell-a-Friend system. Here I will
describe each table in detail.

Figure 13-1: Tell-a-Friend database diagram.

TAF_FORM Table
This table is the integral part of this application. It holds the form number (FRM_ID),
form name (FRM_NAME), form activation time stamp (ACTIVATION_TS), form termi-
nation time stamp (TERMINATION_TS), ID of the message to be sent to the friends
(FRIENDS_MSG_ID), ID of the message to be sent to the user (ORIGIN_MSG_ID), ID
of the message to be sent to the friend who subscribes (SUBSCRIBER_MSG_ID),

Chapter 13: Tell-a-Friend System 433

17 549669 ch13.qxd 4/4/03 9:26 AM Page 433

maximum number of friends allowed per user (MAX_FRIEND_PER_ORIGIN), score per
friend submission (SCORE_PER_FRIEND_SUBMISSION), and score per friend sub-
scription (SCORE_PER_FRIEND_SUBSCRIPTION). The form number (FRM_ID) is the
primary key for this table.

TAF_FRM_BANNED_IP Table
This table is used to store the IP addresses that are banned from viewing a form
report or modifying a form configuration. This has two attributes: the form number
(FRM_ID) and the banned IP address (BANNED_IP). Both the attributes are used as
primary keys.

TAF_FRM_OWNER_IP Table
This table is used to store the IP addresses that are authorized to view a form report
or modify a form configuration. This has two attributes: the form number (FRM_ID)
and the authorized IP address (OWNER_IP). Both the attributes are used as primary
keys because we want to allow multiple IP addresses to be allowed for a single form.

TAF_MESSAGE Table
This is the table that stores all kinds of message needed to operate the Tell-a-Friend
application. This holds the message number (MSG_ID), message name (MSG_NAME),
message content (BODY), from address (FROM), reply-to address (REPLY_TO), and mes-
sage subject (SUBJECT). The message number (MSG_ID) is the primary key in this table.

TAF_MSG_OWNER_IP Table
This table contains the IP addresses that are allowed to modify a message. The mes-
sage number (MSG_ID) and the authorized IP (OWNER_IP) are the two attributes of
this table. Both of them are also the primary keys of the table.

TAF_SUBMISSION Table
This table holds information about friend submission. It has friend number
(FRND_ID), friend e-mail (FRND_EMAIL), friend name (FRND_NAME), form number
(FRM_ID), originator e-mail (ORIGIN_EMAIL), originator IP Address (ORIGIN_IP),
and submission time stamp (SUBMIT_TS). The friend number (FRND_ID) is the pri-
mary key and the friend’s e-mail (FRND_EMAIL) and form number (FRM_ID) are the
unique fields for this table.

TAF_SUBSCRIPTION Table
This table contains information about the friend subscription. It has the form num-
ber (FRM_ID), friend e-mail (FRND_EMAIL), originator e-mail (ORIGIN_EMAIL), sub-
scription type (SUBSCRIPTION), and subscription time stamp (TS). The form number
(FRM_ID) and friend e-mail (FRND_EMAIL) are the primary keys for the table.

434 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 434

The taf.sql file in the ch13/sql directory of the CD-ROM shows an implemen-
tation of the Tell-a-Friend database in MySQL. To implement this Tell-a-Friend
database in MySQL, you can create a database called TELL_A_FRIEND in your data-
base server and run the following command:

mysql -u root -p -D TELL_A_FRIEND < taf.sql

Make sure you change the user name (root) to whatever is appropriate for your
system.

Designing and Implementing the
Tell-a-Friend Application Classes
As shown in the system diagram, Figure 13-2, there are three new objects that are
needed to implement the Tell-a-Friend application.

Figure 13-2: Tell-a-Friend system diagram.

Here you will develop some classes that will provide these objects for your Tell-
a-Friend applications.

Menu Manager

Form Manager

PHP Application Framework

Tell-a-Friend
Applications

Form Object class.Form.php

Access Control Object class.AccessControl.php

Message Object class.Message.php

Message Manager

Form Processor

Subscription Processor

Reporter

Chapter 13: Tell-a-Friend System 435

17 549669 ch13.qxd 4/4/03 9:26 AM Page 435

Designing and implementing the Form class
The Form class is used to manipulate each form. It allows an application to create,
modify, and delete a form. The ch13/apps/class/class.Form.php file on the
CD-ROM implements this class. This class implements the following methods.

Form()
This is the constructor method. It works as follows:

◆ First it sets a member variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application. The
dbi member variable holds the DBI object, which is used to communicate
with the back-end database.

◆ Then it sets member variables named frm_tbl, submtn_tbl, and sub-
scr_tbl to store the names of the form table, submission table, and sub-
scription table, respectively.

◆ It also sets member variables named field_arr (to store the form table
attributes and their type as an array) and fields (to hold the attributes as
a comma-separated string).

◆ Then it calls the setFormID() method to set the Form ID that has been
passed as a parameter.

setFormID()
This method is used to set the form ID as member variable fid. It takes the ID as a
parameter and returns it after setting it to the member variable if the ID is not
empty.

getFormInfo()
This method is used to retrieve all the information for a given form. This is how it
works:

◆ First it calls the setFormID() method to set the given form ID.

◆ Then it builds a query statement to retrieve all the attribute values of the
form and stores the statement $stmt.

◆ Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the query
is stored in the $result variable.

◆ The method directly returns null when it finds out, using the numRows()
method, that the $result object has no rows.

◆ Otherwise, the row is fetched using the fetchRow() method and stored in
$row.

436 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 436

◆ Then the member variable field_arr is looped through to store each col-
umn value of the $row object into the $retArr array with the respective
field name as the key for each value. The values are formatted using the
stripslashes() method before storing them in the array.

◆ Then the $retArr array is returned from this method.

getAllForms()
This method is used to retrieve all the forms from the database. This is how it
works:

◆ First a query statement is prepared and stored in $stmt to retrieve the
form number and form name of all the forms.

◆ Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the query
is stored in the $result variable.

◆ The method directly returns null when it finds out, using the numRows()
method, that the $result object has no rows.

◆ Otherwise, each row of the $result object is fetched using the
fetchRow() method and $retArr is prepared with all the form IDs and
form names.

◆ At the end, the $retArr array is returned.

addForm()
This method is used to add new forms to the database. It works as follows:

◆ From the given parameter, all the values that are supposed to be of text
type in the database are escaped for characters such as quotation marks
and slashes using $this->dbi->quote(addslashes()) methods.

◆ Then all the parameter values are taken into a string named
$paramValueStr by imploding a comma among them.

◆ A SQL statement, $stmt, is created to insert the new form data into the
form table using the member variable fields (contains attribute names)
and $paramValueStr.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ If the $result status is not okay, the method returns false.

◆ Otherwise, another query statement is prepared to retrieve the form ID of
the newly added form by using the form name, which is a unique field, in
the where condition.

◆ The statement is executed as usual and the form ID is returned from the
method.

Chapter 13: Tell-a-Friend System 437

17 549669 ch13.qxd 4/4/03 9:26 AM Page 437

modifyForm()
This method is used to modify forms. This is how it works:

◆ From the given parameter, all the values that are supposed to be of text
type in the database are escaped for characters such as quotation marks
and slashes using $this->dbi->quote(addslashes()) methods.

◆ Then a string named $keyValue is prepared that contains all the attribute
names and values as attr1 = value1, attr2 = value2, . . . format

◆ A SQL statement, $stmt, is created to update the form data using
$keyValue.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ The method returns TRUE or FALSE depending on the status of the $result.

deleteForm()
This method is used to delete a given form. It takes form ID as the parameter and
returns TRUE or FALSE depending on the status of the deletion operation.

isMaximumSubmitted()
This method identifies whether the maximum number of friends allowed has
exceeded or not for the given originator according to the form configuration. This
is how it works:

◆ First it sets the given form ID using the setFormID() method.

◆ Then the given originator e-mail is formatted using $this->dbi-
>quote(addslashes()) methods.

◆ Then a query statement is prepared to retrieve the number of friends sub-
mitted by the given originator for the given form.

◆ Then the number of maximum allowed friends is retrieved using the
getFormInfo() method.

◆ Then the two numbers are compared to return TRUE when the number of
friends submitted is already equal to or greater than the maximum
allowed; otherwise, it returns FALSE.

addSubmissionData()
This method is used to add friend submission data in to the database. It works as
follows:

◆ First it sets $field_arr (to store the submission table attributes and
their type as an array) and $fields (to hold the attributes as a comma-
separated string).

438 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 438

◆ From the given parameter, all the values that are supposed to be of text
type in the database are escaped for characters such as quotation marks
and slashes using $this->dbi->quote(addslashes()) methods.

◆ Then all the parameter values are taken into a string named
$paramValueStr by imploding comma among them.

◆ A SQL statement, $stmt, is created to insert the new submission data into
the submission table using $fields and $paramValueStr.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in $result object.

◆ If the $result status is not okay, the method returns false.

◆ Otherwise, another query statement is prepared to retrieve the friend ID of
the newly submitted friend by using the friend e-mail and form ID, which
are the unique fields, in the where condition.

◆ The statement is executed as usual and the friend ID is returned from the
method.

getFriendList()
This method returns the list of all friends for a given form. This is how it works:

◆ First it sets the given form ID using the setFormID() method.

◆ Then it prepares a query to retrieve the friend ID and e-mail from the sub-
mission table for the given form.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ The method directly returns null when it finds out, using the numRows()
method, that the $result object has no rows.

◆ Otherwise, each row of the $result object is fetched using the
fetchRow() method and $retArr is prepared with all the friend IDs and
e-mails.

◆ At the end the $retArr array is returned.

addSubscriptionData()
This method is used to add subscription data after a friend decides to subscribe or
unsubscribe. It works in the following manner:

◆ First it sets $field_arr (to store the subscription table attributes and
their type as an array) and $fields (to hold the attributes as a comma-
separated string).

Chapter 13: Tell-a-Friend System 439

17 549669 ch13.qxd 4/4/03 9:26 AM Page 439

◆ From the given parameter, all the values that are supposed to be of text
type in the database are escaped for characters such as quotation marks
and slashes using $this->dbi->quote(addslashes()) methods.

◆ Then all the parameter values are taken into a string named
$paramValueStr by imploding a comma among them.

◆ A SQL statement, $stmt, is created to insert the new subscription data
into the submission table using $fields and $paramValueStr.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ The method returns TRUE or FALSE depending on the status of $result.

This method is used to determine whether the given friend has already unsub-
scribed. It takes the friend’s e-mail as the parameter and checks whether the e-mail
is already unsubscribed or not.

getNumberOfSubscriber()
This method returns the number of friends that have subscribed for a given form. It
takes the form ID as a parameter and returns the number of subscribers for that
form.

getNumberOfUnsubscriber()
This method returns the number of friends that have unsubscribed for a given form.
It takes the form ID as a parameter and returns the number of unsubscriber for that
form.

getOriginSubmissions()
This method returns the originator information for a given form. This is how it
works:

◆ First it sets the form ID using the setFormID() method.

◆ Then it prepares a query statement to retrieve the originator e-mails and
number of submission by each of them.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ The method directly returns null when it finds out, using the numRows()
method, that the $result object has no rows.

◆ Otherwise, each row of the $result object is fetched using the
fetchRow() method and $retArr is prepared with all the originator
e-mails and number of submissions by each of them.

◆ At the end, the $retArr array is returned.

440 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 440

getNumSubscriptionPerOrigin()
This method returns the number of friends that have subscribed for a given origi-
nator and form. It takes the form ID and the originator e-mail as the parameter and
returns the number of subscriber.

getFriendsByOrigin()
This method is used to retrieve the list of friends for a given originator and form.
This is how it works:

◆ First the originator e-mail is formatted using $this->dbi->quote
(addslashes()) methods for use in the SQL query.

◆ Then the setFormID() method is called to set the given form ID.

◆ Then it prepares a query statement to retrieve the friend e-mails and
names for the given form and originator.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ The method directly returns null when it finds out, using the numRows()
method, that the $result object has no rows.

◆ Otherwise, each row of the $result object is fetched using the
fetchRow() method and $retArr is prepared with all the friend e-mails
and names.

◆ At the end, the $retArr array is returned.

getSubscriptionStatus
This method is used to find out the subscription status for a given form and friend
e-mail. It works in the following manner:

◆ First the friend e-mail is formatted using $this->dbi->quote
(addslashes()) methods for use in the SQL query.

◆ Then the setFormID() method is called to set the given form ID.

◆ Then it prepares a query statement to retrieve the subscription status for
the given form and friend.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ The method directly returns null when it finds out, using the numRows()
method, that the $result object has no rows.

◆ Otherwise, the row containing the subscription status is fetched, using the
fetchRow() method.

◆ The method returns 1 or -1 depending on the subscription/unsubscription
status of the friend.

Chapter 13: Tell-a-Friend System 441

17 549669 ch13.qxd 4/4/03 9:26 AM Page 441

Designing and implementing the Message class
The Message class is used to manipulate each message. It allows an application to
create, modify, and delete a message. The ch13/apps/class/class.Message.php
file on the CD-ROM implements this class. This class implements the following
methods.

Message()
This is the constructor method. It works as follows:

◆ First, it sets a member variable named dbi to point to the
class.DBI.php-provided object, which is passed to the constructor by an
application. The dbi member variable holds the DBI object, which is used
to communicate with the back-end database.

◆ Then it sets member variable named msg_tbl to store the name of the
message table.

◆ It also sets member variables named field_arr (to store the message
table attributes and their type as an array) and fields (to hold the attrib-
utes as a comma-separated string).

◆ Then it calls the setMessageID() method to set the Message ID that has
been passed as parameter.

setMessageID()
This method is used to set the message ID as member variable mid. It takes the ID as a
parameter and returns it after setting it to the member variable if the ID is not empty.

getMessageInfo()
This method is used to retrieve all the information for a given message. This is how
it works:

◆ First it calls the setMessageID() method to set the given message ID.

◆ Then it builds a query statement to retrieve all the attribute values of the
message and stores the statement, $stmt.

◆ Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the query
is stored in the $result variable.

◆ The method directly returns null when it finds out, using the numRows()
method, that the $result object has no rows.

◆ Otherwise, the row is fetched using the fetchRow() method and is stored
in $row.

◆ Then the member variable field_arr is looped through to store each col-
umn value of the $row object into the $retArr array with the respective

442 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 442

field name as the key for each value. The values are formatted using the
stripslashes() method before storing into the array.

◆ Then the $retArr array is returned from this method.

getAllMessages()
This method is used to retrieve all the messages from the database. This is how it
works:

◆ First, a query statement is prepared and stored in $stmt to retrieve the
message number and message name of all the messages.

◆ Using the DBI object ($this->dbi) the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the query
is stored in the $result variable.

◆ The method directly returns null when it finds out, using the numRows()
method, that the $result object has no rows.

◆ Otherwise, each row of the $result object is fetched using the
fetchRow() method and $retArr is prepared with all the message IDs
and message names.

◆ At the end, the $retArr array is returned.

addMessage()
This method is used to add a new message to the database. It works as follows:

◆ From the given parameter, all the values that are supposed to be of text
type in the database are escaped for characters such as quotation marks
and slashes using $this->dbi->quote(addslashes()) methods.

◆ Then all the parameter values are taken into a string named
$paramValueStr by imploding a comma among them.

◆ A SQL statement, $stmt, is created to insert the new message data into the
message table using the member variable fields (which contains
attribute names) and $paramValueStr.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in $result object.

◆ If the $result status is not okay, the method returns false.

◆ Otherwise, another query statement is prepared to retrieve the message ID
of the newly added message by using the message name, which is a
unique field, in the where condition.

◆ The statement is executed as usual and the message ID is returned from
the method.

Chapter 13: Tell-a-Friend System 443

17 549669 ch13.qxd 4/4/03 9:26 AM Page 443

modifyMessage()
This method is used to modify messages. This is how it works:

◆ From the given parameter, all the values that are supposed to be of text
type in the database are escaped for characters such as quotation marks
and slashes using $this->dbi->quote(addslashes()) methods.

◆ Then a string named $keyValue is prepared that contains all the attribute
names and values as attr1 = value1, attr2 = value2, . . . format

◆ A SQL statement, $stmt, is created to update the message data using
$keyValue.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

◆ The method returns TRUE or FALSE depending on the status of the
$result.

deleteMessage()
This method is used to delete a given message. It takes message ID as the parameter
and returns TRUE or FALSE depending on the status of the deletion operation.

Designing and implementing the AccessControl
class
The AccessControl class is used to control access to objects (Messages, Forms).
The ch13/apps/class/class.AccessControl.php file on the CD-ROM imple-
ments this class. This class implements the following methods.

AccessControl()
This is the constructor method. This is how it works:

◆ First, it sets a member variable named dbi to point to the class.DBI.php-
provided object, which is passed to the constructor by an application. The
dbi member variable holds the DBI object, which is used to communicate
with the back-end database.

◆ Then it sets the member variable named access_obj to store the type of
the object (Message or Form) for access control. The type of object is
passed as parameter in an array named $ACInfo.

◆ The member variables allow_tbl and deny_tbl are set with the table
names of the authorized and denied tables of the given object. These are
also passed as a parameter through the $ACInfo array.

◆ Then the setAccessObjectID() and setCurrentIP() is called to set the
object ID and the IP address that are provided in the $ACInfo.

444 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 444

setCurrentIP()
This method is used to set the current IP address that is to be authorized. It takes the
IP address as a parameter and returns it after setting it to the member variable
request_ip.

setAccessObjectID()
This method is used to set the ID of the object for access control. It takes the ID as
a parameter and returns the same after binding it to the member variable
access_obj_id.

isAccessAllowed()
This method determines whether the current IP is authorized to access the current
object (Message or Form). It uses getAccessIPs() to retrieve the list of authorized
IPs to match with the current IP and returns TRUE or FALSE depending on the
matching outcome.

isAccessDenied()
This method determines whether the current IP is banned from accessing the cur-
rent object (Message or Form). It uses getDeniedIPs() to retrieve the list of
banned IPs to match with current IP and returns TRUE or FALSE depending on the
matching outcome.

getAccessIPs()
This method returns the list of IPs that are authorized to access the current given
object. This is how it works:

◆ First it prepares a SQL query statement to retrieve the authorized IP
addresses for the current object ID.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in $result object.

◆ The method directly returns null when it finds out, using the numRows()
method, that $result object has no rows.

◆ Otherwise $retArr array is prepared with all the authorized IPs.

◆ At the end, the $retArr is returned from the method.

getDeniedIPs()
This method returns the list of IPs that are banned from accessing the current given
object. This is how it works:

◆ First, it prepares a SQL query statement to retrieve the banned IP
addresses for the current object ID.

◆ The SQL statement is executed using the $this->dbi->query() method
and the result of the query is stored in the $result object.

Chapter 13: Tell-a-Friend System 445

17 549669 ch13.qxd 4/4/03 9:26 AM Page 445

◆ The method directly returns null when it finds out, using the numRows()
method, that $result object has no rows.

◆ Otherwise $retArr array is prepared with all the banned IPs.

◆ At the end, the $retArr is returned from the method.

addAccessIPs()
This method inserts IP addresses to the authorized table for the given object. It takes
an array of IP addresses as a parameter and adds them one by one into the autho-
rized table.

deleteAccessIP()
This method deletes all the IP addresses from the authorized table for a given object
ID. It takes the object ID as parameter and returns TRUE or FALSE depending on the
status of the deletion operation.

addDeniedIPs()
This method inserts IP addresses to the denied table for the given object. It takes an
array of IP addresses as a parameter and adds them one by one into the denied
table.

deleteDeniedIP()
This method deletes all the IP addresses from the denied table for a given object ID.
It takes the object ID as parameter and returns TRUE or FALSE depending on the sta-
tus of the deletion operation.

Creating Application
Configuration Files
Like all other applications you’ve developed in this book, Tell-a-Friend applications
also use a standard set of configuration, message, and error files. These files are dis-
cussed in the following sections.

Creating the main configuration file
The primary configuration file for the entire system is called taf.conf. Table 13-1
discusses each configuration variables.

446 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 446

TABLE 13-1 THE taf.conf VARIABLES NEED TO BE CHANGED

Configuration Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR package;
specifically the DB module needed for class.DBI.php
in our application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the
PHPLIB packages; specifically the template.inc
package needed for template manipulation.

$APP_FRAMEWORK_DIR Set to our application framework directory.

$PATH Set to the combined directory path consisting of the
$PEAR_DIR, the $PHPLIB_DIR, and the
$APP_FRAMEWORK_DIR. This path is used with the
ini_set() method to redefine the php.ini entry
for include_path to include $PATH ahead of the
default path. This allows PHP to find our application
framework, PHPLIB, and PEAR-related files.

$AUTHENTICATION_URL Set to the central login application URL.

$LOGOUT_URL Set to the central logout application URL.

$HOME_URL Set to the topmost URL of the site. If the URL
redirection application does not find a valid URL in the
e-campaign database to redirect to for a valid request,
it uses this URL as a default.

$APPLICATION_NAME Internal name of the application.

$DEFAULT_LANGUAGE Set to the default (two characters) language code.

$ROOT_PATH Set to the root path of the application.

$REL_ROOT_PATH Relative path to the root directory.

$REL_APP_PATH Relative application path as seen from the web
browser.

$TEMPLATE_DIR The fully qualified path to the template directory.

$CLASS_DIR The fully qualified path to the class directory.

$REL_TEMPLATE_DIR The Web-relative path to the template directory used.

Continued

Chapter 13: Tell-a-Friend System 447

17 549669 ch13.qxd 4/4/03 9:26 AM Page 447

TABLE 13-1 THE taf.conf VARIABLES NEED TO BE CHANGED (Continued)

Configuration Variable Purpose

ACCESS_CONTROL_CLASS Name of the AccessControl class file.

MSG_CLASS Name of the Message class file.

FRM_CLASS Name of the Form class file.

$TAF_DB_URL The fully qualified URL for the database used to store
the Tell-A-Friend information.

TAF_FRM_TBL Name of the form table in the database.

TAF_FRM_OWNER_IP_TBL Name of the table that stores authorized IPs for forms
in the database.

TAF_FRM_RESTRICT_IP_TBL Name of the table that stores banned IPs for forms in
the database.

TAF_MSG_OWNER_IP_TBL Name of the table that stores authorized IPs for
messages in the database.

TAF_MSG_TBL Name of the message table in the database.

TAF_FRM_SUBMTN_TBL Name of the form submission table in the database.

TAF_SUBSCRIPTION_TBL Name of the friend subscription table in the database.

$STATUS_TEMPLATE Name of the status template file used to display status
messages.

TAF_MENU_TEMPLATE Name of the Tell-A-Friend index template file.

TAF_CREATOR_REPORT_TEMPLATE Name of the report template for the form creator.

TAF_FRM_SETUP_TEMPLATE Name of the Tell-A-Friend form setup template file.

TAF_MSG_SETUP_TEMPLATE Name of the Tell-A-Friend message setup template file.

TAF_FRIEND_MSG_TEMPLATE Name of the Tell-A-Friend “mail to the friend”
template file.

TAF_ORIGIN_MSG_TEMPLATE Name of the Tell-A-Friend “mail to the originator”
template file.

TAF_ORIGIN_REPORT_TEMPLATE Name of the report template for the originator.

MIN_YEAR The earliest year to be shown in different year lists.

MAX_YEAR The latest year to be shown in different year lists.

TOP The number of originators to be shown in the top user
list in the form creator report.

448 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 448

The directory structure used in the taf.conf file supplied in the ch13 directory
on the CD-ROM might need to be tailored to your own system’s requirements. Here
is what the current directory structure looks like:

htdocs ($ROOT_PATH == %DocumentRoot%)
|
+---taf (Tell-a-Friend Applications)

|
+---apps (apps and configuration files)

|
+---class (class files)
|
+---templates (HTML templates)

)

By changing the following configuration parameters in taf.conf, you can mod-
ify the directory structure to fit your site requirements:

$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;
$APP_FRAMEWORK_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/taf’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;
$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

Creating a Messages file
The messages displayed by the Tell-a-Friend applications are stored in the
ch13/apps/taf.messages file in the CDROM. You can change the messages using
a text editor.

Creating an Errors file
The error messages displayed by the Tell-a-Friend applications are stored in the
ch13/apps/taf.errors file in the CD-ROM. You can modify the error messages
using a text editor.

Chapter 13: Tell-a-Friend System 449

17 549669 ch13.qxd 4/4/03 9:26 AM Page 449

Creating Application Templates
The HTML interface templates needed for the applications are included on the
CD-ROM. These templates contain various template tags to display necessary infor-
mation dynamically. The templates are named in the taf.conf file. These templates
are discussed in Table 13-2.

TABLE 13-2 HTML TEMPLATES

Configuration Variable Template File Purpose

$STATUS_TEMPLATE taf_status.html This template is used to
show the status message.

TAF_MENU_TEMPLATE taf_menu.html This template is used to
show the index page of
the application.

TAF_CREATOR_REPORT_ taf_report_creator This template is used for
TEMPLATE .html the report to be shown to

the form creator.

TAF_FRM_SETUP_TEMPLATE taf_setup.html This template is used to
show the form setup
menu.

TAF_MSG_SETUP_TEMPLATE taf_add_modify_ This template is used for
msg.html the message add/modify

menu.

TAF_FRIEND_MSG_TEMPLATE taf_frnd_msg.html This template is used
while sending mail to the
friend.

TAF_ORIGIN_MSG_TEMPLATE taf_orig_msg.html This template is used
while sending mail to the
originator.

TAF_ORIGIN_REPORT_ taf_report_origin This template is used for
TEMPLATE .html the report to be shown to

the originator.

450 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 450

Creating the Tell-a-Friend Main
Menu Manager Application
This application, taf_mngr.php, is responsible for managing the main menu of the
system. This application is included on the CD-ROM in the ch13/apps directory.

It implements the following functionality:

◆ Allows every user to create messages and forms.

◆ Allows users from authenticated IP addresses to delete or modify forms or
messages.

◆ Allows users from authenticated IP addresses to view the form report.

This application has the following methods.

run()
When the application is run, this method is called. It simply calls the
displyTAFMenu() method to render the main menu for the system.

displayTAFMenu()
This method is responsible for showing the main menu according to the privileges
based on the IP address of the client. It works in the following manner:

◆ A menu template (TAF_MENU_TEMPLATE) is loaded in a template object
called $template.

◆ All the form names and form IDs of the database are loaded in the array
$frms.

◆ For each of those forms the AccessControl object is used to check
whether the request IP is allowed to access the form. If the check result is
yes, then the form name is showed in the list to the user for him to mod-
ify, delete, or view a report.

◆ Similarly, all the messages are loaded in an array and the AccessControl
object is again used to verify the request IP’s eligibility to access the mes-
sage and the message list is prepared thereby.

◆ After preparing the message list and the form list and setting all the links
for deletion, modification, and report for the messages or forms, the tem-
plate is parsed and printed to the user.

Chapter 13: Tell-a-Friend System 451

17 549669 ch13.qxd 4/4/03 9:26 AM Page 451

Creating a Tell-a-Friend Form
Manager Application
This application, taf_form_mngr.php, is responsible for managing forms. This
application is included on the CD-ROM in the ch13/apps directory.

It implements the following functionality:

◆ Allows any user to add a new form.

◆ Allows users from authenticated IP addresses to delete or modify selected
forms.

This application has the following methods.

run()
When the application is run, this method is called. It does the following:

◆ First it retrieves the $cmd value from the user request.

◆ Depending on the $cmd value, different methods are called.

◆ When the $cmd is add or modify, it calls the addModifyDriver() method
with the appropriate mode (add or modify).

◆ And when the $cmd is delete, it calls the deleteForm() method to delete
the form.

authorize()
This method checks whether the IP address from where the user is accessing the
application is an authorized one. This is how it works:

◆ This application allows everyone to add forms. So when the request $cmd
is add, it directly returns true.

◆ In case of modify and delete, the AccessControl object is used to verify
whether the request IP is allowed to access the given form. It returns TRUE
or FALSE depending on the verification result.

addModifyDriver()
This method is responsible for driving the add/modify procedure. Depending on the
hidden form value $step, it decides whether to call the add/modify menu rendering
method, displayAddModifyMenu(), or the add/modify method, addModifyForm().
Both the methods are called with the proper mode (add or modify).

452 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 452

displayAddModifyMenu()
This method is used to show the menu for adding or modifying forms. It works as
follows:

◆ If the method is called with mode modify, it first checks whether the form
ID has been supplied or not. In case of no form ID, the method shows an
alert message and returns null.

◆ Otherwise, all the previous information of the given form is retrieved and
loaded in variables for later usage, to preload the modification Web form
while showing to the user. In this case, the AccessControl object is used
to retrieve the authorized and banned IPs for the form.

◆ Then a form setup template (TAF_FRM_SETUP_TEMPLATE) is loaded in a
template object called $template.

◆ For loading different message lists in the Web form, the Message object’s
getAllMessages() is used and then filtered using the AccessControl
object’s isAccessAllowed() method.

◆ At the end, the template is parsed and printed to the user to give her a
Web form to add or modify forms.

addModifyForm()
This method is used to add or modify forms. It works as follows:

◆ First, it checks whether the date range given for the form (the activation
and termination date) is a valid one or not. If not, the method shows an
alert message and returns null.

◆ Then it prepares the $params array with all the form field values from the
user request.

◆ Then it creates an object of AccessControl to add or modify the access to
the form.

◆ When the mode for the method is add the params array is fed into the
addForm() method of the Form class to add the new form. If the addition
fails, the method shows a failure message and returns.

◆ If the addition operation is successful, the authorized and denied IPs are
added to the database using the addAccessIPs() and addDeniedIPs()
methods of the AccessControl class. Then a successful addition message
is shown to the user.

◆ When the mode for the method is modify, the $params array is fed into
the modifyForm() method of the Form class to update the given form. If
the update fails, the method shows a failure message.

Chapter 13: Tell-a-Friend System 453

17 549669 ch13.qxd 4/4/03 9:26 AM Page 453

◆ If the update operation is successful, the authorized and denied IPs are
added to the database using the addAccessIPs() and addDeniedIPs()
methods of the AccessControl class after deleting the previous IPs. And
then a successful update message is shown to the user.

deleteForm()
This method is used for deleting forms. This works as follows:

◆ First, it checks whether the form ID has been supplied or not. If not, it
shows an alert message and returns null.

◆ Then a new Form object, $frmObj, is created and the deleteForm()
method of $frmObj is used to delete the form.

◆ If the deletion succeeds, the AccessControl class is used to delete the
related IPs from the authorized and banned tables for the form.

◆ At the end, a status message is shown depending on the outcome of the
deletion operation.

Creating a Tell-a-Friend Message
Manager Application
This application, taf_msg_mngr.php, is responsible for managing all messages for
the system. This application is included on the CD-ROM in the ch13/apps directory.

It implements the following functionality:

◆ Allows any user to add a new message.

◆ Allows users from authenticated IP addresses to delete or modify the
selected message.

This application has the following methods.

run()
When the application is run, this method is called. It does the following:

◆ First, it retrieves the $cmd value from the user request.

◆ Depending on the $cmd value, different methods are called.

454 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 454

◆ When the $cmd is add or modify, it calls the addModifyDriver() method
with the appropriate mode (add or modify).

◆ And when the $cmd is delete, it calls the deleteForm() method to delete
the form.

authorize()
This method checks whether the IP address (where the user is accessing the applica-
tion from) is an authorized one. This is how it works:

◆ This application allows everyone to add messages. So when the request
$cmd is add, it directly returns true.

◆ In case of modify and delete, the AccessControl object is used to verify
whether the request IP is allowed to access the given message. It returns
TRUE or FALSE depending on the verification result.

addModifyDriver()
This method is responsible for driving the add/modify procedure. Depending on
the hidden form value $step, it decides whether to call the add/modify menu
rendering method, displayAddModifyMenu(), or the add/modify method,
addModifyMessage(). Both the methods are called with proper mode (add or modify).

displayAddModifyMenu()
This method is used to show the Web form for adding or modifying forms. It works
as follows:

◆ If the method is called with mode modify, it first checks whether the mes-
sage ID has been supplied or not. In case of no message ID, the method
shows an alert message and returns null.

◆ Otherwise, all the previous information of the given message is retrieved
and loaded in variables for later usage, to preload the modification Web
form while showing to the user. In this case, the AccessControl object is
used to retrieve the authorized IPs for the message.

◆ Then a message setup template (TAF_MSG_SETUP_TEMPLATE) is loaded in a
template object called $template.

◆ The different form fields required for adding or modifying a message are
prepared.

◆ At the end, the template is parsed and printed to the user to give her a
Web form to add or modify messages.

Chapter 13: Tell-a-Friend System 455

17 549669 ch13.qxd 4/4/03 9:26 AM Page 455

addModifyMessage()
This method is used to add or modify messages. It works as follows:

◆ First, it prepares the $params array with all the message field values from
the user request.

◆ Then it creates an object of AccessControl to add or modify the access to
the message.

◆ When the mode for the method is add, the $params array is fed into the
addMessage() method of the Message class to add the new message. If
the addition fails, the method shows a failure message and returns.

◆ If the addition operation is successful, the authorized IPs are added to the
database using the addAccessIPs() method of the AccessControl class.
And then a successful addition message is shown to the user.

◆ When the mode for the method is modify, the $params array is fed into
the modifyMessage() method of Message class to update the given mes-
sage. If the update fails, the method shows a failure message and returns.

◆ If the update operation is successful, the authorized IP addresses are added
to the database using addAccessIPs() method of the AccessControl
class after deleting the previous IPs. And then a successful update mes-
sage is shown to the user.

deleteMessage()
This method is used for deleting messages. This works as follows:

◆ First, it checks whether the message ID has been supplied or not. If not, it
shows an alert message and returns null.

◆ Then a new Message object $msgObj is created and the deleteMessage()
method of $msgObj is used to delete the message.

◆ If deletion succeeds, the AccessControl class is used to delete the related
IPs from the authorized table for the message.

◆ At the end, a status message is shown depending on the outcome of the
deletion operation.

456 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 456

Creating a Tell-a-Friend Form
Processor Application
This application, taf.php, is the core part of the system that is responsible for han-
dling the form submission requests from users. This application is included on the
CD-ROM in the ch13/apps directory.

It implements the following functionalities:

◆ Processes the form submitted by the users and updates the database
accordingly.

◆ Sends appropriate mails to newly added friends and the originator of
those friends.

To achieve those functionalities, it uses the following methods.

run()
When the application is run, this method is called. It simply calls the
processRequest() method to process the submit request from the user.

processRequest()
This method is responsible for handling the request and takes the action thereby.
This is how it works:

◆ First, it checks whether the form ID is supplied or not. If not, it shows an
alert message and returns null.

◆ Then it verifies if the originator e-mail has been provided from the form
or not. If not, it returns null after showing an alert.

◆ Then it uses the AccessControl class to check whether the request IP
address is banned from submitting friends for this form. If it is banned,
then it shows the appropriate alert and returns null.

◆ Then an object of the Form class, named $frmObj, is created.

◆ $frmObj retrieves the activation date and termination date for the form
and checks whether the current time falls into a valid time range. If not, it
shows an alert message and returns null.

Chapter 13: Tell-a-Friend System 457

17 549669 ch13.qxd 4/4/03 9:26 AM Page 457

◆ Then the campaign message ID is retrieved (the one to be sent to the new
friends for this form) and $msgObj, an object of Message class, is used to
get and store the information on that message.

◆ For each friend supplied by the user request, the method first checks
whether the friend e-mail is already unsubscribed. If not, the friend’s sub-
mission data is added in to the submission table and the friend is sent the
campaign message along with links for subscription and unsubscription.

◆ Then the message ID to be sent to the originator is retrieved using
$frmObj and given to $msgObj for information on that message. That
message along with information on the successfully submitted friends is
sent to the originator. This also contains a link to the scorecard for the
originator.

◆ At the end, a status message is shown to the user saying that her submis-
sion has been granted and a mail has been sent to her with details.

Creating a Tell-a-Friend Subscriber
Application
This application, taf_subscribe.php, is responsible for handling the subscription
requests from friends. This application is included on the CD-ROM in the
ch13/apps directory.

It implements the following functionalities:

◆ Checks whether the request is valid via the authorize() method.

◆ Updates database according to the subscription request.

To achieve those functionalities it uses the following methods.

run()
When the application is run, this method is called. It simply calls the
processRequest() method to process the subscription request from the friend.

authorize()
This method is used to verify the authenticity of the request. This is how it works:

◆ Ideally, friends access this application through the link provided by the
Form Handler application. And that link contains a check flag that is used
here to verify.

458 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 458

◆ The encrypted check flag is decrypted and matched with the other para-
meters from the link. If the matching fails, the method returns false.

◆ Even after the matching succeeds, a second checking is done using the
friend ID that was hidden in the check flag. This friend ID is matched with
all the friend IDs of the database and checked to see whether the corre-
sponding e-mail is same as the e-mail hidden in the check flag. The
method returns TRUE or FALSE depending on this matching result.

processRequest()
This method is used to process the subscription data and update the database
thereby. It works as follows:

◆ First it creates an array named $param with the form ID, friend e-mail,
subscription status (sub or unsub), originator e-mail, and subscription
time stamp.

◆ Then the array is passed into the addSubscriptionData() method of the
Form class to add the subscription data.

◆ If the addition is successful and the subscription type is sub (which means
the friend agreed to subscribe to the system), an e-mail is sent to the
friend.

◆ The e-mail to be sent to the friend is decided from the subscription mes-
sage ID specified while setting up the form. This ID is retrieved using the
Form class and then fed into the Message class to get its details.

◆ At the end, the friend is shown a status message depending on the sub-
scription data addition status.

Creating a Tell-a-Friend Reporter
Application
This application, taf_reporter.php, is responsible for generating reports for the
system. This application included on the CD-ROM in the ch13/apps directory.

It implements the following functionalities:

◆ Produces a report for form creator with subscription ratio and other
details.

◆ Produces a scorecard report for friend originator.

These are the methods used by the application.

Chapter 13: Tell-a-Friend System 459

17 549669 ch13.qxd 4/4/03 9:26 AM Page 459

run()
This method is called when the application is run. It decides, from the cmd value of
the request, which report to generate (form creator or originator). And then it either
calls generateFormCreatorReport() for the form creator report or
generateOriginReport() for the originator report.

generateFormCreatorReport()
This method is used for showing a report to the form creator for her form. It works
as follows:

◆ First, it takes the form ID and checks whether the form is accessible by the
request IP. If not, it shows an alert message and returns null.

◆ Then a creator report template (TAF_CREATOR_REPORT_TEMPLATE) is loaded
in a template object called $template.

◆ On the top of the template, the form summary is displayed using the
methods getFormInfo(), getFriendList(), getNumberOfSubscriber(),
and getNumberOfUnsubscriber() of the Form class.

◆ In the lower part of the template, a block for top originators is set using
the getOriginSubmissions() and getNumSubscriptionPerOrigin()
methods of the Form class.

◆ At the end, the template is parsed and printed to the form creator to give
her a complete report on the form.

generateOriginReport()
This method is used for showing the report to the friend originator for a given form.
It works as follows:

◆ First, it validates the check flag from the user request that is given from
the form handler application. It shows an alert message and returns null if
the validation fails.

◆ Then an originator report template (TAF_ORIGIN_REPORT_TEMPLATE) is
loaded in a template object called $template.

◆ Then the getFriendsByOrigin() method of the Form class is used to
retrieve the list of friends originated by this user.

◆ Then the status of each friend is retrieved using the
getSubscriptionStatus() method of the Form class. This status along
with different scores (like score per subscription and score per submission)
is used to set the score per friend for the originator.

460 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 460

◆ After setting the score per each friend, the total score for the originator is
calculated and set at the bottom of the template.

◆ At the end, the template is parsed and printed to the user to give her a
scorecard report.

Installing a Tell-a-Friend System
Here I assume that you’re using a Linux system with MySQL and Apache server
installed. Your Internet web server document root directory is /evoknow/
intranet/htdocs. Of course, if you have a different path, which is likely, you
should change this path whenever you see it in a configuration file or instruction in
this chapter. During the installation process, I refer to this directory as
%DocumentRoot%.

I also assume that you’ve installed the PHPLIB and PEAR library. Normally, these
get installed during PHP installation. For your convenience, I’ve provided these in
the lib/phplib.tar.gz and lib/pear.tar.gz directories on the CD-ROM. In
these sample installation steps, I assume that these are installed in the
/%DocumentRoot%/phplib and /%DocumentRoot%/pear directories. Because your
installation locations for these libraries are likely to differ, make sure you replace
these paths in the configuration files.

Here is how you can get your Tell-a-Friend applications up and running:

1. Install the application framework. If you have not yet installed the appli-
cation framework discussed in Chapter 4, you must do so before proceed-
ing further.

2. Install the Tell-a-Friend Database. The quickest way to create the Tell-a-
Friend database is to run the following commands:

mysqladmin –u root –p create TELL_A_FRIEND
mysql –u root –p –D TAF < taf.sql

3. Install the Tell-a-Friend applications. Now from the ch13 directory on
the CD-ROM, extract ch13.tar.gz in %DocuemntRoot%. This will create
taf in your document root. Configure %DocumentRoot%/taf/apps/
contact.conf for path and database settings. The applications are
installed in the %DocumentRoot%/taf/apps directory and the templates
are stored in %DocumentRoot%/taf/apps/templates.

If your MySQL server is hosted on the web server, it can be accessed via
localhost. However, if this is not the case, you can easily modify the data-
base URLs in each application’s configuration files. For example, the con-
tact.conf file has a MySQL database access URLs such as the following:

define(‘TAF_DB_URL’,’mysql://root:foobar@localhost/TELL_A_FRI
END’);

Chapter 13: Tell-a-Friend System 461

17 549669 ch13.qxd 4/4/03 9:26 AM Page 461

Say your database server is called db.domain.com and the user name and
password to access the TELL_A_FRIEND databases (which you will create
during this installation process) are admin and db123. In such a case, you
would modify the database access URLs throughout each configuration
file as:

define(‘TAF_DB_URL’,’mysql://admin:db132@db.domain.com/TELL_A
_FRIEND’);

If you change the database name from TELL_A_FRIEND to some other
name make sure the database prefix in the following configuration lines
are changed accordingly:

/* ----- DEFINE TABLE NAMES ----------- */
define(‘TAF_FRM_TBL’,

‘TELL_A_FRIEND.TAF_FORM’);

define(‘TAF_FRM_OWNER_IP_TBL’,
‘TELL_A_FRIEND.TAF_FRM_OWNER_IP’);

define(‘TAF_FRM_RESTRICT_IP_TBL’,
‘TELL_A_FRIEND.TAF_FRM_BANNED_IP’);

define(‘TAF_MSG_OWNER_IP_TBL’,
‘TELL_A_FRIEND.TAF_MSG_OWNER_IP’);

define(‘TAF_MSG_TBL’,
‘TELL_A_FRIEND.TAF_MESSAGE’);

define(‘TAF_FRM_SUBMTN_TBL’,
‘TELL_A_FRIEND.TAF_SUBMISSION’);

define(‘TAF_SUBSCRIPTION_TBL’,
‘TELL_A_FRIEND.TAF_SUBSCRIPTION’);

4. Set file/directory permissions. Make sure you’ve changed the file and
directory permissions such that your intranet web server can access (read)
all the files.

After you’ve performed the preceding steps, you’re ready to test your Tell-a-
Friend applications.

Testing the Tell-a-Friend System
Now that you’re ready to test your system, the very first step is to create a Tell-a-
Friend form. I’ve supplied two sample Tell-a-Friend forms called sample_taf_
form1.html and sample_taf_form2.html in the taf directory.

462 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 462

To set up a Tell-a-Friend form, you need to do the following:

◆ Create three messages using Tell-a-Friend message manager.

■ One message is for friends who get e-mail because another friend
gives their name and information to your Tell-a-Friend system. This
e-mail should introduce the friend to what you have to offer. For
example, if you’re interested in signing up people for a newsletter, you
should state what the newsletter has to offer in this message. This
message is created using the taf_frnd_msg.html template file in the
template directory. So if you want to control the look and feel of this
message, you should modify this template. Make sure if you use any
images in the template, the images are directly accessible from your
Web site. In other words, use fully qualified path names for images.
For example, instead of using use
. Remember:
This is a message template for all messages to friends, so don’t cus-
tomize it for a single campaign. Your actual content of the message is
entered via the form manager application. The content is inserted
dynamically into the message template by replacing the {FRND_MSG}
tag in the template.

■ The second message you need to set up is for the originator who sub-
mits the friend’s name. This is usually a thank-you message for helping
you market your product/services/information. This message is sent
using the taf_frnd_msg.html template. The actual content of the mes-
sage is entered via the form manager like the friend’s message.

■ The third message is the subscription message and it’s sent when a
friend actually clicks on the subscription link (in the introduction mail
generated by taf_frnd_msg.html) and subscribes to your offer. Note
that when a friend decides to unsubscribe, she does not receive an
e-mail, but a confirmation of her unsubscription status is shown on the
web browser when she clicks on the remove or unsubscription link
from the introduction mail.

◆ Create the form with a form action that runs the Tell-a-Friend form
processor application. When you set up the form with the Tell-a-Friend
form manager, the form action is given to you at the end of the process,
so you can simply copy and paste the form action from there.

After you’ve set up the messages and the Tell-a-Friend form, you can use your
form in e-mail campaigns.

In the following section, I discuss a Tell-a-Friend campaign from setup to
execution.

Chapter 13: Tell-a-Friend System 463

17 549669 ch13.qxd 4/4/03 9:26 AM Page 463

Creating Msg for Friend (Introduction Msg)
The first step is to create an introductory message for the friends who would be
referred by other friends filling out the Tell-a-Friend form.

Run http://yourserver/taf/apps/taf_mngr.php, which should bring up a
menu interface as shown in Figure 13-3.

Figure 13-3: Tell-a-Friend system main menu.

Click on the Add a New Message link, which will show the screen shown in
Figure 13-4.

Fill out this form and decide if you want to restrict access to this message by
IP/network. For example, if you don’t want anyone to modify or delete this mes-
sage from somewhere else, and you have a static IP network (most offices do), you
can enter the IP address of your PC or the network in the Restrict Message Setup to
IP Networks field. For your convenience, your current IP address is shown on the
top of the form.

Similarly, add two other messages: one for the originator who refers friends via
the Tell-a-Friend form and the other for the friend who decides to subscribe by
clicking on the subscription link shown by the very first message she gets from
your Tell-a-Friend system.

When you have three messages set up, you’re ready to set up a Tell-a-Friend
form.

From the main menu, click on the Setup a Tell-a-Friend Form link, which shows
a screen similar to Figure 13-5.

464 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 464

Figure 13-4: Adding the message for friends.

Figure 13-5: Setting up a Tell-a-Friend form.

Chapter 13: Tell-a-Friend System 465

17 549669 ch13.qxd 4/4/03 9:26 AM Page 465

Give a name to your form; select the date you want the data submission to be
activated. This is the date when the Tell-a-Friend system will start accepting data
requests for this form. Select a suitable termination date, which is when the Tell-a-
Friend system will stop accepting data for this form. The termination date is very
useful if you tie the Tell-a-Friend form with a limited-time promotional activity.

Select the messages that you created earlier as appropriate. Enter the maximum
number of submissions (friend referrals) that a person (the originator who received
your e-mail campaign message) can make. This limit is needed to protect your sys-
tem against people who would try to add many friends’ addresses if there is any
promotion attached to the Tell-a-Friend campaign. For example, if you offered the
top 100 people with the most friends submitted and/or friend subscriptions some
prizes, some people would submit too many e-mail addresses.

For each submission, assign a score for the originator by setting the Score Per
Submission field. This score is given to the originator every time she fills out the
Tell-a-Friend form received via an e-mail campaign or other means.

Whenever a friend referred by the originator opts into become a subscriber by
clicking on the subscription link in the e-mail she receives, the originator can get
another score for delivering a new lead or customer. This score is set by Score Per
Subscription field.

If you have any reason to disallow one or more IP address or IP networks from
submitting Tell-a-Friend referrals, you can ban them using the Disallow
Submissions from IP field. Enter a single IP such as 192.168.1.123 or partial IP (net-
work address) such as 192.168 per line. If you want to restrict access to the form
setup or report scripts, use the Restrict Form Setup/Report to IP field.

Click on the Add Form button and you’ll see a screen similar to Figure 13-6.

Figure 13-6: Form information.

466 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 466

Copy the information given in the textarea box; you need this for your actual
HTML Tell-a-Friend form. The form action of your HTML Tell-a-Friend form has to
be exactly as shown in this screen. Also, the hidden field set stores the formid
needed in your form. Each Tell-a-Friend form must include

◆ A valid form action that points to the Tell-a-Friend form processor
application.

◆ A hidden field that has the formid assigned during form setup.

◆ An originator e-mail field. Typically, this will be a hidden field if the form
is used in an e-mail campaign. It can be an input field as well if you want
the user to enter his e-mail address or your e-mail campaign software
cannot customize a message with e-mail fields.

I’ve provided two sample Tell-a-Friend forms in the taf directory. You can
modify these forms to fit your requirements. For example, say you want to use
sample_taf_form1.html in an e-mail campaign where the message will embed
this form. In this case, you need to make sure that the following hidden field is set
up correctly:

<input type=hidden name=origin value=’nobody@domain.com ‘>

Change the value to a personalization tag that your e-mail campaign software
will replace with the e-mail address of the person who is receiving the campaign.
For example:

<input type=hidden name=origin value=”{EMAIL}”>

If your campaign software will personalize the message where {EMAIL} will be
replaced with the e-mail address of the recipient of the campaign, then you can use
this tag. For testing purposes, you can hardcode this value to your own e-mail
address for now.

After you have the messages and form set up, you’re ready to test the Tell-a-
Friend system. Send the Tell-a-Friend form via e-mail to yourself or use your web
browser to load it on your browser. Figure 13-7 is a Tell-a-Friend form received by
a user as part of an e-mail campaign.

When the user fills out the form and clicks on the button to submit, she will be
entering the friends into the Tell-a-Friend system. The friends she enters will
receive an e-mail message that introduces the product or service to them. Such a
message can look like the one shown in Figure 13-8.

Remember: This message is created using the taf/apps/templates/
taf_frnd_msg.html file and the message body contents you entered via the mes-
sage manager application.

If the friend decides to subscribe, she can click on the subscription link; or she can
choose to remove herself from any mailing in the future. By default, you should never
include any of the friends who do not respond either way in any future mailing.

Chapter 13: Tell-a-Friend System 467

17 549669 ch13.qxd 4/4/03 9:26 AM Page 467

Figure 13-7: A Tell-a-Friend form received by a user.

Figure 13-8: Message to a friend as referred by the originator.

468 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 468

If the friend decides to subscribe by clicking on the subscription link, she will get
another mail confirming that she has been subscribed. This message look like what
you see in Figure 13-9.

Figure 13-9: A message to friend who subscribes.

Remember: This message is created in the message body contents you entered
via the message manager application.

Whenever a user (originator) submits friends via the Tell-a-Friend form, she gets
a message as well. This message can look as shown in Figure 13-10.

Figure 13-10: A message to the originator who referred friends.

Chapter 13: Tell-a-Friend System 469

17 549669 ch13.qxd 4/4/03 9:26 AM Page 469

The originator can view her score report by clicking on the appropriate link.
Remember: This message is created using the taf/apps/templates/
taf_orig_msg.html file and the message body contents you entered via the mes-
sage manager application.

If the originator wants to see the clicks on the link to view the score report, she’ll
see a screen similar to Figure 13-11.

Figure 13-11: The score report for the originator.

You can also view the activity report of a Tell-a-Friend form by selecting the form
from the Main Menu (http://yourserver/taf/apps/taf_mngr.php) and clicking
on the View Form Activity Report. A sample report is shown in Figure 13-12.

Figure 13-12: A form activity report.

470 Part III: Developing E-mail Solutions

17 549669 ch13.qxd 4/4/03 9:26 AM Page 470

As you can see, as a Tell-a-Friend system owner, you can see how many friends
have been sent e-mails by the system (in the Friends column), how many sub-
scribed (in the Subscribed column), how many rejected subscription request by
unsubscribing (in the Rejected columns), and so on.

You can also see the top users who’ve given you new leads or possibly cus-
tomers. If you use promotions such as giveaways for the top ten originators, you
can simply review this report from time to time and see who your top customers are
who referred you to their friends.

Security Considerations
Here we decided to allow anyone to add Tell-a-Friend forms using the
taf_form_mngr.php application and restricted modify and delete privileges.
However, you might want to restrict add form privilege to a certain list of IP
addresses, in such case you have to modify the authorize () method in the
taf_form_mngr.php application.

Summary
In this chapter, you learned to develop a Tell-a-Friend system that you can use with
your e-mail campaign system, whether it’s in-house or outsourced via Internet ser-
vice providers. This tool can increase exposures and potentially increase customers
for your organization; it’s widely used by both large and small companies around
the world.

Chapter 13: Tell-a-Friend System 471

17 549669 ch13.qxd 4/4/03 9:26 AM Page 471

17 549669 ch13.qxd 4/4/03 9:26 AM Page 472

Chapter 14

E-mail Survey System
IN THIS CHAPTER

◆ Designing a survey system

◆ Implementing a survey system

◆ Testing a survey system

BEING ABLE TO SURVEY your customers frequently is an important requirement for
business today. Thanks to the pervasiveness of e-mail, you can now perform most of
your surveys via e-mail.

Customers provide valuable information when they participate, which benefits
both the company and the customers.

In this section, you’ll design a simple yet powerful survey system that can be
managed by marketing personnel with a bit of HTML form knowledge. The system
functionality is shown in Figure 14-1.

Figure 14-1: Survey system functional diagram.

Survey Message to Customer

Survey System
Store Survey

Results

Dear Joe,

Please participate in the following
survey.

Are you happy with us [] Yes [] No
Are you sure [] Yes [] No

1

2

3

4
Survey Administrator
Manage Lists, Forms
Manage Surveys
Show Survey Reports

Submit

473

18 549669 ch14.qxd 4/4/03 9:26 AM Page 473

A typical survey process can be described as follows:

1. The survey system sends an e-mail survey to the customer.

2. The customer fills out the survey from within the e-mail client program
and submits the results by clicking on the Submit button.

3. The customer survey results are stored in the survey database.

4. The survey administrator views the compiled survey result as a report.

In the following sections, you’ll develop a survey system that has the following
features.

Functionality Requirements
◆ Unlimited number of survey email (target) lists: Supports unlimited

number of survey email (target) lists. The survey administrator can create
many survey target lists.

◆ Comma-separated value (CSV) file support: Survey target lists can be
created from CSV files.

◆ Duplicate entry protection per list: When a list is added to the system,
the system should automatically detect duplicate entries within a list and
should only add one instance of any e-mail address. This will ensure that
when a survey is executed no user ever gets two or more survey forms.

◆ Unlimited number of questions: Supports an unlimited number of ques-
tions. However, questions can be only multiple-choice or text data not
exceeding the size limit used in the database. The survey must support:
text data, checkboxes, radio buttons, and drop-down menu selections as
answers for questions.

◆ Personalized survey form: Each survey form can be personalized using
the survey target’s first and last name.

◆ Simple reporting: A simple tabular report to allow the survey administrator
to collect valuable insight into the customer’s understanding and perception
of the company.

Now let’s look at the architecture of such a survey system.

474 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 474

Architecture of the Survey System
Figure 14-2 shows the system diagram for the survey system you’re going to develop
in this section.

Figure 14-2: Survey system architecture diagram.

There are two types of users in the system: the survey administrator and the cus-
tomers who are the survey participants. The survey system administrator user is
able to perform the following tasks:

◆ Add or delete survey target lists. The survey administrator can add a new
survey target list using the list-management component of the survey-
management application suite.

◆ Add or delete survey forms. The survey administrator can add a new
survey form that can be used in a survey campaign. A survey form is an
HTML document that has all the survey questions in it. This form is sent
as an e-mail to the target list and the response is collected using the
response-management application.

◆ Add or delete survey campaigns. The survey administrator can add or
delete a survey campaign. Each survey campaign consists of an existing

Survey
Administrator

Survey Management
Application Suite

List Manager

Form Manager

Campaign Manager

Report Manager

Execution Manager

Response Manager

List

Form

Survey

Report

Response

Customer

Objects

Survey
Database

Chapter 14: E-mail Survey System 475

18 549669 ch14.qxd 4/4/03 9:26 AM Page 475

survey form and a target list. In other words, each survey campaign can
only be sent to a single target predefined target list using a predefined
survey form in the system.

◆ View survey reports. The survey administrator can access automatically
generated survey reports via the management application suite.

The customer, the survey participant, can receive a survey form via e-mail and
respond to the survey questions. The result is not accessible by the customer.

As shown in Figure 14-1, there are six applications in the survey system:

◆ List Manager: Responsible for creating simple survey lists from comma-
separated value (CSV) files that have three fields — EMAIL, FIRSTNAME, and
LASTNAME— in the previously mentioned order. When a new list is added
to the system, the List Manager application automatically creates one user
ID per e-mail address entered into the new list from the CSV file. It auto-
matically protects the list against duplicate entries, and it can also apply
filters on all the data fields. This application also allows the user to
remove existing lists from the database.

◆ Form Manager: This application is responsible for adding new survey
forms in the system. The survey forms must follow a specific HTML form
development guideline, which is specified in a later section.

◆ Campaign Manager: This application is responsible for creating new
survey campaigns using existing survey forms and target lists. It also
allows the user to delete old surveys.

◆ Report Manager: This application is responsible for displaying the survey
response report.

◆ Execution Manager: This application executes a given survey by sending
e-mails using the appropriate survey form to the appropriate survey target
list.

◆ Response Manager: When a customer fills out a survey form, this applica-
tion writes the survey response data to the survey database.

The system diagram also shows that all the applications use five objects: list,
form, survey, report, and response. These objects are described in the “Designing
and Implementing the Survey Classes” section of this chapter in detail. Before the
classes providing the objects can be defined, you need to implement the database
needed to support the features discussed earlier.

476 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 476

Designing the Database
Figure 14-3 shows the database diagram for the survey system. In the following
sections, I describe each table in details.

Figure 14-3: Survey system database diagram.

SURVEY Table
This table is the integral part of this database. This table holds the survey name
(NAME), survey list number (LIST_ID), survey form number (FORM_ID), execution
status (STATUS), survey creation time (CREATE_TS), and user ID of the user who cre-
ated the survey (CREATOR_ID). The survey number (SURVEY_ID) is automatically
generated by the database.

SURVEY_LIST Table
This table contains the survey list information. The survey list consists of a list
number (LIST_ID), which is automatically generated when the list is created. It con-
tains the list name (NAME), the user’s uploaded data file name (FILENAME) used to cre-
ate the list, the number of records (RECORDS), the survey creation time (CREATE_TS),
and the user ID of the user who created the survey (CREATOR_ID).

SURVEY_LIST_DATA Table
This table holds the list data. The list is identified by the LIST_ID field from the
SURVEY_LIST table. Each list contains survey user ID (SUID), e-mail address
(EMAIL), first name (FIRST), and last name (LAST) fields. The FIRST and the LAST
fields can be used to personalize the survey form sent out by the system. These
fields are accessed in the survey form as {FIRST} and {LAST} tags.

LIST_ID
NAME
FILENAME
RECORDS
CREATE_TS
CREATOR_ID
CHECKFLAG

1

∞

∞

SURVEY_LIST

SURVEY_ID
NAME
LIST_ID
FORM_ID
CREATE_TS
CREATOR_ID
STATUS

SURVEY

FORM_ID
NAME
TEMPLATE
SUBJECT
MAILFROM
CREATE_TS
CREATOR_ID
CHECKFLAG

SURVEY_FORM

LIST_ID
SUIC
EMAIL
FIRST
LAST

SURVEY_LIST_DATA

EXEC_ID
SUID
SUBMIT_TS

SURVEY_RESPONSE_RECORD

FORM_ID
FIELD_ID
LABEL

SURVEY_FORM_FIELD_LBL

ID
EXEC_ID
SUID
FIELD_ID
VALUE

SURVEY_RESPONSE

EXEC_ID
SURVEY_ID
SURVEY_TS

SURVEY_EXECUTION
1

1

11

∞
∞

∞

∞

∞

Chapter 14: E-mail Survey System 477

18 549669 ch14.qxd 4/4/03 9:26 AM Page 477

SURVEY_FORM Table
This table holds information about the survey form that is uploaded by the user.
It contains the name of the form (NAME), form template (that is, file name) name
(TEMPLATE), subject (SUBJECT) of the survey, from address (MAILFROM), survey cre-
ation time (CREATE_TS), and user ID of the user who created the survey (CREATOR_ID).

The form ID (FORM_ID) is automatically generated when a new survey form is
added to the system. The CHECKFLAG field is used to protect the system against
multiple uploading of the same form if the user accidentally refreshes the browser
during the form upload process.

SURVEY_FORM_FIELD_LBL Table
This table contains labels for questions asked in a survey form. Each survey form
consists of a set of questions, which are stored in this table to allow the reporting
of the collected survey data. The FORM_ID identifies a form in the SURVEY_FORM
table, the FIELD_ID identifies a field in the survey form and the LABEL field holds
the question or label to identify the form data.

SURVEY_EXECUTION Table
This table is used to store information about how many times each survey is exe-
cuted. The EXEC_ID is automatically generated per new execution of the survey. The
SURVEY_ID identifies the survey being executed, the SURVEY_TS is used to store the
execution time of the survey.

SURVEY_RESPONSE Table
This table holds the survey response data per survey participant. The ID field is used
to create an automatic sequence number, which is unique per row. The EXEC_ID
identifies the execution number of the survey, which is identified by SURVEY_ID.
The SUID field is the user ID for the participant, the FIELD_ID identifies the ques-
tion, and the VALUE field stores the response data.

SURVEY_RESPONSE_RECORD Table
This table is used to control how many times a user participating in a single survey
posts data. Currently, one survey response per user is allowed. The EXEC_ID identi-
fies the survey response being recorded for a given survey, the SUID identifies the
participant, and the SUBMIT_TS stores the survey response time.

The ch14/sql/survey_tool.sql file in the CDROM is an implementation of the
survey database. To implement this survey database in MySQL you can create a
database called SURVEY in your database server and run the following command:

mysql -u root -p -D SURVEY < survey_tool.sql

Make sure you change the user name (root) to whatever is appropriate for your
system. When you have the survey database designed you need to design the PHP
classes that will be needed to implement the applications. In the following sections,
I discuss these classes.

478 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 478

Designing and Implementing
the Survey Classes
As shown in the system diagram (Figure 14-2) five objects are needed to implement
the survey system. Here you will develop five classes that will provide these objects
for your survey applications.

Designing and implementing the Survey Class
The Survey class is used to manipulate each survey. It allows an application to
create and delete a survey and its execution data. The ch14/apps/class/class.
Survey.php in the CDROM is an implementation of this class. This class imple-
ments the following methods.

SURVEY() This is the constructor method. It performs the following functions:

◆ Sets a member variable named survey_tbl to $SURVEY_TBL, which is
loaded from the survey.conf file. The $SURVEY_TBL holds the name of
the survey table.

◆ Sets a member variable named survey_execution_tbl to $SURVEY_
EXECUTION_TBL, which is loaded from the survey.conf file. The
$SURVEY_EXECUTION_TBL holds the name of the survey execution table.

◆ Sets a member variable named response_tbl to $SURVEY_RESPONSE_TBL,
which is loaded from the survey.conf file. The $SURVEY_RESPONSE_TBL
holds the name of the survey response table.

◆ Sets a member variable named response_rec_tbl to $SURVEY_RESPONSE_
RECORD_TBL, which is loaded from the survey.conf file. The $SURVEY_
RESPONSE_RECORD_TBL holds the name of the survey response record table.

◆ Sets a member variable named dbi to point to the class.DBI.php-provided
object, which is passed to the constructor by an application. The dbi mem-
ber variable holds the DBI object, which is used to communicate with the
back-end database.

◆ Sets a member variable called SURVEY_ID to the given survey ID, if any.

GETSURVEYID() This method returns the current survey ID of the Survey object.

SETSURVEYID() This method sets the survey ID of the Survey object.

GETSTATUS() This method returns the status (STATUS field) of the survey from the
SURVEY table.

Chapter 14: E-mail Survey System 479

18 549669 ch14.qxd 4/4/03 9:26 AM Page 479

SETSTATUS() This method updates the status (STATUS field) of the survey in the
SURVEY table.

GETSURVEYINFO() This method returns all the information about the survey
from the SURVEY table.

GETLISTID() This method returns the list ID that is used for a survey.

GETFORMID() This method returns the form ID for a given survey.

ADDSURVEY() This method adds a new survey into to the SURVEY table. The sur-
vey name, list ID, form ID, and the creator ID (user ID) are passed as parameters to
the method.

DELETESURVEY() This method deletes the named survey from the database. It
will delete all data related to the survey from the survey database. This includes the
response data as well.

DELETEEXECUTIONRECORDS() This method deletes all execution records related
to a survey.

DELETERESPONSESBYEXECID() This method deletes all responses related to an
execution of a survey.

GETEXECUTIONRECORDLIST() This method returns the execution records for a
given survey. The execution records are returned an associative array, with execu-
tion ID (EXEC_ID) being the key and the full execution record as a row object.

ADDEXECUTIONRECORD() This method adds an execution record for a given sur-
vey in the SURVEY_EXECUTION table and returns the newly created EXEC_ID for the
survey.

The method first inserts the new execution record in the SURVEY_EXECUTION
table and then selects the EXEC_ID from the same table.

GETAVAILABLESURVEYS() This method returns a list of available surveys in the
database. It returns an associative array, which uses the SURVEY_ID as the key and
survey name (NAME) as the value.

GETRETURNVALUE() This is a utility method that returns TRUE if the DBI returned
result is set to DB_OK, which notifies that the SQL operation was successful; other-
wise, it returns FALSE.

Designing and implementing the SurveyList Class
This class provides the survey List object. The List object is used to manipulate
survey lists. It allows an application to create and delete survey lists. Survey lists

480 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 480

are created from external comma-separated value (CSV) files that are uploaded by the
survey administrator. The ch14/apps/class/class.SurveyList.php file in the CDROM
is an implementation of this class. I will discuss the methods available in this class.

SURVEYLIST() This is the constructor method, which performs the following tasks:

◆ Sets a member variable called list_tbl to $SURVEY_LIST_TBL, which is
loaded from the survey.conf file. The $SURVEY_LIST_TBL variable holds
the name of the survey list table.

◆ Sets a member variable called list_data_tbl to $SURVEY_LIST_DATA_TBL,
which is loaded from the survey.conf file. The $SURVEY_LIST_DATA_TBL
variable holds the name of the list data table.

◆ Sets a member variable named dbi to point to the class.DBI.php-provided
object, which is passed to the constructor by an application. The dbi mem-
ber variable holds the DBI object, which is used to communicate with the
back-end database.

◆ This method calls the setSurveyListID() method to set the list ID of the
object.

SETSURVEYLISTID() This method sets the survey list ID. If the list ID is provided
as a parameter, it is set as the object’s list ID; otherwise, the current list ID is
returned.

SETRETURNVALUE() This is a utility method that returns TRUE if the DBI returned
result is set to DB_OK, which notifies that the SQL operation was successful; other-
wise, it returns FALSE.

ADDNEWSURVEYLIST() This method creates a list using user uploaded CSV data.
The method does the following:

◆ Creates a unique check flag called $checkflag using the user’s ID ($uid)
and current time stamp ($today) supplied from the calling application.

◆ It then inserts a new row in the survey list (SURVEY_LIST) table and gets
the newly created list id (LIST_ID), which is needed to insert the list data
in the list data table (SURVEY_LIST_DATA).

◆ For each line in the user uploaded file, it creates a record set consisting of
$email (EMAIL), $fname (FIRST), and $lname (LAST) fields.

◆ If the filter options are enabled for filtering the name fields (FIRST, LAST)
and/or the e-mail field (EMAIL), the method applies fields. Currently,
the name fields are filtered such that each word in a name is first lower-
cased and then only the first character is uppercased. The e-mail field is
lowercased.

Chapter 14: E-mail Survey System 481

18 549669 ch14.qxd 4/4/03 9:26 AM Page 481

◆ The filtered (or not filtered) data is then inserted into the list data table
(SURVEY_LIST_DATA).

◆ When all data is inserted, the RECORDS field in the list table (SURVEY_LIST)
is updated to reflect the data inserted in the list table.

GETTOTALRECORDCOUNT() This method returns the total record count for a
given list. In other words, it returns the number of survey recipients in a list.

Since the EMAIL address is unique in the list table per list, each list can only

contain a single instance of an e-mail address. This ensures that a survey is

not sent to the same user twice from the same execution of the survey.

GETAVAILABLELISTS() This method returns a list of available survey lists in the
database. The returned list is an array, which is indexed with LIST_ID, and the
value of each element is the corresponding name of the list.

DELETELIST() This method removes a list from the database.

GETTARGETDATA() This method returns a list of records from the survey list data
table (SURVEY_LIST_DATA) using LIST_ID. It limits the returned list of records using
SUID and delivery chunk size stored in the survey.conf file.

In other words, this method returns a list of records as an associative array,
which has SUID as key and row object per record as value. The returned record set
is limited by the SUID and specified record size ($deliverySize).

For example, to get a list of 100 records that have SUID greater than 5,000 from
the SURVEY_LIST_DATA, you can call this method as follows:

$surveyListObject->getTargetData(5000, 100);

Designing and implementing
the SurveyForm Class
This class provides the survey Form object. The survey form object is used to
manipulate survey form data. Applications can add or remove survey forms using
the survey Form object. The methods provided by the class are discussed below. The
ch14/apps/class/class.SurveyForm.php file in the CDROM is an implementa-
tion of this class

SURVEYFORM() This is the constructor method, which creates the survey form
object. This method sets member variables survey_form_tbl to $SURVEY_FORM,
survey_form_field_tbl to $SURVEY_FORM_FIELD_LBL_TBL, dbi to $dbi and fid
to $fid.

482 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 482

SETSURVEYFORMID() This method sets the survey form ID.

SETRETURNVALUE() This is an utility method that returns NULL if the passed para-
meter is null else returns the value passed to it.

ADDNEWSURVEYFORM() This method adds a new survey form in the database. It
inserts the survey form information in the SURVEY_FORM after making sure text data
is properly quoted. Then it returns the new form’s FORM_ID from the database.

GETAVAILABLEFORMS() This method returns a list of all available forms in the
SURVEY_FORM in an associative array, which has FORM_ID as the index and form
name (NAME) as the value.

DELETEFORM() This method deletes a form with the given FORM_ID from the
SURVEY_FORM.

ADDLABEL() This method inserts a field label for a given form field in a given form.

GETTEMPLATE() This method returns the form template (TEMPALTE) from the
SURVEY_FORM for a form with the given FORM_ID field.

GETFORMINFO() This method returns the NAME, TEMPLATE, MAILFROM, SUBJECT,
CREATE_TS, and CREATOR_ID fields of a form with given FORM_ID. If the given form
is not found in the SURVEY_FORM, the method returns FALSE.

Designing and implementing
the SurveyResponse Class
This class provides the survey form Response object, which is used to manipulate
the survey response. An application can use the survey Response object to add a
new response or check whether a user has already submitted a survey or not. The
methods in this class are discussed in the following sections. The ch14/apps/
class/class.SurveyResponse.php file in the CDROM is an implementation of
this class.

SURVEYRESPONSE() This is the construtor method used to create the
SurveyResponse object. It initializes member variables: dbi to $dbi, survey_id
to $sid, form_id to $fid, response_tbl to $SURVEY_RESPONSE_TBL and
response_rec_tbl to $SURVEY_RESPONSE_RECORD_TBL.

ISSUBMITTED() This method returns TRUE if a given user has already submitted
her response for a given survey. It performs a SELECT query for the given run of the
survey ($EXEC_ID) using the user’s ID ($SUID) in the SURVEY_RESPONSE_RECORD. If
a row is found in the user’s table, she has already responded, and the query returns
TRUE, otherwise it returns FALSE.

Chapter 14: E-mail Survey System 483

18 549669 ch14.qxd 4/4/03 9:26 AM Page 483

ADDSUBMITRECORD() This method adds a submission record in the SURVEY_
RESPONSE_RECORD table for a given run ($EXEC_ID) of a survey for a given user ID
($SUID). The method returns TRUE if the submission record is added successfully
else it returns FALSE.

ADD() This method adds survey response data for a given survey run ($EXEC_ID)
for a given user ($SUID).

Designing and implementing
the SurveyReport Class
This class provides the survey Report object. Using the survey Report object, an
application can perform queries on survey response data stored in the database. The
following methods are needed to implement the class, which can be found in the
ch14/apps/class/class.SurveyReport.php file in the CDROM.

SURVEYREPORT() This is the constructor method that is used to create the
SurveyReport object. It initializes member variables: dbi to $dbi, execid to execid,
response_tbl to $SURVEY_RESPONSE_TBL, execution_tbl to $SURVEY_
EXECUTION_TBL, survey_tbl to $SURVEY_TBL, survey_response_rec_tbl to
$SURVEY_RESPONSE_RECORD_TBL, form_field_tbl to $SURVEY_FORM_FIELD_
LBL_TBL

SETSURVEYEXECID() This method sets the survey execution (i.e. run) ID.

GETSURVEYRESPONSE() This method returns the responses for a given survey
execution in an array.

GETRESPONSEDATERANGE() This method returns the start and the last date of
recorded response for a given survey execution.

GETTOTALRESPONSECOUNT() This method returns the total responses for a given
survey run.

GETLABELSBYFIELDANDEXECID() This method returns the field label for a given
field ID of a survey.

Designing and Implementing
the Survey Applications
According to the system diagram shown in Figure 14-2, the survey system consists
of six applications, which are discussed in the following sections.

484 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 484

Developing Survey Manager
This application is responsible for displaying the administrative menu to manage
the survey application suite. It allows the survey administrator user to add and
delete surveys. The ch14/apps/survey_mngr.php file in the CDROM is an imple-
mentation of a survey manager.

As usual, this application extends the PHPApplication class to create the
surveyMngr class, which has the following four methods.

run()
This method overrides the run() method provided by the PHPApplication class as
required by the application framework. It performs the following tasks:

◆ Uses the check_session() method to see if the user has an authenticated
session. If not, the user is redirected to the authentication application.

◆ If the user is authenticated, it then checks to see if the user has authoriza-
tion to access this application. This check is done using the authorize()
method, which is also overridden in this application to replace the empty
(abstract) one provided by the PHPApplication class.

◆ A global variable called $cmd is used to control how business logic is cho-
sen in this application. This variable is set automatically by PHP when
cmd=command is passed from the interface. The acceptable command values
are create or delete.

◆ When both authentication and authorization checks pass the global vari-
able, $cmd is used to implement a select business logic selection driver. If
the $cmd is set to create, the createSurveyDriver() method is called to
handle the survey creation process. If the $cmd variable is set to delete,
the delSurvey() method is called to handle the survey deletion process.
Otherwise, the displayMenu() method is called to load the survey man-
agement menu.

createSurveyDriver()
When the global variable $cmd is set to create from the GUI, the application runs
this method. This method uses another global variable called $step to determine
the appropriate step for the survey creation process.

When a user first enters the survey creation process, the $step is not set in the
GUI and, therefore, the method runs the displayMenu() method with the appropri-
ate interface template ($SURVEY_ADD_TEMPLATE). The displayMenu() method loads
the survey add interface. This interface has a hidden field called step, which is set
to 2 to indicate that the next time createSurveyDriver() is called it should call
the saveSurvey() method.

Chapter 14: E-mail Survey System 485

18 549669 ch14.qxd 4/4/03 9:26 AM Page 485

delSurvey()
This method is called when the run() method is passed $cmd=’delete’ from the
user interface. This method uses the deleteSurvey() method of a Survey object to
delete the chosen survey (indicated by $survey_id, which is also passed from user
interface).

saveSurvey()
This method saves a new survey with the data given from the survey add interface.
It uses the addSurvey() method of a Survey object to perform the actual add sur-
vey operation.

The method displays a status message based on the success or failure of the add
operation.

displayMenu()
This method displays a user interface. It can display either the survey management
menu interface or the survey add interface.

When this method is called from the run() method, it displays the survey menu
interface ($SURVEY_MENU_TEMPLATE) and when it is called from the create
SurveyDriver() it displays the survey add interface ($SURVEY_ADD_TEMPLATE).

authorize()
This method is responsible for authorizing the user to run the application. In this
version, this method always returns TRUE. If you want to implement a user-level
access control for the survey management application, you’ll have to change the
current implementation of the authorize() method. For example, if you want to
allow only a known group of users to administer surveys, you can store their user
ID in a new table within the survey database and perform a query to see if the cur-
rent user is a member of such a group.

Developing Survey List Manager
This application is responsible for managing the survey list. It performs the follow-
ing tasks:

◆ Allows the user to add a new list from a CSV file. The user uploads a CSV
file via the Web interface and assigns it a list name.

◆ Allows the user to delete an existing list.

◆ The ch14/apps/survey_list_mngr.php file in the CDROM is an imple-
mentation of the Survey List Manager application. This application creates
an instance of the PHPApplication class and uses the following methods.

run()
The run method performs the usual checks for authenticated and authorized users
and then uses the global $cmd variable to select either the addDriver() or the
delList() method. The value of the $cmd is set in the user interface displayed by

486 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 486

the Survey Manager application. If the $cmd variable is set to upload or empty the
addDriver() method is called to add a new list. If the $cmd variable is set to any-
thing else, the delList() method is called to delete a list.

addDriver()
This method uses a global variable called $step to determine which phase of the
add list process the user is currently at and selects the next step in the process.

For example, if the $step variable is empty, the first step in the add list process
is assumed and the displayAddListMenu() method is called to display the add list
interface.

If the $step value is anything but empty, the addList() method is called to add
the list in the database.

authorize()
See the authorize() method in the “Developing Survey Manager” section in this
chapter for details.

displayAddListMenu()
This method displays the add list interface. The interface HTML file name is retrieved
from the survey.conf file using the $SURVEY_ADD_LIST_TEMPLATE variable.

The current time stamp is embedded in the add list interface as a hidden

field called today to ensure that the user cannot enter the same list multi-

ple times. Because there is no accidental way for the user to generate the

same time stamp in submitting multiple lists, this field serves as the unique

flag associated with the list in the database.

delList()
This method is used to delete a chosen list. The chosen list is identified using a
global variable called $list_id, which is passed to the application via the user
interface as part of the request.

The actual delete operation is implemented using the deleteList() method
found in the SurveyList object.

The delList() method displays a success or failure status message based on the
status of the delete operation.

addList()
This method adds a list, for which data has been collected via the displayAddList
Menu() method. This method performs the following tasks:

◆ It first checks to see if the upload has been successful and if the list name
is given. If any of these checks fails, the method returns an error message.

Chapter 14: E-mail Survey System 487

18 549669 ch14.qxd 4/4/03 9:26 AM Page 487

◆ It then copies the uploaded file in the list upload directory pointed by the
$UPLOAD_DIR variable found in survey.conf file.

◆ Next it creates a SurveyList object and uses the addNewSurveyList()
method to add all records in the uploaded CSV file in the new list.

◆ Finally, it displays a status message stating the success or failure of the
list upload.

Developing Survey Form Manager
This application is responsible for managing survey forms. It allows the user to add
or delete survey forms. The following methods are implemented in this application,
which can be found in ch14/apps/survey_form_mngr.php file in the CDROM.

run()
The run method performs the usual checks for authenticated and authorized users
and then uses the global $cmd variable to select either the addDriver() or the
delForm() method. The value of the $cmd is set in the user interface displayed by
the Survey Manager application. If the $cmd variable is set to anything other than
delete or empty, then the addDriver() method is called to add a new survey
form. Otherwise, the delForm() method is called to delete an existing survey form.

addDriver()
Using a global variable $step, which is set in the user interface, this method con-
trols the add survey form process.
When the $step variable is empty, the displayAddFormMenu() method is called to
display the initial add form interface, which collects the form data.

The next time the $step variable is set to 2 in the initial form data entry inter-
face displayed by displayAddFormMenu(), the addForm() method is called.

Finally, the addDriver() method calls the addLabels() method to collect data
about the question labels in Step 3.

authorize()
See the authorize() method in the “Developing Survey Manager” section for
details.

displayAddFormMenu()
This method displays the add form interface. The interface HTML file name is
retrieved from the survey.conf file using the $SURVEY_ADD_FORM_TEMPLATE
variable.

addForm()
This method adds the uploaded form to the survey system using the following steps:

488 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 488

◆ Checks to see if the user has entered the required subject ($subject) and
from address ($from) fields.

◆ Checks to see if the form is uploaded or the form name ($formname) is
empty.

◆ Checks to see if the user has entered the number of questions ($num_fields)
data.

◆ If all of the preceding checks passes, the uploaded file is copied into the
forms directory from the $UPLOAD_DIR (set in survey.conf) and renamed
with the .ihtml extension.

◆ A SurveyForm object is created and its addNewSurveyForm() method is
called to create the form data in the database.

◆ Next, the addForm() method calls the takeFormLabels() method to dis-
play the label entry page for each questions unless the survey form could
not be added to the database. In case of insert failure, a status message is
displayed to notify the user.

takeFormLabels()
This method displays the interface to collect the question labels. It shows text entry
boxes per question so that the user can define question labels that are needed to
display the survey report.

addLabels()
This method adds the question labels entered in the interface displayed by the
takeFormLabels() method. The labels are added using the addLabel() method of
the SurveyForm object.

A status message is displayed to notify the status of the label addition in the
database.

delForm()
This method deletes a survey form from the database. The form ID is selected from
the interface shown by the Survey Manager interface.

The actual delete operation is implemented using the SurveyForm object’s
deleteForm() method.

Developing Survey
Execution Manager
This application executes a survey. Because this execution of each survey is done
via the Web, it’s important that this application doesn’t run continuously until the
survey finishes. Because web browsers can mistake the long time it takes to process

Chapter 14: E-mail Survey System 489

18 549669 ch14.qxd 4/4/03 9:26 AM Page 489

large campaigns as a timeout, I’ve implemented this method such that it will exe-
cute a set of records in the given campaign and then create an automatic refresh
using meta tags in HTML interface to call itself back after a configurable period of
time.

This allows the application to continue with small interruptions and also allows
it to report the status of the campaign using a status message after each chunk of
records has been processed for e-mail delivery. Therefore, the base algorithm of this
method can be written in the following pseudo code:

Get Last Record Executed
If No Last Record then
BEGIN
Set LastRecord = 0

END

Get a Chunk of Records > Last Record
Ordered by Record ID (SUID) AND
Limit By Maxmimum Records
Per Run

Get Message Template

For Each Record in Current Record List
BEGIN
Process for Mail using a Copy of the Message Template
Send Mail

END

Set LastRecord in Database to Current Last Record

Set Refresh Meta Tag

Terminate

The ch14/apps/survey_exec_mngr.php file in the CDROM implements this
application. This application has the following methods.

run()
The run method performs the usual checks for authenticated and authorized users
and then calls the executeSurvey() method to run the survey.

executeSurvey()
This method executes the chosen campaign. It works as follows:

490 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 490

◆ First it checks to see if the user has chosen a survey ID ($survey_id) or
not. If not, it displays an error message and exits.

◆ If the survey ID is found, the method then creates a Survey object using
the given survey ID ($survey_id) and gets the details of the survey using
the getSurveyInfo() method. The STATUS field of the survey is stored in
the $status variable. If the given survey does not exist in the database,
the method exists with an error message.

◆ When the survey information is located, the method determines if this was
being called before. If it was called before, the $lastrow information is
set to the last row processed for this campaign.

◆ If the $lastrow is empty then the executeSurvey() method creates an
execution record in the SURVEY_EXECUTION table using the addExecution
Record() method of the Survey object. This record is used to identify that
the current survey was executed at the current time. The newly created
execution record ID (EXEC_ID) is returned by the addExecutionRecord()
method, and it is used as a hidden field within the survey form to allow
the survey response manager to identify which survey execution the user
is responding to.

◆ Using the $lastrow and maximum delivery per run ($MAX_DELIVERY_
AT_A_TIME) value, the getTargetData() method is used to get the list of
target records for the current run of the executeSurvey() method.

◆ The survey form is loaded into an HTML template, and it is personalized
per the survey recipient and sent via e-mail.

◆ Once the current set of records is processed and delivered, a status message
is displayed on the screen using an HTML template. This template has a meta
tag to refresh the screen automatically after $MAX_WAIT_PER_DELIVERY
delay, which is configurable form the survey.conf file.

◆ The application is automatically called from the status message page and
it restarts the entire process automatically and starts exactly where it left
off. This allows the application to run large campaigns without having to
deal with web browser timeout.

authorize()
See the authorize() method in the “Developing Survey Manager” section for details.

Developing Survey Response Manager
This application is responsible for submitting survey responses to the survey data-
base. When an end user who received a survey via e-mail clicks on the Submit
button, this application is called and it stores the result in the database. The ch14/
apps/survey.php file in the CDROM implements this application, which uses the
following methods.

Chapter 14: E-mail Survey System 491

18 549669 ch14.qxd 4/4/03 9:26 AM Page 491

run()
The run method performs the usual checks for authenticated and authorized users
and then calls the addRecord() method to add the survey response.

addRecord()
This method is responsible for adding the response record in the database. It works
as follows:

◆ A SurveyResponse object is created with the user ID ($SUID) and survey
execution ID ($EXEC_ID) that are collected from the submitted survey
response. Note that the values are supplied as hidden data when the
survey form is mailed out.

◆ After the SurveyResponse object is created, the isSubmitted() method
is called to see if this participant has already submitted this particular
survey response or not. If she has submitted a response for this particular
execution of the survey, a status message is shown to inform her that the
survey has already been submitted earlier. No data is added to the database.

◆ On the other hand, if this is the first time she is submitting the response
data, the addSubmitRecord() is used to create a submission record for
this survey execution in the SURVEY_RESPONSE_RECORD table.

◆ Then the response data is added to the appropriate table (SURVEY_RESPONSE)
using the add() method for the SurveyResponse object.

Developing Survey Report Manager
This application displays the survey report. The ch14/apps/survey_rpt_mngr.php
file in the CDROM is an implementation of this application. It uses the following
methods.

run()
The run method performs the usual checks for authenticated and authorized user
and then calls the showSurveyReport() method to display the survey report.

showSurveyReport()
This method shows the survey report. It works as follows:

◆ First, it checks to see if the user chose the survey’s execution ID
($exec_id) from the Survey Manager interface. The execution ID is used
to create the report.

◆ A report template is loaded and a SurveyReport object is created.

◆ The report column ordering is set using the $orderid field, which is
stored in the report column heading.

492 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 492

◆ Using the SurveyReport object’s getSurveyResponse() method, a list of
responses are retrieved from the database for the chosen execution of the
survey.

◆ Each response is then displayed.

◆ The getResponseDateRage() and getTotalResponseCount() methods
are used to display the range of date and the total response record count.

toggleDescField()
This is a utility method that toggles the DESC value from desc to null. The DESC
value is used in creating ascending or descending order for the displayed columns
in the report table.

authorize()
See the authorize() method in the “Developing Survey Manager” section for details.

Setting Up the Central Survey
Configuration File
Each of the applications in the survey system uses a central configuration file
called survey.conf, which is shown in Listing 14-1.

Listing 14-1: survey.conf

<?php

error_reporting(E_ALL);

$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;
$APP_FRAMEWORK_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$PATH = $PEAR_DIR . ‘:’ . $PHPLIB_DIR . ‘:’ .

$APP_FRAMEWORK_DIR;

ini_set(‘include_path’, ‘:’ . $PATH . ‘:’ . ini_get(‘include_path’));

$AUTHENTICATION_URL = “/login/login.php”;
$LOGOUT_URL = “/logout/logout.php”;

$APPLICATION_NAME = ‘SURVEY’;
$XMAILER_ID = ‘Survey System Version 1.0’;
$DEFAULT_LANGUAGE = ‘US’;

Continued

Chapter 14: E-mail Survey System 493

18 549669 ch14.qxd 4/4/03 9:26 AM Page 493

Listing 14-1 (Continued)

$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/survey_tool’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;

$REL_FORMS_DIR = $REL_ROOT_PATH . ‘/forms’;
$UPLOAD_DIR = $ROOT_PATH . $REL_ROOT_PATH . ‘/uploads’;
$FORMS_DIR = $ROOT_PATH . $REL_FORMS_DIR;

$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;

//Classes
$SURVEY_LIST_CLASS = $CLASS_DIR . ‘/’ . ‘class.SurveyList.php’;
$SURVEY_FORM_CLASS = $CLASS_DIR . ‘/’ . ‘class.SurveyForm.php’;
$SURVEY_CLASS = $CLASS_DIR . ‘/’ . ‘class.Survey.php’;
$SURVEY_RESPONSE_CLASS = $CLASS_DIR . ‘/’ . ‘class.SurveyResponse.php’;
$SURVEY_REPORT_CLASS = $CLASS_DIR . ‘/’ . ‘class.SurveyReport.php’;

require_once “survey.errors”;
require_once “survey.messages”;
require_once ‘DB.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . ‘constants.php’;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $APPLICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $ERROR_HANDLER_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $AUTHENTICATION_CLASS;
require_once $APP_FRAMEWORK_DIR . ‘/’ . $DBI_CLASS;
require_once $TEMPLATE_CLASS;

// Application names

$SURVEY_MNGR = ‘survey_mngr.php’;
$SURVEY_FORM_MNGR = ‘survey_form_mngr.php’;
$SURVEY_LIST_MNGR = ‘survey_list_mngr.php’;
$SURVEY_RPT_MNGR = ‘survey_rpt_mngr.php’;
$SURVEY_EXEC_MNGR = ‘survey_exec_mngr.php’;
$SURVEY_RESPONSE_MNGR = ‘survey.php’;

$SURVEY_CLASS = $CLASS_DIR . ‘/class.Survey.php’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

$SURVEY_DB_URL = ‘mysql://root:foobar@localhost/SURVEY’;
$MAX_DELIVERY_AT_A_TIME = 1;

494 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 494

$MAX_WAIT_PER_DELIVERY = 5;

/* --------------START TABLE NAMES ---------------------- */

$SURVEY_TBL = ‘SURVEY’;
$SURVEY_LIST_TBL = ‘SURVEY_LIST’;
$SURVEY_LIST_DATA_TBL = ‘SURVEY_LIST_DATA’;
$SURVEY_FORM_TBL = ‘SURVEY_FORM’;
$SURVEY_RESPONSE_TBL = ‘SURVEY_RESPONSE’;
$SURVEY_FORM_FIELD_LBL_TBL = ‘SURVEY_FORM_FIELD_LBL’;
$SURVEY_RESPONSE_RECORD_TBL = ‘SURVEY_RESPONSE_RECORD’;
$SURVEY_EXECUTION_TBL = ‘SURVEY_EXECUTION’;

/* --------------END TABLE NAMES ---------------------- */

$STATUS_TEMPLATE = ‘survey_status.ihtml’;
$SURVEY_MENU_TEMPLATE = ‘survey_menu.ihtml’;

$SURVEY_ADD_LIST_TEMPLATE = ‘survey_add_list.ihtml’;
$SURVEY_ADD_FORM_TEMPLATE = ‘survey_add_form.ihtml’;

$SURVEY_ADD_LABEL_TEMPLATE = ‘survey_add_label.ihtml’;

$SURVEY_ADD_TEMPLATE = ‘survey_add.ihtml’;
$SURVEY_EXECUTION_TEMPLATE = ‘survey_execute.ihtml’;

$SURVEY_REPORT_TEMPLATE = ‘survey_report.ihtml’;
$SURVEY_POWERED_BY_TEMPLATE = ‘powered_by.html’;

/* --------------------- REPORT --------------------*/
$REPORT_EVEN_ROW_COLOR = ‘#ffccff’;
$REPORT_ODD_ROW_COLOR = ‘#ccccff’;

?>

For the preceding sample configuration file, the directory structure is shown
here:

htdocs ($ROOT_PATH = %DocumentRoot%)
|
+--survey_tool

|
+---uploads

Continued

Chapter 14: E-mail Survey System 495

18 549669 ch14.qxd 4/4/03 9:26 AM Page 495

Listing 14-1 (Continued)

|
+---forms
|
+---apps

|
+---class
|
+---templates

|
+---images

To configure the applications for your directory structure, you’ll have to change
the settings shown in Table 14-1.

TABLE 14-1 THE survey.conf SETTINGS THAT YOU NEED TO CHANGE

Fields Explanation

$PEAR_DIR This should be set to the directory where you have
installed the PEAR packages. This is needed because
the DB class needed for class.DBI.php is part of
the PEAR packages.

$PHPLIB_DIR This should be set to the directory where the PHPLIB
packages are stored. This is needed because the
Template class (template.inc) is part of the PHPLIB
packages.

$APP_FRAMEWORK_DIR This directory should point to our application
framework class directory.

$AUTHENTICATION_URL This URL should point the central authentication
application (login.php), which is part of the
application framework.

$LOGOUT_URL This URL should point to the central logout application
(logout.php), which is part of the application
framework.

$ROOT_PATH This directory point to the document root directory
of your Web site where you host this application.

$REL_ROOT_PATH This should point to the relative path, which is the
parent of the apps directory.

496 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 496

Fields Explanation

$SURVEY_DB_URL This URL should be configured to allow you to connect
to the survey database via the named host using the
named user name and password.

$MAX_DELIVERY_AT_A_TIME This should be set to the maximum number of e-mail
deliveries per run by the Survey Execution Manager.
You should not set this number to a very large number.

$MAX_WAIT_PER_DELIVERY This number sets how many seconds are past before
the Survey Execution Manager is recalled via the meta
refresh tag.

Setting Up the Interface
Template Files
The applications use a number of template files that are provided in the ch14/
apps/templates directory in the CD-ROM. These files are discussed in Table 14-2.

TABLE 14-2 INTERFACE TEMPLATES

File Name Purpose

survey_menu.ihtml This is the Survey Menu template.

survey_add.ihtml This template is used to add surveys.

survey_add_form.ihtml This template is used to add survey forms.

survey_add_label.ihtml This template is used to add survey form labels.

survey_add_list.ihtml This template is used for adding survey lists.

survey_execute.ihtml This template is used for executing a survey. It shows the
execution status information.

survey_report.ihtml This template is used for showing the survey report.

survey_status.ihtml This template is used to show status messages. This
template is used by the PHPApplication’s
show_status() method.

powered_by.html This HTML file contains the footer that is added to the
survey sent to the end user.

Chapter 14: E-mail Survey System 497

18 549669 ch14.qxd 4/4/03 9:26 AM Page 497

These templates also use images that are stored in an image directory called
images within the template directory pointed by the $TEMPLATE_DIR variable in the
survey.conf file.

Setting Up the Central Survey Messages File
All the applications in the survey suite use a central messages file called survey.
messages, which is shown in Listing 14-2.

Listing 14-2: survey.messages

<?php

$MESSAGES[‘US’][‘LIST_DELETE_SUCCESSFUL’] = “List deleted.”;
$MESSAGES[‘US’][‘LIST_DELETE_FAILED’] = “List not deleted.”;
$MESSAGES[‘US’][‘LIST_UPLOAD_SUCCESSFUL’] = “List upload successful.”;
$MESSAGES[‘US’][‘LIST_UPLOAD_FAILED’] = “List upload failed.”;
$MESSAGES[‘US’][‘FORM_UPLOAD_SUCCESSFUL’] = “Form upload successful.”;
$MESSAGES[‘US’][‘FORM_UPLOAD_FAILED’] = “Form upload failed.”;
$MESSAGES[‘US’][‘FORM_DELETED’] = “Form deleted.”;
$MESSAGES[‘US’][‘FORM_NOT_DELETED’] = “Form not deleted.”;
$MESSAGES[‘US’][‘SURVEY_ADD_FAILED’] = “Survey not added.”;
$MESSAGES[‘US’][‘SURVEY_ADD_SUCCESSFUL’] = “Survey added.”;
$MESSAGES[‘US’][‘SURVEY_DELETE_SUCCESSFUL’] = “Survey deleted.”;
$MESSAGES[‘US’][‘SURVEY_DELETE_FAILED’] = “Survey not deleted.”;
$MESSAGES[‘US’][‘SURVEY_SENT’] = “Survey sent.”;

?>

The default language of the messages is set in the survey.conf file using the
$DEFAULT_LANGUAGE parameter. If you want to port this application to a different
language, copy the above messages at the end of this file and change US to your
two-digit language name and replace the English error messages with the appropri-
ate translation.

Google has a translation tool that can be used to translate simple messages

to other languages such as Spanish, Italian, German, and so on. See www.
google.com for details.

Setting Up the Central Survey Errors File
Like the central messages file, all the applications in the survey system use the survey.
errors file for error messages, as shown in Listing 14-3.

498 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 498

Listing 14-3: survey.errors

<?php

// Errors for survey apps

$ERRORS[‘US’][‘APP_FAILURE’] = “Application failure”;
$ERRORS[‘US’][‘ADD_SURVEY_LIST_REQ_MISSING’] = “Please enter list and file

name”;
$ERRORS[‘US’][‘ADD_SURVEY_FORM_REQ_MISSING’] = “Please enter form and file

name”;
$ERRORS[‘US’][‘IHTML_REQUIRED’] = “IHTML file expected”;
$ERRORS[‘US’][‘FIELD_NUM_INVALID’] = “Number of fields has to be a

number greater than zero”;
$ERRORS[‘US’][‘LIST_NO_LIST_CHOSEN’] = “Please select a list.”;
$ERRORS[‘US’][‘FORM_NOT_SELECTED’] = “Please select a form.”;
$ERRORS[‘US’][‘ADD_SURVEY_NAME_MISSING’] = “Please enter a survey name.”;
$ERRORS[‘US’][‘ADD_SURVEY_LIST_MISSING’] = “Please select a survey list.”;
$ERRORS[‘US’][‘ADD_SURVEY_FORM_MISSING’] = “Please select a survey form.”;
$ERRORS[‘US’][‘DEL_SURVEY_ID_MISSING’] = “Please select a survey.”;
$ERRORS[‘US’][‘RUN_SURVEY_ID_MISSING’] = “Please select a survey.”;
$ERRORS[‘US’][‘ADD_FORM_MISSING_SUBJECT’] = “Please enter a subject line.”;
$ERRORS[‘US’][‘ADD_FORM_MISSING_FROM’] = “Please enter a from address.”;
$ERRORS[‘US’][‘SURVEY_EXECUTION_FAILED’] = “Survey execution failed.”;
$ERRORS[‘US’][‘SURVEY_ALREADY_SUBMITTED’] = “Survey already submitted.”;
$ERRORS[‘US’][‘SURVEY_SUBMITTED’] = “Survey submitted. \\n\\nThank

you.”;
$ERRORS[‘US’][‘REPORT_NOT_SELECTED’] = “Please select a report.”;

?>

Creating Survey Forms
The survey forms that are used in the survey system are HTML files that have a few
specific requirements. They are listed here:

◆ Form action value should be set to {SERVER_URL}{APP_PATH}/
{SURVEY_RESPONSE} as shown here:

<form action=”{SERVER_URL}{APP_PATH}/{SURVEY_RESPONSE}”>

◆ The form must contain the mainBlock comments as shown here:

<!-- BEGIN mainBlock -->
Your form data goes here
<!-- ENDBEGIN mainBlock -->

◆ You can only personalize the form using the {FIRST} and {LAST} tags.

Chapter 14: E-mail Survey System 499

18 549669 ch14.qxd 4/4/03 9:26 AM Page 499

◆ Each field in the HTML form must be named using numbers.

◆ Each question can be either a text box (the maximum size is limited by
the database, currently set to 50 characters), a checkbox, a radio button,
or a drop-down select list.

◆ A set of hidden fields are a must to allow proper handing of the form.
These fields are shown here:

<input type=hidden name=”SURVEY_ID” value=”{SURVEY_ID}”>
<input type=hidden name=”SUID” value=”{SUID}”>
<input type=hidden name=”EXEC_ID” value=”{EXEC_ID}”>
<input type=hidden name=”EXEC_TS” value=”{EXEC_TS}”>

A sample form is available in ch14/forms directory in the CDROM.

The {POWERED_BY_LOGO} tag is optional.

Testing the Survey System
When you’ve configured the application using survey.conf and installed it per the
configuration under your web server’s document root, you can test the system.

To test the system you need to create a CSV file with the following format:

EMAIL, FIRST, LAST

A sample CSV file called mycustomers.csv is shown in Listing 14-4.

Listing 14-4: mycustomers.csv

KABIR@evoknow.com,MOHAMMED,KABIR
joe@evoknow.COM,Joe,Gunchy
jennifer@evoknow.com,JENNIFER,GUNCHY
abe@EVOKNOW.COM,ABE,NONE
rome@EvoKnow.Com,rome,ahead

Notice that this list has badly formatted e-mails and names. Because the List
Manager can filter name and e-mail for case issues, you can fix these during list
creation.

500 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 500

In the following section, I assume that you’ll use the preceding list and the sam-
ple survey form (ch14/forms/sample_form.html file in the CDROM) to test your
installation as follows:

1. Run the survey_mngr.php application using the appropriate URL. For
the given survey.conf file used by my system this URL is http://php.
evoknow.com/phpbook/survey_tool/apps/survey_mngr.php.

When this URL is requested, the application automatically detects that
is not an authenticated user session and redirects the user to the login
application. When the user supplies the appropriate user name/password
pair, she is logged in to the application and the Survey Manager menu
is displayed (Figure 14-4).

Figure 14-4: The Survey Manager menu.

2. To add a new list, click on the Add a List button, which shows the add list
interface as shown in Figure 14-5.

Chapter 14: E-mail Survey System 501

18 549669 ch14.qxd 4/4/03 9:26 AM Page 501

Figure 14-5: Adding a survey list.

3. Enter the local file name for the CSV file and give the list a unique name.
If you want to fix the name and the e-mail problem, use the appropriate
filters. Note that you should always use these filters to be safe.

4. After you’ve entered all the required fields, click on the Upload button to
create the new list.

5. After creating the list, you should add a new form (the sample form
shown earlier) using the Add a Form button. Like adding a list, you will
have to give a name, local file path of the survey form you want to upload,
subject of the survey message, from address of the e-mail that will be
sent, and number of question fields in the form as shown in Figure 14-6.

6. After you’ve entered all these fields, you should click on Upload, and if
the upload is successful, you will be asked to add question labels as
shown in Figure 14-7.

502 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 502

Figure 14-6: Adding a survey form.

Figure 14-7: Adding questions labels.

Chapter 14: E-mail Survey System 503

18 549669 ch14.qxd 4/4/03 9:26 AM Page 503

7. When the question labels have been added, you can create a survey by
clicking on the Create Survey button, which shows the user interface
shown in Figure 14-8.

Figure 14-8: Adding a survey.

8. Select the appropriate survey list and form, name the survey, and save it.

9. When it’s saved, you can execute the survey immediately using the Execute
button. Just select the survey from the list and click on the Execute button.

10. When the survey starts executing, you’ll see a status screen such as
Figure 14-9.

11. When the survey recipients submit the responses, the report can be viewed
from the Survey menu using the View Report button by selecting a survey.
A sample report is shown in Figure 14-10.

Note that you can execute the same survey as many times as you want. However,
it would be unwise to send the same survey to the same people too frequently.

504 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 504

Figure 14-9: Survey status while being executed.

Figure 14-10: Sample survey report.

Chapter 14: E-mail Survey System 505

18 549669 ch14.qxd 4/4/03 9:26 AM Page 505

Security Considerations
This survey system by default does not offer any control on who can run the survey
applications. However, that does not mean you cannot easily change the authoriza-
tion process in each application to fit your security needs. For example, say you
would like to limit access to survey_form_mngr.php, survey_exec_mngr.php,
survey_list_mngr.php, and survey_mngr.php to a limited set of IP addresses. In
such case you would need to replace the given authorize() method (shown below)
to handle IP restrictions.

function authorize()
{

return TRUE;
}

For example, say that you want to control access to this application such that only
192.168.1.1 to 192.168.1.5 IP addresses are allowed to run them. In such case you
can change the authorization method to be:

function authorize()
{
$safeIPs = array(‘192.168.1.1’,

‘192.168.1.2’,
‘192.168.1.3’,
‘192.168.1.4’,
‘192.168.1.5’);

return (in_array($_SERVER[‘REMOTE_ADDR’], $safeIPs,) ? TRUE:
FALSE;

}

By replacing the default authorize() method in these applications with the new
one, you have customized the applications with your site’s security needs.

Summary
In this chapter you learned to design an email based survey system that sends
HTML forms to target email lists and collects responses in the database. This creates
an effective tool for small- to medium-scale surveys that can be done quickly and
quite easily via the Web interface.

506 Part III: Developing E-mail Solutions

18 549669 ch14.qxd 4/4/03 9:26 AM Page 506

Chapter 15

E-campaign System
IN THIS CHAPTER

◆ Architecting an e-campaign system

◆ Designing e-campaign classes

◆ Creating a list manager application

◆ Creating a URL manager application

◆ Creating a message manager application

◆ Creating a campaign manager application

◆ Creating a URL tracking and redirection application

◆ Creating a unsubscription tracking application

◆ Creating a campaign reporting application

WHEN COMMUNICATING WITH LARGE groups of professionals, friends, or customers,
e-mail is a very effective medium. E-mail campaigns are frequently used to com-
municate with groups of people. An company can remain in close contacts with its
customers via e-mail by frequently engaging the customer in providing electronic
feedback, informing the customer about new products and services, and providing
valuable complementary and socially responsible information. A company that
interacts with its existing customer base using e-mail can reduce marketing cost by
effectively turning existing customers into repeat customers. To achieve such goals,
a company needs an effective e-mail campaign (e-campaign) tool. In this chapter,
I discuss the features, design, and implementation of such a tool.

First, let’s look at the feature set for an effective e-campaign system.

Features of an E-campaign System
An effective e-campaign system allows a company to communicate with groups of
customers with ease. It must have the following features:

◆ Live database list management: Allows the company to create mailing
lists from existing customer databases. The list management capability
should be such that the customer database need not be copied or exported 507

19 549669 ch15.qxd 4/4/03 9:26 AM Page 507

into external files or other databases before use. This is very important
because a customer database is typically the repository of other business-
specific applications, which are responsible for adding, modifying, and
removing customers. If the e-campaign system requires that customer data
be exported, then there is always the issue of being out of sync with the
customer database over time and, therefore, it would create a great deal
of work for the database administrator. This is why an ideal e-campaign
system directly accesses a live customer database in a read-only manner
to retrieve customer information needed for e-mail campaigns. This
ensures that the ever-growing customer database is always used in future
campaigns.

◆ Effective message management: Messages must be personalized and rich
in content formatting. Because HTML messages are most appealing when
the appropriate amount of care is used in designing the look and feel of
the message, the e-campaign tool must support HTML messages. Each
message must be trackable.

◆ Personalization: Each message should be personalized using customer
data available in a customer database located anyone within the company.

◆ Easy campaign execution: E-campaign execution should be so simple
that it doesn’t require programming or the help of the IS department.
Marketing personnel can execute e-campaigns via a Web interface.

◆ Duplication-free campaigns: Each campaign must be automatically free
from duplicate e-mails. When sending an e-campaign to customers, it’s
vital that the same customer is never sent the same message more then
once in the same campaign. If a customer exists in a database multiple
times because she bought two or more products, she should not receive
the same message multiple times. Customers will get extremely disappointed
or annoyed if their mailboxes are flooded with the same message from the
same campaign. They’re likely to consider the company unprofessional
and take their business to a competitor. Therefore, it is essential that an
e-campaign system never sends duplicate e-mails for any campaign.

◆ Automatic unsubscription filtering: An e-campaign system must auto-
matically filter out the previously unsubscribed recipients before sending
a new campaign to the same list. This is not only vital for maintaining
responsible, professional business image for a company but also likely to
be a legal requirement in many parts of the world.

◆ Click-through and unsubscription tracking: A good e-campaign system
must be able to track click-through and unsubscription requests. Such
tracking ability is the most important aspect of the e-campaign system.
Being able to track the click-through can be very important in under-
standing customer interests. Tracking unsubscription requests is a must,

508 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 508

because if someone does not want to receive the type of campaign you’re
sending to her, it’s important to remove her from future campaigns of a
similar type. In many parts of the world, unsubscription tracking is a legal
requirement of e-mail communication.

◆ Easy report generation: A good e-campaign system must produce a
report of each campaign such that the company personnel can access it
quickly and without needing programming or database expertise.

Architecting an E-campaign System
Figure 15-1 shows the system diagram of the e-campaign system that you will
develop in this chapter.

Figure 15-1: A system diagram of an e-campaign system.

The system has two types of users: the e-campaign administrator and e-mail
recipients who are the customers. An e-campaign administrator can manage lists,
URLs, messages, campaigns, and reports. The end-user receives campaign-executed
campaign messages and interacts by clicking on trackable URLs or unsubscribing
from future campaigns via unsubscription links.

To implement these functionalities the system requires a set of objects: list,
URLs, messages, campaigns, URL tracks, unsubscription tracks, and reports. These
objects are stored in a system database with the exception that list data is stored in
existing databases within the company.

E-Campaign
Administrator

Email
Recipient

(Customer)

List Manager

URL Manager

Campaign Manager

Message Manager

Report Manager

List

Message

URL

Campaign

Report

URL Tracker

Unsubscription
Track

Execution Manager

URL Tracker

Unsubscription Tracker

Any
Customer
Database

E-campaign
Database

Chapter 15: E-campaign System 509

19 549669 ch15.qxd 4/4/03 9:26 AM Page 509

For example, a company with this e-campaign system can have its customer
databases in multiple database hosts and e-campaign system on a different database
server. In such a case, the list objects point to data stored in customer databases in
other database hosts throughout the company. This is a very powerful feature because
customer data need to be exported and loaded in the e-campaign system via any
manual or scheduled synchronization glue logic.

When the customer executes a campaign, the appropriate customer data is tem-
porarily copied to the e-campaign system and removed after the execution. During
the execution, each message is personalized if the standard tag fields shown in
Table 15-1 are mapped to data fields in the customer table.

TABLE 15-1 STANDARD PERSONALIZATION TAG FIELDS

Standard Personalization
Tag Field Meaning

{REC_ID} Record ID. This is a required field, which should be mapped
to the numeric record ID field in the customer database.

{FIRST} First name. This field should be mapped to the first name
field in the customer database (if any).

{LAST} Last name. This field should be mapped to the last name
field in the customer database (if any).

{AGE} Age. This field should be mapped to the age field in the
customer database (if any).

{INCOME} Income. This field should be mapped to the income field in
the customer database (if any).

{SEX} Gender. This field should be mapped to the gender (sex)
field in the customer database (if any).

Also during the execution, each trackable URL tag within a message is replaced
with a redirection link that can track and redirect the user via the URL tracking and
redirection application. The unsubscription tag, {UNSUB}, is replaced with an unsub-
scription link.

When the end-user clicks on a URL, she is tracked and redirected. The tracking
data is stored in the e-campaign database. Similarly, if she unsubscribes, the
request is stored in the e-campaign database for future exclusion of her e-mail from
a list in any campaign.

510 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 510

Designing an E-campaign Database
The e-campaign database consists of 11 tables. Figure 15-2 shows the entity relation-
ship (ER) diagram for the entire e-campaign database.

Figure 15-2: Entity relationship diagram for the e-campaign database

Listing 15-1 shows a script that you can use to create this database in MySQL.

Listing 15-1: ecampaign.sql

phpMyAdmin MySQL-Dump
version 2.2.5
http://phpwizard.net/phpMyAdmin/
http://phpmyadmin.sourceforge.net/ (download page)
#
Host: localhost
Generation Time: Jun 07, 2002 at 09:16 PM
Server version: 3.23.35
PHP Version: 4.1.0
Database : `ECAMPAIGN`

Continued

Chapter 15: E-campaign System 511

19 549669 ch15.qxd 4/4/03 9:26 AM Page 511

Listing 15-1 (Continued)

--

#
Table structure for table `ASSEMBLY`
#

CREATE TABLE ASSEMBLY (
LIST_ID int(11) NOT NULL default ‘0’,
REC_ID int(11) NOT NULL default ‘0’,
FIRST varchar(255) default NULL,
LAST varchar(255) default NULL,
EMAIL varchar(255) NOT NULL default ‘’,
AGE varchar(255) default NULL,
INCOME varchar(255) default NULL,
SEX varchar(255) default NULL

) TYPE=MyISAM;
--

#
Table structure for table `BOUNCED`
#

CREATE TABLE BOUNCED (
CAMPAIGN_ID tinyint(4) NOT NULL default ‘0’,
LIST_ID tinyint(4) NOT NULL default ‘0’,
REC_ID tinyint(4) NOT NULL default ‘0’,
PRIMARY KEY (LIST_ID,REC_ID,CAMPAIGN_ID)

) TYPE=MyISAM;
--

#
Table structure for table `CAMPAIGN`
#

CREATE TABLE CAMPAIGN (
CAMPAIGN_ID int(11) NOT NULL auto_increment,
NAME varchar(127) NOT NULL default ‘’,
LIST_ID int(11) NOT NULL default ‘0’,
MSG_ID int(11) NOT NULL default ‘0’,
STATUS int(4) NOT NULL default ‘0’,
PRIMARY KEY (CAMPAIGN_ID)

) TYPE=MyISAM;

512 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 512

--

#
Table structure for table `ECAMPAIGN_EXECUTION`
#

CREATE TABLE ECAMPAIGN_EXECUTION (
EXEC_ID int(11) NOT NULL auto_increment,
CAMPAIGN_ID int(11) NOT NULL default ‘0’,
CAMPAIGN_TS timestamp(14) NOT NULL,
PRIMARY KEY (EXEC_ID),
UNIQUE KEY CAMPAIGN_TS (CAMPAIGN_TS)

) TYPE=MyISAM;
--

#
Table structure for table `LIST`
#

CREATE TABLE LIST (
LIST_ID int(11) NOT NULL auto_increment,
NAME varchar(127) NOT NULL default ‘’,
DB_HOST varchar(127) NOT NULL default ‘’,
DB_USER varchar(127) NOT NULL default ‘’,
DB_PASSWD varchar(127) NOT NULL default ‘’,
DB_TYPE varchar(127) NOT NULL default ‘’,
DB_NAME varchar(127) NOT NULL default ‘’,
DB_TABLE varchar(127) NOT NULL default ‘’,
LIMIT_CONDITION varchar(255) default NULL,
CREATE_TS bigint(20) NOT NULL default ‘0’,
CREATOR_ID int(11) NOT NULL default ‘0’,
CHECK_FLAG bigint(20) NOT NULL default ‘0’,
PRIMARY KEY (LIST_ID),
UNIQUE KEY CHECK_FLAG (CHECK_FLAG),
UNIQUE KEY NAME (NAME)

) TYPE=MyISAM;
--

#
Table structure for table `LIST_FIELD_MAP`
#

CREATE TABLE LIST_FIELD_MAP (

Continued

Chapter 15: E-campaign System 513

19 549669 ch15.qxd 4/4/03 9:26 AM Page 513

Listing 15-1 (Continued)

LIST_ID int(11) NOT NULL default ‘0’,
REC_ID varchar(127) NOT NULL default ‘’,
FIRST varchar(127) default NULL,
LAST varchar(127) default NULL,
EMAIL varchar(127) NOT NULL default ‘’,
AGE varchar(127) default NULL,
INCOME varchar(127) default NULL,
SEX varchar(127) default NULL,
PRIMARY KEY (LIST_ID)

) TYPE=MyISAM;
--

#
Table structure for table `MESSAGE`
#

CREATE TABLE MESSAGE (
MSG_ID tinyint(4) NOT NULL auto_increment,
NAME varchar(127) NOT NULL default ‘’,
BODY text NOT NULL,
CREATE_TS bigint(20) NOT NULL default ‘0’,
CREATOR_ID int(11) NOT NULL default ‘0’,
PRIMARY KEY (MSG_ID),
UNIQUE KEY NAME (NAME)

) TYPE=MyISAM;
--

#
Table structure for table `MESSAGE_HDRS`
#

CREATE TABLE MESSAGE_HDRS (
MSG_ID int(11) NOT NULL default ‘0’,
HDR_ID int(11) NOT NULL default ‘0’,
HDR_VALUE varchar(127) NOT NULL default ‘’

) TYPE=MyISAM;
--

#
Table structure for table `TRACK`
#

CREATE TABLE TRACK (

514 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 514

ID int(11) NOT NULL auto_increment,
USER_ID int(11) NOT NULL default ‘0’,
CAMP_ID int(11) NOT NULL default ‘0’,
URL_ID int(11) NOT NULL default ‘0’,
TRACK_TS bigint(20) NOT NULL default ‘0’,
PRIMARY KEY (ID)

) TYPE=MyISAM;
--

#
Table structure for table `UNSUB`
#

CREATE TABLE UNSUB (
ID int(11) NOT NULL auto_increment,
REC_ID int(11) NOT NULL default ‘0’,
LIST_ID int(11) NOT NULL default ‘0’,
CAMPAIGN_ID int(11) NOT NULL default ‘0’,
UNSUB_TS bigint(20) NOT NULL default ‘0’,
PRIMARY KEY (ID,REC_ID,LIST_ID),
UNIQUE KEY REC_ID (REC_ID,LIST_ID)

) TYPE=MyISAM;
--

#
Table structure for table `URL`
#

CREATE TABLE URL (
URL_ID int(11) NOT NULL auto_increment,
NAME varchar(127) NOT NULL default ‘’,
URL varchar(255) NOT NULL default ‘’,
PRIMARY KEY (URL_ID),
UNIQUE KEY NAME (NAME)

) TYPE=MyISAM;

Understanding Customer
Database Requirements
Each customer database that you want to use in e-campaigns must have the follow-
ing data fields:

Chapter 15: E-campaign System 515

19 549669 ch15.qxd 4/4/03 9:26 AM Page 515

◆ Record ID: A numeric record ID must be in the target list table to identify
the customer record.

◆ E-mail field: An e-mail field must be there in the target list table.

The field names can be anything. These two fields must be mapped during the
list-creation process using the list management application.

The e-campaign system allows you to map all the standard personalization fields
shown in Table 15-1 during list creation so that you can use them in message
personalization.

Designing E-campaign Classes
Based on the system diagram shown in Figure 15-1, you need to create a set of
classes to provide the objects needed to implement the e-campaign system. In the
following sections, I discuss the necessary classes in details.

Creating a List class
The purpose of this class is to provide the List object, which is needed to manipu-
late the lists. An implementation of this class can be found in the ch15/apps/
class/class.EcampaignList.php file in the CDROM. This class implements the
methods discussed in the following sections.

EcampaignList()
This is the constructor method. It does the following:

◆ Sets member variables list_tbl, list_field_map, assembly_tbl,
unsub_tbl, and bounced_tbl to global configuration variables
$ECAMPAIGN_LIST_TBL, $LIST_FIELD_MAP_TBL, $ECAMPAIGN_ASSEMBLY_
TBL, $ECAMPAIGN_UNSUB_TBL, and $ECAMPAIGN_BOUNCED_TBL, respectively.

◆ A member variable called dbi is set to $dbi, which is a DBI object passed
from the application.

◆ A member variable called std_map_fields is set to an associative array
that holds the field and field type for standard personalization fields sup-
ported by the e-campaign system.

◆ Finally, this method calls the setEcampaignListID() method to set the
list ID, which can also be passed from the application when creating an
object.

setEcampaignListID()
This method sets the current object’s list ID to the given list ID, which is passed as
a parameter. It always returns the current list ID.

516 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 516

getEcampaignListInfo()
This method returns all the information about a given list. Information is returned
as a standard row object. If no information is found about a list, null is returned.

addNewEcampaignList()
This method adds a new list to the database.

modEcampaignList()
This method updates an existing list.

addMapping()
This method stores standard personalization fields (FIRST, LAST, EMAIL, and so on)
mapping information that is used to identify which customer database field
matches with which standard personalization fields.

getAvailableLists()
This method returns a list of available lists. The method returns an associative array
where LIST_ID is the key and NAME is the value.

deleteList()
This method deletes an existing list.

prepareLocalList()
This method creates a local copy of the list data necessary to execute a campaign.
It does the following:

◆ Determines the list of mapped fields.

◆ Makes a SQL statement to get the mapped field data from the customer
database table.

◆ Queries the customer database with the prepared statement.

◆ Inserts the data in the assembly table.

◆ Removes the customers who have previously unsubscribed from this list.

◆ Returns the total number of records inserted in the assembly table.

pushMappedFields()
This is a utility method that pushes a field name into an array if the field name is
not null.

map()
This is a utility method that returns the field name for a given standard contact
field name.

Chapter 15: E-campaign System 517

19 549669 ch15.qxd 4/4/03 9:26 AM Page 517

getClientDBURL()
This method returns the database URL for a given list. It retrieves the database
information from the list record and constructs a database_type://user:
password↓tabase_hostname/database_name URL, which can be used to retrieve
customer data.

getTargetData()
This method returns a list of row objects from the assembly table and then deletes
the records from the assembly table. This method is used to fetch a specific number
of rows from the assembly table for mail delivery. The returned array of rows uses
REC_ID as the key and the row object as the value.

addToBounced()
This method inserts a record in the bounce e-mail table. This record is used in the
report to determine how many e-mails bounced during delivery.

When an e-mail is not bounced during delivery, it can still be bounced later

after delivery by the recipient’s target mail server, which may try to delivery

it to an internal mail server within an organization. Therefore, the bounce

tracking done in the e-campaign is not 100-percent accurate. In fact, if e-mail

addresses aren’t local to the mail server being used, the bounces usually

aren’t right away. This problem can be avoided in a future version of the

e-campaign system.

modifyMapList()
This method allows you to modify the standard personalization field map for a
given list.

Creating a URL class
The purpose of this class is to provide the URL object, which is needed to manipu-
late the URL. An implementation of this class can be found in ch15/apps/class/
class.EcampaignURL.php . This class implements the methods discussed in the
following sections.

EcampaignURL()
This is the constructor method. It does the following:

◆ Sets the url_tbl variable to the configuration variable called
$ECAMPAIGN_URL_TBL, which holds the name of the URL table in the
campaign database.

518 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 518

◆ Sets the home_url variable to configuration variable called $HOME_URL,
which holds the home URL.

◆ Sets the dbi variable to the DBI object, which is passed to the URL object
from the caller application.

addURL()
This method inserts a new URL in the URL table within the e-campaign database.

getURL()
This method gets the URL for a given URL ID.

getURLInfo()
This method returns the name and URL for a given URL ID from the URL table in
the e-campaign database.

modURL()
This method updates an existing URL in the URL table in the e-campaign database.

getURLList()
This method returns a list of URLs in an associative array (key = URL_ID, value =
name) from the URL table in the e-campaign database.

getURLLocationList()
This method returns a list of URLs in an associative array (key = URL_ID, value =
URL) from the URL table in the e-campaign database.

deleteURL()
This method deletes an existing URL from the URL table in the e-campaign database.

Creating a Message class
The purpose of this class is to provide the Message object, which is needed to
manipulate the message. An implementation of this class can be found in ch15/
apps/class/class.EcampaignMessage.php. This class implements the methods
discussed in the following sections.

EcampaignMessage()
This is the constructor method for the Message class. It does the following:

◆ Sets message_tbl to $ECAMPAIGN_MESSAGE_TBL, which holds the name of
the message table. The $ECAMPAIGN_MESSAGE_TBL is set in the ecampaign.
conf configuration file.

◆ Sets header_tbl to $MESSAGE_HDRS_TBL, which holds the name of the
header table. The $MESSAGE_HDRS_TBL is set in the ecampaign.conf
configuration file.

Chapter 15: E-campaign System 519

19 549669 ch15.qxd 4/4/03 9:26 AM Page 519

◆ Sets msg_fields to an associative array, which contains the message table
field names and their types (text or number). This associative array is used
in other methods to determine which field value needs to be quoted and
protected from embedded slashes using the addslashes() method.

◆ Sets hdr_fields to an associative array, which contains the message
header table field names and their types (text or number). This associative
array is used in other methods to determine which field value needs to be
quoted and protected from embedded slashes using the addslashes()
method.

◆ Calls setEcampaignMessageID() to set the campaign ID, which is passed
to the constructor method from the application.

setEcampaignMessageID()
This method sets the message ID.

getEcampaignMessageInfo()
This method returns the message information for a given message ID or the current
message ID.

getEcampaignHeaderInfo()
This method returns message header information for a given message ID or the cur-
rent message ID.

addNewEcampaignMessage()
This method adds a new message in the message table and its headers in the header
table.

getAvailableMessages()
This returns a list of messages in the current e-campaign database. The returned list
is an associative array with the message ID (MSG_ID) being the key and the message
name (NAME) as the value.

deleteMessage()
This method deletes a message and its header.

UpdateEcampaignMessage()
This method updates a message.

UpdateEcampaignMessageHdr()
This method updates headers of a message.

520 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 520

Creating a Campaign class
The purpose of this class is to provide the Campaign object, which is needed to
manipulate the campaign. An implementation of this class can be found in ch15/
apps/class/class.EcampaignCampaign.php file in the CDROM. This class imple-
ments the methods discussed in the following sections.

EcampaignCampaign()
This method sets the member variable, ecampaign_tbl, to the $ECAMPAIGN_TBL
configuration variable. The member variable, dbi, is set to $dbi, which is passed
from the application. This method also sets the current campaign ID using the
setCampaignID() method.

setCampaignID()
This method sets the current campaign ID to the campaign ID supplied. If no cam-
paign ID is supplied as a parameter, the current campaign ID is returned.

getCampaignInfo()
This method returns campaign information about a given campaign or the current
campaign.

getAvailableCampaigns()
This method returns the list of campaigns from the e-campaign database. The
returned associative array is keyed with the campaign ID (CAMPAIGN_ID), and the
values are set to campaign name (NAME).

addCampaign()
This method adds a campaign in the e-campaign database.

deleteCampaign()
This method deletes a campaign from the e-campaign database.

modifyCampaign()
This method updates a campaign in the e-campaign database.

Creating a URL Tracking class
The purpose of this class is to provide the URL Track object, which is needed to
manipulate the URL track information. An implementation of this class can be found
in ch15/apps/class/class.EcampaignTrack.php file in the CDROM. This class
implements the methods discussed in the following sections.

Chapter 15: E-campaign System 521

19 549669 ch15.qxd 4/4/03 9:26 AM Page 521

EcampaignTrack()
This is the constructor method that sets a member variable, track_tbl, to e-campaign
configuration variable $ECAMPAIGN_TRACK_TBL, which holds the URL track table
name. This method also sets another member variable, dbi, to the DBI ($dbi)
object, which is passed from the application.

storeTrack()
This method stores a URL track record in the URL track table.

Creating an Unsubscription Tracking class
The purpose of this class is to provide the Unsubscription Track object, which is
needed to manipulate the unsubscription track information. An implementation of
this class can be found in ch15/apps/class/class.EcampaignUnsub.php. This
class implements the methods discussed in the following sections.

EcampaignUnsub()
This is the constructor method that sets a member variable, unsub_tbl, to
$ECAMPAIGN_UNSUB_TBL, which is an ecampaign.conf configuration variable set
to hold the unsubscription table name. This method also sets another member vari-
able, dbi, to the DBI ($dbi) object, which is passed from the application.

storeUnsub()
This method stores an unsubscription record in the unsubscription track table.

Creating a Report class
The purpose of this class is to provide the Report object, which is needed to manip-
ulate the report information. An implementation of this class can be found in
ch15/apps/class/class.EcampaignReport.php file in the CDROM. This class
implements the methods discussed in the following sections.

EcampaignReport()
This constructor method sets member variables ecampaign_tbl, track_tbl,
unsub_tbl, and bounced_tbl to e-campaign configuration variables $ECAMPAIGN_
TBL, $ECAMPAIGN_TRACK_TBL, $ECAMPAIGN_UNSUB_TBL, and $ECAMPAIGN_BOUNCED_
TBL, respectively.

The member variable, dbi, is set to the DBI object ($dbi), which is passed as a
parameter from an application. Another member variable, campaign_id, is set to
the campaign ID passed as a parameter from an application creating the report
object.

522 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 522

setEcampaignCampaignID()
This method sets the current campaign ID to the campaign ID parameter if it is not
null and returns the current campaign ID.

getURLResponse()
This method returns URL click-through count for each tracked URL in a campaign.

getUnsubResponse()
This method returns the total unsubscription track for a campaign.

getBounceResponse()
This method returns the total number of immediate bounces for a given campaign.

Creating Common Configuration
and Resource Files
Like all other applications you’ve developed in this book, the e-campaign applica-
tions also use a standard set of configuration, message, and error files. These files
are discussed in the following sections.

Creating an e-campaign configuration file
The primary configuration file for the entire e-campaign system is called
ecampaign.conf, which can be found in ch15/apps directory in the CDROM. Table
15-2 discusses each configuration variable.

TABLE 15-2 ecampaign.conf VARIABLES

Configuration Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR package;
specifically the DB module needed for
class.DBI.php in the application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the
PHPLIB packages; specifically the template.inc
package needed for template manipulation.

$APP_FRAMEWORK_DIR Set to the application framework directory.

Continued

Chapter 15: E-campaign System 523

19 549669 ch15.qxd 4/4/03 9:26 AM Page 523

TABLE 15-2 ecampaign.conf VARIABLES (Continued)

Configuration Variable Purpose

$PATH Set to the combined directory path consisting
of the $PEAR_DIR, the $PHPLIB_DIR, and the
$APP_FRAMEWORK_DIR. This path is used with the
ini_set() method to redefine the php.ini entry
for include_path to include $PATH ahead of the
default path. This allows PHP to find the application
framework, PHPLIB, and PEAR-related files.

$AUTHENTICATION_URL Set to the central login application URL.

$LOGOUT_URL Set to the central logout application URL.

$HOME_URL Set to the topmost URL of the site. If the URL
redirection application does not find a valid URL
in the e-campaign database to redirect to for a
valid request, it uses this URL as a default.

$APPLICATION_NAME Internal name of the application.

$XMAILER_ID This is the X-Mailer mail header sent with each mail
to identify what program was used to send mail.

$DEFAULT_LANGUAGE Set to the default (two- digit) language code.

$ROOT_PATH Set to the default (two-digit) language code.

$REL_ROOT_PATH Relative path to the root directory.

$REL_APP_PATH Relative application path as seen from the Web
browser.

$ECAMPAIGN_MENU_URL Relative URL path to the campaign manager interface
application.

$TEMPLATE_DIR Set to the template directory containing the ihtml
template files needed for the user-management
applications.

$CLASS_DIR Set to the class directory where user-management-
related class files are stored.

$ECAMPAIGN_LIST_CLASS Name of the List class.

$ECAMPAIGN_URL_CLASS Name of the URL class.

524 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 524

Configuration Variable Purpose

$ECAMPAIGN_TRACK_CLASS Name of the URL Track class.

$ECAMPAIGN_UNSUB_CLASS Name of the Unsubscription class.

$ECAMPAIGN_CAMPAIGN_CLASS Name of the Campaign class.

$ECAMPAIGN_MESSAGE_CLASS Name of the Message class.

$ECAMPAIGN_REPORT_CLASS Name of the Report class.

$ECAMPAIGN_MNGR Name of the campaign manager interface application.
This application displays the primary user interface.

$ECAMPAIGN_URL_MNGR Name of the URL manager application.

$ECAMPAIGN_CAMPAIGN_MNGR Name of the campaign manager application.

$ECAMPAIGN_LIST_MNGR Name of the list manager application.

$ECAMPAIGN_MESSAGE_MNGR Name of the message manager application.

$ECAMPAIGN_EXEC_MNGR Name of the campaign execution application.

$ECAMPAIGN_REPORT_MNGR Name of the report manager application.

$ECAMPAIGN_REDIR_MNGR Name of the URL redirection application.

$ECAMPAIGN_UNSUB_MNGR Name of the unsubscription application.

$REL_TEMPLATE_DIR Set to relative template directory.

$ECAMPAIGN_DB_URL Set to campaign database URL.

$MAX_DELIVERY_AT_A_TIME Set to maximum e-mail delivery count per run.
Because the execution application cannot run the
entire campaign in one shot due to browser timeout
issues, it executes this number of e-mails at a time.
The execution application calls itself after each run
using the meta refresh method.

$MAX_WAIT_PER_DELIVERY The number of seconds the campaign execution
application waits before it restarts via the meta
refresh tag.

$SECRET A random number used in the checksum algorithm.

$ECAMPAIGN_LIST_TBL Name of the list table.

$ECAMPAIGN_URL_TBL Name of the URL table.

Continued

Chapter 15: E-campaign System 525

19 549669 ch15.qxd 4/4/03 9:26 AM Page 525

TABLE 15-2 ecampaign.conf VARIABLES (Continued)

$LIST_FIELD_MAP_TBL Name of the list map table.

$ECAMPAIGN_TBL Name of the campaign table.

$ECAMPAIGN_MESSAGE_TBL Name of the message table.

$MESSAGE_HDRS_TBL Name of the message header table.

$ECAMPAIGN_EXECUTION_TBL Name of the execution table.

$ECAMPAIGN_ASSEMBLY_TBL Name of the assembly table.

$ECAMPAIGN_TRACK_TBL Name of the URL track table.

$ECAMPAIGN_UNSUB_TBL Name of the unsubscription table.

$ECAMPAIGN_BOUNCED_TBL Name of the bounced e-mail table.

$REPORT_EVEN_ROW_COLOR HTML color code for even rows in a report table.

$REPORT_ODD_ROW_COLOR HTML color code for odd rows in a report table.

$FROM_HEADER Header ID for the From header.

$REPLY_HEADER Header ID for the Reply-to header.

$PRIORITY_HEADER Header ID for the Priority header.

$SUBJECT_HEADER Header ID for the Subject header.

Creating an e-campaign messages file
The messages displayed by the e-campaign applications are stored in an e-campaign
messages file called ecampaign.messages, which can be found in ch15/apps
directory in the CDROM.

Creating an e-campaign errors file
The error messages displayed by the e-campaign applications are stored in an
e-campaign error messages file called ecampaign.errors, which can be found in
ch15/apps directory in the CDROM.

Creating Interface Template Files
The HTML interface templates needed for the e-campaign applications are included
on the CD-ROM. These templates contain various template tags to dynamically

526 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 526

display necessary information. Table 15-3 shows which template file is used for
what purpose.

TABLE 15-3 INTERFACE TEMPLATE FILES

Configuration Variable File Name and Purpose

$ECAMPAIGN_ADD_TEMPLATE ecampaign_add.ihtml

$ECAMPAIGN_MENU_TEMPLATE ecampaign_menu.ihtml

$ECAMPAIGN_ADD_URL_TEMPLATE ecampaign_add_url.ihtml

$ECAMPAIGN_EXECUTION_TEMPLATE ecampaign_execute.ihtml

$ECAMPAIGN_ADD_LIST_TEMPLATE ecampaign_add_list.ihtml

$STATUS_TEMPLATE ecampaign_status.ihtml

$ECAMPAIGN_MAPPING_TEMPLATE ecampaign_take_map.ihtml

$ECAMPAIGN_ADD_CAMPAIGN_TEMPLATE ecampaign_add_campaign.ihtml

$ECAMPAIGN_ADD_LABEL_TEMPLATE ecampaign_add_label.ihtml

$ECAMPAIGN_REPORT_TEMPLATE ecampaign_report.ihtml

$ECAMPAIGN_MOD_URL_TEMPLATE ecampaign_modify_url.ihtml

$ECAMPAIGN_ADD_MESSAGE_TEMPLATE ecampaign_add_message.ihtml

$ECAMPAIGN_PREVIEW_MESSAGE_TEMPLATE ecampaign_preview_message

$ECAMPAIGN_MOD_LIST_TEMPLATE ecampaign_mod_list.ihtml

$ECAMPAIGN_UNSUB_TEMPLATE ecampaign_unsub.ihtml

$MAIL_TEMPLATE ecampaign_mail.ihtml

$ECAMPAIGN_PREVIEW_MESSAGE_ ecampaign_preview_message_
INPUT_TEMPLATE input.ihtml

$ECAMPAIGN_PREVIEW_MESSAGE_ ecampaign_preview_message_
SHOW_TEMPLATE show.ihtml

$ECAMPAIGN_PREVIEW_MESSAGE_TEMPLATE ecampaign_preview_
message.ihtml

$ECAMPAIGN_UNSUB_CONFIRM_TEMPLATE ecampaign_unsub_
confirmation.ihtml

Now you’re ready to create the e-campaign applications.

Chapter 15: E-campaign System 527

19 549669 ch15.qxd 4/4/03 9:26 AM Page 527

Creating an E-campaign
User Interface Application
This application displays the main user interface for the e-campaign applications.
The main user interface application called ecampaign_mngr.php can be found in
ch15/apps directory in the CDROM. The methods implemented by this user inter-
face application are discussed in the following sections.

run()
This method calls the displayMenu() method to display the user interface.

displayMenu()
This method displays the main user interface. This method creates a List object, a
URL object, and a Campaign object to get lists of lists, URLs, and campaigns to dis-
play in the interface.

authorize()
This method returns TRUE since, in the current version everyone is allowed to view
the campaign report. If you want to restrict access to the report to a specific user or
group of users, you’ll have to modify this method to implement your restrictions.

Creating a List Manager Application
The list-management application manipulates lists. The list-creation process is shown
in Figure 15-3.

The ecampaign_list_mngr.php application that can be found in ch15/apps
directory in the CDROM, which implements the list creation, modification, and
deletion process. This application has the following methods.

run()
This method uses a form variable called the $cmd variable, which is set in the user
interface displayed by ecampaign_mngr.php, to select the appropriate function to
implement the list operation.

When $cmd is set to add, it calls the addDriver() method to add a list. When
$cmd is set to modify, it calls the modDriver() method to modify a list; otherwise,
it calls the delList() method to delete a list.

528 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 528

Figure 15-3: How a list is created.

addDriver()
This method uses $step, a variable set in the add list interface forms, to control
which method is called. The $step variable is used to select the appropriate method
for the appropriate stage of the list adding process. Here is how the addDriver()
works:

◆ If $step is not set, then the first step of the add list process is started by
calling displayAddListMenu(), which shows the add list interface. This
interface sets the $step to 2, using a hidden HTML field.

◆ If $step is set to 2, then the second step of the add list process is started
by calling the addList() method. This method stores the list configura-
tion data collected in the previous step and displays the database field
mapping interface by calling the takeMap() method. This interface sets
the $step value to 3.

Start

Get list configuration information such
as database hostname, database
name, username, password, and the
table name, which contains the
customer data (EMAIL, RECORD ID,
etc.) Ask user to give this list a name.

End

Connect to the given list database and
get meta data for the chosen list table.

Map table fields with standard campaign
fields (used for personalization)

Store list access and mapping
information in e-campaign database

Chapter 15: E-campaign System 529

19 549669 ch15.qxd 4/4/03 9:26 AM Page 529

◆ If $step is set to 3, then the database field map that maps the standard
personalization fields such as REC_ID, FIRST, LAST, AGE, SEX, INCOME, and
EMAIL is stored in the database using the addDatabaseFieldMap method.

modifyDriver()
This method uses $step, a variable set in the modify list interface forms, to control
which method is called. The $step variable is used to select the appropriate method
for the appropriate stage of the list modification process. Here is how the
modifyDriver() method works:

◆ If $step is not set, then the first step of the modify list process is started
by calling displayModifyListMenu(), which shows the modify list inter-
face. This interface sets the $step to 2, using a hidden HTML field.

◆ If $step is set to 2, then the second step of the modify list process is
started by calling the modifyList() method. This method stores the list
configuration data collected in the previous step and displays the database
field mapping interface by calling the takeMap() method. This interface
sets the $step value to 3.

◆ If $step is set to 3, then the database field map that maps the standard
personalization fields such as REC_ID, FIRST, LAST, AGE, SEX, INCOME, and
EMAIL are stored in the database using the modifyDatabaseFieldMap
method.

authorize()
See the authorize() method in the e-campaign user interface application called
ecampaign_mngr.php for details.

displayAddListMenu()
This method displays the add list interface.

displayModListMenu()
This method displays the modify list interface.

modifyList()
This method is called when a user makes changes in the modify interface shown by
displayModListMenu(). The modifyList() method creates a list object and
calls its modEcampaignList() method to update the list in the database.

530 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 530

If the database is successfully updated, the modifyList() method calls
takeMap() to show the database and personalization field map interface. If the
update fails, it shows an appropriate status message.

modifyDatabaseFieldMap()
This method uses a list object to call its modifyMapList() method to update the
map data in the database. The map interface is displayed by the takeMap() method.

delList()
This method uses a list object to call its deleteList() method to delete the list.
It displays an appropriate status message based on the success or failure of the
deleteList() method.

takeMap()
This method allows you to map the database fields to the standard personalization
fields REC_ID, EMAIL, FIRST, LAST, AGE, INCOME, and SEX. It works as follows:

◆ It connects to the list database using a DBI object called $dbiObj.

◆ If the connection to the list database is successful, it performs a select
query to detect if the list table exists in the list database. If the table does
not exist, the list is deleted from the database.

◆ If the table exists, the takeMap() method uses the tableInfo() method
on the query result object, $result, to get the list table’s meta data — field
name and type.

◆ Then it shows an interface that allows the user to map each standard
personalization field to a database field. The user must map at least
REC_ID (record ID) and the EMAIL (email address).

addList()
This method is called when a user makes changes in the add interface shown by
displayAddListMenu(). It works as follows:

◆ First, it checks to see if the user supplied all the required fields: list
name ($listname), database host name ($db_host), database user name
($db_user), database type ($db_type), database table name ($db_table).
If these fields are empty, then an alert message is shown and the user is
returned to the previous screen.

◆ If the required fields are supplied, a list object called $ecampaignListObj
is created and its addNewEcampaignList() is called to add the list in the
database.

Chapter 15: E-campaign System 531

19 549669 ch15.qxd 4/4/03 9:26 AM Page 531

◆ If the list is successfully added, the takeMap() method is called to display
the map interface.

◆ If the list is not added due to database failure, an appropriate failure
message is displayed.

addDatabaseFieldMap()
This method adds database fields to standard personalization field mapping to the
database using a list object’s addMapping() method.

Creating a URL Manager Application
The URL manager allows you to add, delete, and modify trackable URLs. Figure 15-4
shows how URLs are added to the database using a simple user interface, how it’s
used in a message template using the {URLx} tag and replaced with a redirection
URL in the message received by end-users, and how the redirection URL is finally
resolved in the final target URL being tracked.

The ecampaign_url_mngr.php, which can be found in ch15/apps directory in
the CDROM implements the URL manager application using the methods discussed
in the following sections.

run()
This method uses a form variable called $cmd variable, which is set in the user
interface displayed by ecampaign_mngr.php, to select the appropriate function to
implement the list operation.

When $cmd is set to delete, it calls the delList() method to delete a URL.
When $cmd is set to modify, it calls the modifyURL() method to modify a URL;
otherwise, it calls the addURL() method to add a URL.

addURLDriver()
This method controls the add URL process using the interface variable $step. Here’s
how it works:

◆ If $step is not set, then displayAddURLMenu() is called to display the add
URL interface. This interface sets $step to 2, using a hidden HTML field.

◆ If $step is set to 2, then addURL() is called to add the URL in the database.

authorize()
See the authorize() method in the e-campaign user interface application called
ecampaign_mngr.php for details.

532 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 532

Figure 15-4: How the URL is stored, tracked, and redirected.

modifyURLDriver()
This method controls the modify URL process using the interface variable $step.
Here’s how it works:

◆ If $step is not set, then displayModifyURLMenu() is called to display the
add URL interface. This interface sets $step to 2, using a hidden HTML
field.

◆ If $step is set to 2, then modifyURL() is called to modify the URL in the
database.

Name EVOKNOW PHP Site

URL

URL_ID

1

NAME

EVOKNOW PHP Site

URL

http://www.evoknow.com/php/

http://www.evoknow.com/php

Click here to visit our PHP site.

Click
here to visit our PHP site.

EVOKNOW PHP Site

User interface

E-campaign Database

Message Template

Source of Sent Message

URL Tracking &
Redirection Application

http://www.evoknow.com/php/

Chapter 15: E-campaign System 533

19 549669 ch15.qxd 4/4/03 9:26 AM Page 533

delURL()
This method deletes a URL from the database. It works as follows:

◆ If the URL is not selected from the e-campaign main interface, then an
alert message is shown and the user is returned to the main interface.

◆ It creates a URL object and calls its deleteURL() method to delete the
selected URL from the database.

◆ Finally, it shows a status message that reflects the status of the database
delete operation.

displayAddURLMenu()
This method displays the add URL interface.

addURL()
This method adds a URL in the database. It works as follows:

◆ If the required fields — URL ($url) and URL name ($name) — are missing,
then an alert message is shown and the user is returned to the previous
screen.

◆ A URL object is created and its addURL() method is called to store the URL
in the database.

◆ Finally, the status of the add operation is displayed.

displayModifyURLMenu()
This method displays the modify URL interface.

modifyURL()
This method modifies a URL in the database. It works as follows:

◆ If the required fields — URL ($url) and URL name ($name) — are missing,
then an alert message is shown and the user is returned to the previous
screen.

◆ A URL object is created and its modURL() method is called to update the
URL in the database.

◆ Finally, the status of the modify operation is displayed.

534 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 534

Creating a Message
Manager Application
The message is the central element of the e-campaign system. Figure 15-5 shows a
simple message that is stored in the database. It contains personalization tag {FIRST},
multiple URL tags {URL1} and {URL99}, and the unsubscription tag {UNSUB}.

When this message is executed by the message execution application, a sample
of the resulting end-user message is also shown in Figure 15-5.

Figure 15-5: The anatomy of a Campaign message.

A message manager application called ecampaign_message_mngr.php, which
can be found in ch15/apps directory in the CDROM, provides the message addition,
modification, deletion, and preview functionality using the methods discussed in
the following sections.

Dear {FRIST}

<p>
The message contents can be personalized with other fields such as last name,
email address, age, gender, etc.
</p>

<p>
Click here to buy PHP applications.

Click here to learn more.

</p>

To subscribe click here.

Dear {FRIST}

The message contents can be personalized with other fields such as last name,
email address, age, gender, etc.

Click here to buy PHP applications.
Click here to learn more.

To unsubscribe click here.

Message Template

Rendered Message

Chapter 15: E-campaign System 535

19 549669 ch15.qxd 4/4/03 9:26 AM Page 535

run()
This method selects the appropriate driver to manage messages. It works as follows:

◆ If the $cmd variable is set to add or is empty, then the addDriver() is
called to manage the message addition process.

◆ If the $cmd variable is set to modify, then the modifyDriver() is called
to manage the message modification process.

◆ If the $cmd variable is set to delete, then the deleteDriver() is called
to manage the message deletion process.

◆ If the $cmd variable is set to preview, then the doPreview() is called to
manage the message previewing process.

addDriver()
This method uses the $step variable to control the message addition process as
follows:

◆ If $step is not set, then the displayAddMessageMenu() is called to dis-
play the message interface to allow the user to add a new message. This
interface sets $step to 2 to move the control to the next phase of the
message addition process.

◆ If $step is 2, then addMessage() is called to store the message in the
database.

◆ If $step is 3, then getMsgPreviewInput() is called to get the preview
data needed to personalize the preview message.

◆ If $step is 4, then showMsgPreview() is called to show the preview mes-
sage. This method loads an interface template that runs a JavaScript, which
calls the message management application with $cmd set to preview.

modifyDriver()
This method uses the $step variable to control the message modification process as
follows:

◆ If $step is not set, then the displayModMessageMenu () is called to
display the message interface to allow the user to modify an existing
message selected from the main user interface. This interface sets $step
to 2 to move the control to the next phase of the message modification
process.

◆ If $step is 2, then updateMessage () is called to update the message in
the database.

536 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 536

◆ If $step is 3, then getMsgPreviewInput() is called to get the preview
data needed to personalize the preview message.

◆ If $step is 4, then showMsgPreview() is called to show the preview
message. This method loads an interface template that runs a JavaScript,
which calls the message management application with $cmd set to
preview.

authorize()
See the authorize() method in the e-campaign user interface application called
ecampaign_mngr.php for details.

displayAddMessageMenu()
This method displays the add message interface.

displayModMessageMenu()
This method displays the message modification interface.

updateMessage()
This method updates a modified message as follows:

◆ If any of the required fields — message name, from address, priority, or
message text — is missing, an alert message is shown and the user is
returned to the previous page.

◆ A message object is created and its UpdateEcampaignMessage() method
is called to update the message data in the message table.

◆ The Message object’s UpdateEcampaignMessageHdr() is called to update
the message header data in the message header table.

◆ Finally, an appropriate status message is displayed.

deleteMessage()
This message deletes a message from the database. It works as follows:

◆ If the required message ID is not supplied from the main user interface,
the method alerts the user and returns to the main interface.

◆ If the message ID is supplied, it creates a message object and deletes the
message by calling the object’s deleteMessage() method.

◆ Finally, an appropriate status message is displayed.

Chapter 15: E-campaign System 537

19 549669 ch15.qxd 4/4/03 9:26 AM Page 537

addMessage()
This message adds a message in the database. It works as follows:

◆ If any of the required fields — message name, from address, priority, or
message text — is missing, an alert message is shown and the user is
returned to the previous page.

◆ A Message object is created and the message is added by calling the
object’s addNewEcampaignMessage() method.

◆ Finally, an appropriate status message is displayed.

getMsgPreviewInput()
This method displays a user interface to collect the personalization data needed to
display the preview message.

doPreview()
This method displays a message in preview mode using the data collected by the
getMsgPreviewInput() method.

showMsgPreview()
This method displays a screen, which loads a JavaScript. This JavaScript loads a
pop-up window, which automatically calls the message management application
with $cmd set to preview to call the doPreview() method to display a preview
message.

appendHashes()
This is a utility method that concats two associative arrays together to create a single
associative array.

Creating a Campaign
Manager Application
The campaign management application adds, deletes, and modifies campaigns.
Figure 15-6 shows how a campaign is created using the existing list and message
from a simple user interface and stored in the database.

538 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 538

Figure 15-6: How the campaign manager works.

The ecampaign_campaign_mngr.php which can be found in the ch15/apps
directory in the CDROM, implements the campaign management application using
the methods discussed in the following sections.

run()
This method is used to select the appropriate method to perform add, modify, and
delete operations on campaign as follows:

◆ If the $cmd variable is not set or is set to create from the main user
interface shown by ecmapaign_mngr.php, then the createCampaign()
method is called to handle the campaign addition process.

◆ If the $cmd variable is set to delete, then the delCampaign() method is
called to delete the campaign.

◆ If the $cmd variable is set to modify, then the modifyCampaign() method
is called to handle the campaign modify process.

createCampaign()
This method is used to manage the campaign creation process using the $step vari-
able set in the user interface as follows:

◆ If $step is not set, then the displayCampaignMenu() method is called to
display the campaign addition interface, which sets $step to 2 using hid-
den HTML form field.

◆ If $step is set to 2, then the addCampaign() is called to add the campaign
in the database.

PHP Weekly Newsletter Campaign

PHP User List

PHP Newsletter Msg

CAMPAIGN_ID
1

LIST_ID
1

MSG_ID
1 PHP Weekly Newsletter Campaign

NAME

User Interface

Database

Chapter 15: E-campaign System 539

19 549669 ch15.qxd 4/4/03 9:26 AM Page 539

delCampaign()
This method is used to delete a campaign as follows:

◆ If campaign ID ($campaign_id) is not supplied from the main user inter-
face, then an alert message is displayed and the user is returned to the
previous screen.

◆ If campaign ID is supplied, a Campaign object is created. The
deleteCampaign() of this object is called to delete the campaign
from the database.

◆ Finally, an appropriate status message reflecting the success or failure of
the delete operation is displayed.

modifyCampaign()
This method is used to manage the campaign modification process using the $step
variable set in the user interface as follows:

◆ If the campaign ID ($campaign_id) is not supplied from the main user
interface, then an alert message is displayed and the user is returned to
the previous screen.

◆ If $step is not set, then the displayCampaignMenu() method is called to
display the campaign modification interface, which sets $step to 2 using
a hidden HTML form field.

◆ If $step is set to 2, then the updateCampaign() is called to update the
campaign in the database.

authorize()
See the authorize() method in the e-campaign user interface application called
ecampaign_mngr.php for details.

displayCampaignMenu()
This method displays the campaign interface menu.

addCampaign()
This method adds the new campaign in the database as follows:

540 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 540

◆ First, it checks to see if all required fields — campaign name ($name), list
ID ($lid), and message ID ($mid) — are provided. If not, error messages are
displayed and the user is returned to the previous screen.

◆ A Campaign object is created and its addCampaign() is called to add the
campaign in the database.

◆ Finally, an appropriate status message reflecting the success or failure of
the add operation is displayed.

updateCampaign()
This method updates an existing campaign in the database as follows:

◆ First, it checks to see if all required fields — campaign name ($name), list
ID ($lid), and message ID ($mid) — are provided. If not, error messages are
displayed and the user is returned to the previous screen.

◆ A Campaign object is created and its modifyCampaign() is called to modify
the campaign in the database.

◆ Finally, an appropriate status message reflecting the success or failure of
the modification operation is displayed.

Creating a Campaign
Execution Application
The campaign execution application delivers e-mails by fetching the appropriate list
data and localizing them in the assembly table and then delivering e-mails to them.

Because large e-mail campaigns require a great deal of time, performing them in
one shot is not possible via the Web due to the potential for browser timeout. This
is why this execution application performs a chunk-size number of delivery and
then calls itself from the Web status screen using an HTTP meta refresh trick.

The entire execution process is shown in Figure 15-7.
The campaign execution application called ecampaign_execution.php, which

can be found in ch15/apps directory in the CDROM, performs the e-mail delivery
using the methods discussed in the following sections.

run()
This method calls the executeCampaign() method to perform the e-mail delivery
task.

Chapter 15: E-campaign System 541

19 549669 ch15.qxd 4/4/03 9:26 AM Page 541

Figure 15-7: How the campaign execution application works.

executeCampaign()
This method performs all the tasks necessary to execute the campaign. It works as
follows:

◆ If the user has not selected a campaign ID ($campaign_id) from the main
user interface to execute, an alert message is displayed and user is returned
to the main interface.

◆ A Campaign object is created, and the selected campaign data is loaded.

◆ If the selected campaign is loaded, its status is checked using the
getStatus() method. If the status is -1, then the campaign execution has
already finished. The status value is stored in the $lastrow variable.

◆ The campaign’s message ID is retrieved via the Campaign object’s
getMessageID().

Get List ID and Message ID
for the campaign

Fetch mapped fields from remote
database and store in assembly
table. Remove records that
match rows in unsubscription
table

Get message template
from database

Get a chunk of records from
the assembly table.
Load the records in memory
and delete the records from
the assembly table

Deliver emails to the
current chunk of records

Set up HTML meta refresh tag to call
self and restart the entire process until
campaign is completely executed

Load list configuration data

Outgoing emails

542 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 542

◆ The campaign’s list ID is retrieved via the Campaign object’s getListID().

◆ The server name and the application path are stored in $server and
$appPath variables, respectively.

◆ If $lastrow is empty, then this is the first time the campaign is being run.
In other words, the executeCampaign() method is running for the first
time for this campaign. So it needs to assemble the campaign data in the
e-campaign database by fetching the required data from the remote table
in the database pointed by the list configuration.

◆ A List object is used to retrieve the client database URL using the
getClientDBURL() method. A connection to the client database holding
the list is made using a DBI object called $client_dbi.

◆ The prepareLocalList() of the List object is called to prepare the
assembly table.

◆ If the prepareLocalList() method returns 0, then there are no data to
pump out via e-mail and, therefore, an error message is shown.

◆ The getTargetData() method is used to retrieve chunk-size (set by
$MAX_DELIVERY_AT_A_TIME in the ecampaign.conf configuration file)
records to execute.

◆ A Message object is created and message data is retrieved using the
getEcampaignMessageInfo() of the object. If message data is not found,
the execution halts with an error message.

◆ The body of the message is retrieved from the Message object and it is
inserted into a message template.

◆ The message headers are retrieved using the getEcampaignHeaderInfo().
E-mail is sent via the built-in mail() method.

◆ For each record in the current chunk or rows, the message is personalized
using the data retrieved from the assembly table, the URL tags are replaced
with redirection URL, and the UNSUB tag is replaced with a personalized
unsubscription link.

◆ The campaign status field is set to indicate where the next chunk should
start.

◆ A status template is shown after each chunk size of message is sent. This
template has a meta refresh tag, which recalls the execution application
after $MAX_WAIT_PER_DELIVERY (configuration variable) seconds to con-
tinue with the next chunk of messages.

authorize()
See the authorize() method in the e-campaign user interface application called
ecampaign_mngr.php for details.

Chapter 15: E-campaign System 543

19 549669 ch15.qxd 4/4/03 9:26 AM Page 543

Creating a URL Tracking and
Redirection Application
When the campaign execution application sends e-mail, the URLs are transformed
into the redirection URL. Figure 15-8 shows how such redirection URLs are tracked
and redirected using the URL tracking application.

Figure 15-8: How the URL tracking and redirection application works.

The redir.php, which can be found in the ch15/apps directory in the CDROM,
implements the tracking and URL redirection using the following methods.

run()
This method first determines if the redirection request mode is test or not. If the
redirection mode is test, which is true during message preview, the redirectTest()
method is called to redirect the tester to the target URL without recording the track
in the database.

If the mode is not test, the checksum value of the redirection request is com-
pared with the calculated checksum. If both checksum values match, the redirection

Yes

Show error
message

Start

URL Tracking ApplicationCampaign Message

Is URL Request
Valid?

Locate URL target and
redirect user to the

target URL

End

No

E-campaign
Database

Add track record in
database

Dear Joe,

Thank you for visiting our Web site and
filling out the inquiry form. Based on your
interest we have identified the following
resources for you. Please visit at your
convenience.

Click here to visit ROI Mail

Thanks again!

Kind Regards,

PHP Team,
EVOKNOW

Click here to remove from future mailing

544 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 544

request is considered valid and the keepTrackAndRedirect() method is called to
track and redirect the end-user to the target URL.

computeCheckSum()
This method implements a simple checksum algorithm using the URL ID ($u), USER
ID ($uid), campaign ID ($c), and a random number stored in configuration file
called $SECRET.

This checksum value is compared with the campaign-execution-application-
generated checksum stored in the redirection link to check the validity of the redi-
rection request.

Using this checksum technique, we can avoid invalid requests from unfriendly
users who want to distort the tracking data.

keepTrackAndRedirect()
This method tracks the URL request in the database and redirects the user to the tar-
get URL. It creates a URL Track object and calls the storeTrack() method to store
the track data.

It also creates a URL object and gets the URL for the given URL ID ($u) and redi-
rects the user to the target URL via the HTTP location header.

redirectTest()
This method creates a URL object and redirects the user to the target URL by finding
the target URL using the getURL() method and redirecting using the HTTP location
header.

Creating an Unsubscription
Tracking Application
When an end-user clicks on the unsubscription link sent by the campaign execution
application, it is processed by the unsubscription process shown in Figure 15-9.

The unsub.php, which can be found in ch15/apps directory in the CDROM,
implements the unsubscription application using the following methods.

run()
This method first determines if the unsubscription redirection request mode is test
or not. If the mode is test, which is true during message preview, the alert()
method is used to display a message stating that the unsubscription request is a test
and therefore it isn’t tracked and stored in the database.

Chapter 15: E-campaign System 545

19 549669 ch15.qxd 4/4/03 9:26 AM Page 545

Figure 15-9: How the unsubscription tracking application works.

If the mode is not test, the checksum value of the request is compared with the
calculated checksum. If both checksum values match, the unsubscription request is
considered valid and the askForConfirmation() method is called to confirm the
unsubscription request.

If the user confirms the unsubscription request by continuing forward, the
unsubUser() method is called to store the unsubscription request in the database.

computeCheckSum()
This method implements a simple checksum algorithm using USER ID ($uid), cam-
paign ID ($c), and a random number stored in the configuration file called $SECRET.

This checksum value is compared with the campaign-execution-application-
generated checksum stored in the unsubscription link to check the validity of the
request.

Yes

Yes

Show error
message

Start

Unsubscription Tracking ApplicationCampaign Message

Is Request
Valid?

Show confirmation page

End

Confirmed?

No

No

E-campaign
Database

Add user to
unsubscription database

Dear Joe,

Thank you for visiting our Web site and
filling out the inquiry form. Based on your
interest we have identified the following
resources for you. Please visit at your
convenience.

Click here to visit ROI Mail

Thanks again!

Kind Regards,

PHP Team,
EVOKNOW

Click here to remove from future mailing

546 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 546

Using this checksum technique, you can avoid invalid requests from unfriendly
users who want to distort the unsubscription tracking data.

askForConfirmation()
This method displays a confirmation screen to allow the user to confirm that she
wants to unsubscribe from this e-mail list.

unsubUser()
This method uses an unsubscription object, which calls the storeUnsub() method
to unsubscribe the user from this list in the database.

This user will not receive an e-mail from this list again.

Creating a Campaign
Reporting Application
The campaign report application displays the data collected for each campaign. The
user selects the campaign from the main e-campaign interface displayed by the
e-campaign user interface application. A sample report is shown in Figure 15-10.

Figure 15-10: Sample campaign report.

Chapter 15: E-campaign System 547

19 549669 ch15.qxd 4/4/03 9:26 AM Page 547

The campaign report application, ecampaign_rpt_mngr.php, can be found in
ch15/apps directory in the CDROM, which implements the following methods.

run()
This method calls the showEcampaignReport() to show the report.

showEcampaignReport()
This method shows the campaign report. It works as follows:

◆ If the campaign ID ($ecampaign_id) is not supplied from the e-campaign
user interface, displayed by the e-campaign interface application, the
method shows an alert message and returns the user to the user interface
page.

◆ By default, it sets the column order of the report to URL ID ($url_id) if
the user does not supply any order by clicking on any column heading
after the report is shown.

◆ Next, the method creates a Report object, a URL object, and a Campaign
object.

◆ The getURLResponse() method of the Report object is called to get the
total and unique URL track (click-through) number.

◆ The getUnsubResponse() method of the Report object is called to get
the total number of unsubscribers for the current campaign.

◆ The getBounceResponse() method of the Report object is called to get
the total number of bounced e-mails for the current campaign.

◆ Finally, the report is displayed using an HTML template.

authorize()
See the authorize() method in the e-campaign user-interface application called
ecampaign_mngr.php for details.

548 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 548

toggleDescField()
This is a utility method that toggles the DESC option used in the report column title
links to toggle the column’s ascending or descending order.

Testing the E-Campaign System
Now that you have all the e-campaign applications built, you’re ready to test them.
You’ll need a database with a table that has numeric record ID (to be mapped to
REC_ID), an e-mail address field (to be mapped to EMAIL), and, optionally, the first
name field (to be mapped to FIRST) and last name field (to be mapped to LAST). Of
course, you can have additional fields that map to AGE, SEX, INCOME, and so on, as
well as standard personalization fields.

In this test, I assume that you have a test database called PRODDB, which has a
table called PHPCustomers with fields called custid (REC_ID), fname (FIRST), lname
(LNAME), and e-mail (EMAIL). I also assume that this database is on a host called
diablo.evoknow.com and the user name and password needed to access this
MySQL database are scott and tiger, respectively. Also, make sure that you have
some valid data in the table to be able to test the campaign.

If you have a PHP MyAdmin application installed on a system, you can

easily add sample data via its interface.

We also assume that the e-campaign applications can be accessible via the
http://www.evoknow.com/php/ecampaign/ecampaign_mngr.php main interface
application.

Creating a list
To create the previously mentioned list, run the ecampaign_mngr.php application
and click on the Add List button. This will show the interface shown in Figure 15-11.

Chapter 15: E-campaign System 549

19 549669 ch15.qxd 4/4/03 9:26 AM Page 549

Figure 15-11: Configuring a list.

Enter the necessary information as assumed earlier and submit the information.
If the ecampaign_list_mngr.php application is able to connect to the given data-
base using the user name and password, it will retrieve the metadata for the given
table and display a mapping interface, as shown in Figure 15-12.

Map the fields as shown and save the list. After the list is created, you can mod-
ify or delete it as you please. Keep the list for the time being so that you can con-
tinue with the test.

Creating a target URL
Now create one or more URLs that you can use in your e-mail campaign. Click on the
Add URL button from the main user interface shown by the ecampaign_mngr.php
application. This will show a screen like the one in Figure 15-13.

550 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 550

Figure 15-12: Mapping database fields.

Figure 15-13: Creating a URL.

Chapter 15: E-campaign System 551

19 549669 ch15.qxd 4/4/03 9:26 AM Page 551

Add a URL of your choice and give a name to the URL. Submit the URL and it
should be stored in the database. Repeat this process as many times as you want, to
create multiple URLs. These URLs will be trackable.

Creating a message
Next create a message by clicking on the Add Msg button. You’ll see a screen like
the one in Figure 15-14. Create a message to your liking by filling out the form.
You can enter the same information as shown in the screen if you want.

Figure 15-14: Creating a message.

You can personalize the message, as shown in Figure 15-14, by selecting the
personalization menu and inserting the appropriate tags.

Due to JavaScript limitations, the personalization tag is always appended to

the message at the end. You can simply copy and paste it in the designed

location.The same is also true for URLs.

552 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 552

If you want to track URLs, you can insert one or more trackable URLs from the
URL list. If you enter the URL directly in the message, it will not be tracked by the
redirection application. Only URLs that are inserted from the URL list are tracked.

When inserting URLs in the message, consider using
label instead of inserting raw URL in the message. The automatically

generated redirection URLs are not pretty to look at, so they’re best kept

somewhat invisible from the average user by using the HTML anchor

link tag.

After you’ve created the message, you can preview it or save it. If you decided to
preview it, you’ll be asked to fill out the standard personalization field values once,
because during preview no real list data from the database is fetched.

Save the message after you have previewed. Remember that this e-campaign
system only sends an HTML message, so you must use proper HTML tags to format
your message so it’s rendered properly in modern e-mail clients such as Outlook
Express.

Creating a campaign
After you’ve created a list, one or more URLs (if you want to add URLs in the mes-
sage), and a message, you’re ready to create a campaign. Click on the Add
Campaign button in the main user interface shown by ecampaign_mngr.php to add
a campaign from an interface similar to Figure 15-15.

Figure 15-15: Creating a campaign.

Chapter 15: E-campaign System 553

19 549669 ch15.qxd 4/4/03 9:26 AM Page 553

Give a name to your campaign, select a list and a message, and save the cam-
paign. That’s all there is to creating a campaign!

Now you’re ready to execute this test campaign.

Executing a campaign
Select the campaign from the bottom of the main user interface shown by
ecmapaign_mngr.php, and click on the red Execute button. The campaign will be
executed and a status message will be shown as shown in Figure 15-16.

Figure 15-16: Executing a campaign.

Now access the campaign e-mail in your e-mail client program.

Viewing a campaign report
After you’ve executed the campaign, the campaign report becomes available imme-
diately. You can view the campaign report by selecting the campaign name from
the main user interface shown by ecampaign_mngr.php and clicking on the Show
Report button.

If you view the report before any URL is clicked by any user, the report will show
no URL track. If you click on a tracked URL in a message and then check the report,
you’ll see your track being reported. You can click on the URL in your message as
many times as you want, and you’ll notice that the report accurately reports the
unique and total URL clicks. Figure 15-10 shows a sample report. Like URL clicks,
the unsubscription tracks are also reported in the report.

554 Part III: Developing E-mail Solutions

19 549669 ch15.qxd 4/4/03 9:26 AM Page 554

Security Considerations
The checksum algorithm used in making trackable URL links and unsubscription
URL needs to be modified before you start using the redir.php and unsub.php
applications in real-world email campaign scenarios. At the least, you should
change the value of $SECRET in the configuration file.

Because the current algorithms are published in the book, someone can easily
guess how to defeat them. For example, the computeCheckSum() method in the
redir.php application can be changed to:

function computeCheckSum()
{

global $SECRET;

$u = $this->getRequestField(‘u’);
$uid = $this->getRequestField(‘uid’);
$c = $this->getRequestField(‘c’);

return ($u << 4) + ($uid << 3) + ($c << 7) + $SECRET;
}

Here this version uses different bit shifts for $u, $uid, and $c. Of course you
should choose your own values to make sure they are not known to anyone. The
best approach would be to come up with a completely new algorithm that does not
use even the same bit shifting technique. I will leave that to you to develop.

Summary
In this chapter you learned to develop a simple email campaign system that allows
you to send personalized, URL tracked HTML messages to email addresses found in
MySQL databases. Note that since the email campaign system uses your default
mail transport agent (i.e. mail server), the performance will very based on your mail
server’s abilities.

Chapter 15: E-campaign System 555

19 549669 ch15.qxd 4/4/03 9:26 AM Page 555

19 549669 ch15.qxd 4/4/03 9:26 AM Page 556

Using PHP for Sysadmin Tasks
CHAPTER 16

Command-Line PHP Utilities

CHAPTER 17
Apache Virtual Host Maker

CHAPTER 18
BIND Domain Manager

Part IV

20 549669 PP04.qxd 4/4/03 9:26 AM Page 557

20 549669 PP04.qxd 4/4/03 9:26 AM Page 558

Chapter 16

Command-Line
PHP Utilities
IN THIS CHAPTER

◆ Writing command-line PHP utilities

◆ How to create a cron-based reminder

◆ How to develop a geographic location query tool for IP

◆ Developing a spam-busting utility for POP3 mailboxes

◆ How to develop a hard disk monitoring tool

◆ Creating a CPU load monitoring tool

PHP STARTED OUT AS A SIMPLE Web scripting tool written in Perl and later became
the most popular Web application development language. Because of its strong ties
with the Web, it has lagged behind as an all-purpose programming language.
Especially for command-line users, PHP is considered a newcomer, because not
many command-line PHP utilities are floating around on the Internet just yet. In
this chapter, you develop a few command-line utilities to get you started in
command-line PHP development.

Most of the scripts discussed here might not work on a Windows platform.

They have been tested on the Linux platform only.

559

21 549669 ch16.qxd 4/4/03 9:26 AM Page 559

Working with the Command-Line
Interpreter
The command-line version of PHP is installed when you enable CGI support during
the PHP installation process. The command-line PHP interpreter can be found by
running the following:

which php

This will show the full path of the PHP command-line interpreter. Sample output
appears as follows:

/usr/bin/php

In most cases, you should find the PHP binary in the /usr/bin directory, which is
typically in your path, so you can run the following:

php -h

The 4.3.x version of the PHP command-line interpreter will display output simi-
lar to following:

Usage: php [options] [-f] <file> [args...]
php [options] -r <code> [args...]
php [options] [-- args...]

-s Display color syntax highlighted source.
-w Display source with stripped comments and

whitespace.
-f <file> Parse <file>.
-v Version number
-c <path>|<file> Look for php.ini file in this directory
-a Run interactively
-d foo[=bar] Define INI entry foo with value ‘bar’
-e Generate extended information for

debugger/profiler
-z <file> Load Zend extension <file>.
-l Syntax check only (lint)
-m Show compiled in modules
-i PHP information
-r <code> Run PHP <code> without using script tags <?..?>
-h This help

args... Arguments passed to script. Use -- args when
first argument

starts with - or script is read from stdin

560 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:26 AM Page 560

These options are not necessary for running command-line scripts because most
command-line scripts under a Linux/UNIX system are run by adding the interpreter
path as the first line. For example, Listing 16-1 shows a simple PHP script called
helloworld.php.

Listing 16-1: helloworld.php

#!/usr/bin/php -q
<?php

echo “Hello World\n”;

?>

In PHP Version 4.3.x, the -q option is not needed if the PHP binary is com-

piled with the --enable-cli option, which enables Command Line Interface

(CLI) support and automatically suppresses HTTP headers. Earlier versions of

PHP supported multiple options, but only one option would actually work.

In the preceding code, the first line starts with #! and is followed by the fully
qualified path name of the PHP command-line interpreter. The next line is the
starting tag for the PHP script.

After making the file executable by running the chmod 755 helloworld.php
command, you can run it from the script’s current directory as follows:

./helloworld.php

Following is sample output:

Hello World

When the helloworld.php script is run from the shell, the shell loads this file and
locates the first line (#!, called the bang line) and runs the script using the named
interpreter. All the scripts discussed in this chapter run this way. However, you can
also run PHP scripts as follows:

php –q filename.php

where filename.php is your script.

Chapter 16: Command-Line PHP Utilities 561

21 549669 ch16.qxd 4/4/03 9:26 AM Page 561

It’s good practice to get in the habit of using the –q option when running

PHP from the command line to suppress the HTML headers. That way you

are sure to suppress the headers.

In the 4.3.x version of PHP (compiled with the --enable-cli option), you can also
run the following:

php –q -r ‘echo “Your PHP Code”;’

Here, the echo statement will be executed as if it were in a script. This type of
execution is not suitable for most real problem-solving work. It is most useful when
you want to write a quick and dirty script for one-time use.

Reading standard input
Reading input from the shell is a common task performed by a command-line
script. Listing 16-2 shows a simple script called ask.php, which reads user input
from a command-line prompt.

Listing 16-2: ask.php

#!/usr/bin/php -q
<?php

$name = prompt(‘Enter your name: ‘);

echo “Hello $name\n”;

exit;

function prompt($label = null)
{

echo $label;
return getSTDIN();

}

function getSTDIN()
{

// In PHP 4.3.x with --enable-cli option
// you can use STDIN constant which replaces
// the following fopen() line.
$STDIN =fopen(“/dev/stdin”,”r”);

562 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:26 AM Page 562

$keyboardBuffer = null;

if ($STDIN)
{

while(($ch = fgetc($STDIN)) != “\n”)
{

$keyboardBuffer .= $ch;
}

fclose($STDIN);
}

return $keyboardBuffer;

}

?>

The script calls a function called prompt(), which takes a string message and
displays it on the shell screen. The prompt() function calls another function called
getSTDIN(), which opens a file handle called $STDIN to /dev/stdin (i.e.,
php://stdin) and reads characters from it until a newline (\n) character is entered by
the user. This effectively gives us the command line entered by the user. The user-
entered data is stored in a string buffer called $keyboardBuffer, which is returned
to the caller of getSTDIN().

The PHP 4.3.x version of the command-line PHP binary with CLI enabled

(--enable-cli) has STDIN, STDOUT, and STDERR constants predefined. These

constants replace the following code:

// STDIN constant replaces:
$stdin = fopen(‘php://stdin’, ‘r’);
// STDOUT constant replaces:
$stdout = fopen(‘php://stdout’, ‘w’);
// STDERR constant replaceS:
$stderr = fopen(‘php://stderr’, ‘w’);

Getting into arguments
You will often need to get command-line arguments from the user. Listing 16-3
shows a simple script called arg.php, which prints out an array called $argv.

Chapter 16: Command-Line PHP Utilities 563

21 549669 ch16.qxd 4/4/03 9:26 AM Page 563

Listing 16-3: arg.php

#!/usr/bin/php -q
<?php

print_r($argv);

?>

When this script is run as follows:

./args.php -h -k -x 100

it prints the following:

Array
(

[0] => ./arg.php
[1] => -h
[2] => -k
[3] => -x
[4] => 100

)

The $argv array is created by PHP, which stores all the command-line arguments
as shown in the preceding output. However, it is not the most efficient way to deal
with command arguments. Listing 16-4 shows a script called cmd_options.php,
which uses the Console/Getopt.php class from the PEAR package.

Listing 16-4: cmd_options.php

#!/usr/bin/php -q
<?php

$CMD_SHORT_OPTIONS = ‘hs:’;
$CMD_LONG_OPTIONS = array(‘help’, ‘size=’);

// Set this to the PEAR directory
$PEAR_DIR = ‘/evoknow/intranet/htdocs/pear’ ;

ini_set(‘include_path’, ‘:’ .
$PEAR_DIR . ‘:’ .
ini_get(‘include_path’));

require_once “Console/Getopt.php”;

$cmd = getCommandLineOptions(

564 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:26 AM Page 564

Console_Getopt::getopt
(
$GLOBALS[‘argv’],
$CMD_SHORT_OPTIONS,
$CMD_LONG_OPTIONS
)

);

if ($cmd == null)
{

syntax();
}
else if (isset($cmd[‘h’]) ||

isset($cmd[‘help’]))
{

echo “You selected help option.\n”;

}

if (isset($cmd[‘s’]) ||
isset($cmd[‘size’]))

{

echo “You selected size option. Chosen size is “ .
$cmd[‘s’] . ‘ ‘ . $cmd[‘size’] . “\n”;

}

exit;

function syntax()
{

$script = basename($GLOBALS[‘argv’][0]);

echo<<<HELP

Syntax $script [-h | --help] [-s bytes | --size=bytes]

More help will be added later.

HELP;

}

Continued

Chapter 16: Command-Line PHP Utilities 565

21 549669 ch16.qxd 4/4/03 9:26 AM Page 565

Listing 16-4 (Continued)

function getCommandLineOptions($options)
{

$type = gettype($options);

if (gettype($options) != “array”)
{

// Error in command line
echo “$options->message \n”;
return null;

}

$cmd = array();

foreach ($options[0] as $argArray)
{

$argName = preg_replace(‘/[^\w]/’ ,
‘’,
$argArray[0]);

$argValue = $argArray[1];

$cmd[$argName] = ($argValue != ‘’) ? $argValue : TRUE;
}

return (count($cmd) > 0) ? $cmd : null;

}

?>

Here, getCommandLineOptions() is passed the output of the
Console_Getopt::getopt() function. The Console_Getopt::getopt() function
takes $GLOBALS[‘argv’], $CMD_SHORT_OPTIONS, and $CMD_LONG_OPTIONS as argu-
ments. The $GLOBALS[‘argv’] argument is same as $argv, which holds the user-
supplied command-line arguments. The second argument, $CMD_SHORT_OPTIONS, is
a list of short argument options such as ‘hs:’. These are the options that a user can
enter as –h and -s size. The -s option takes a value and therefore ‘:’ is added in
the $CMD_SHORT_OPTIONS string to indicate that. The $CMD_LONG_OPTIONS is set to
an array such as array(‘help’, ‘size=’). These arguments can be entered by the
user as –help and --size=size.

566 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:26 AM Page 566

The syntax for short arguments in Console_Getopt::getopt() is fairly

simple. List each short argument, order doesn’t matter. If an argument

requires a parameter (like “s” in the listing above) you follow it with a colon

(as we did above). If the parameter is optional, you add two colons.

The short and the long argument lists are the expected lists of arguments. The
Console_Getopt::getopt() function returns an error object if the user enters an
invalid argument that is not listed in the short or long expected argument list
passed to it.

If the user enters valid arguments and argument options, the getopt() method
returns the list of options supplied by the user in an array. The
getCommandLineOptions() function goes through the valid list of user-entered
arguments, removes - characters from each argument, and makes an associative
array called $cmd, using the argument name as the key and the argument value as
the value. For example, if the user runs this script as follows:

./cmd_options.php -h -s 100

the $cmd array looks like the following:

Array
(

[h] => 1
[s] => 100

)

Similarly, if the user runs it as

./cmd_options.php -h --size 100 --king=burger

the $cmd array looks like the following:

Array
(

[h] => 1
[size] => 100
[king] => burger

)

Chapter 16: Command-Line PHP Utilities 567

21 549669 ch16.qxd 4/4/03 9:26 AM Page 567

Notice that arguments that do not have a value (such as -h) have a value of “1”
in the $cmd array. Since “1” evaluates to TRUE in Boolean expressions, when this
array is returned, you can easily find out which command-line arguments were
selected. In this script, it uses the built-in isset() function to determine whether a
known argument is set, and prints a message indicating the result. For example:

./cmd_options.php -h

Returns:

You selected help option.

This shows that -h has been supplied.

To add a new short argument called -z, we can simply update the
$CMD_SHORT_OPTIONS list. Similarly, to add a long argument called -zero, we can
add this argument in $CMD_LONG_OPTIONS. For example, to allow a new long argu-
ment called -count that expects a value, we can add ‘count=’ in the following
array:

$CMD_LONG_OPTIONS = array(‘help’, ‘size=’, ‘count=’);

Then we can write code to determine whether the user has chosen this argument
or not. For example:

if (isset($cmd[‘count’]))
{

echo “You entered count value of “. $cmd[‘count’] . “\n”;
}

Now that you know how to deal with command line PHP scripting along with
argument handling, let’s develop some interesting command-line scripts. In the fol-
lowing section, you will develop a simple reminder tool.

Most chapters in this book refer you to the accompanying CD-ROM for

source listings. Because the tools discussed in this chapter are very small, we

include the source listing so that you can see the entire code while reading

the chapters.

568 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:26 AM Page 568

Building a Simple Reminder Tool
In this day and age, who does not need to be reminded of something? In this sec-
tion, you will develop a reminder utility that runs on a Linux system as a daily cron
job. A cron job is simply another name for a scheduled task. Linux and other UNIX
systems have a daemon program called cron, which runs other programs at given
intervals. Linux contains predefined cron directories in the main system configura-
tion /etc directory, including the following:

◆ /etc/cron.daily: scripts and programs that are run once a day

◆ cron.hourly: scripts and programs that are run once every hour

◆ cron.monthly: scripts and programs that are run once a month

◆ cron.weekly: scripts and programs that are run once a week

You can generally create a symbolic link (symlink) from the program you want
to run via cron to one of these directories and get it run on the predefined schedule.

If you want to know when an hourly, daily, weekly, or monthly cron job is run

from the aforementioned scripts, look at /etc/crontab, which shows the

time when these directories are processed by the cron daemon. You might

have to consult the crontab manual pages (man crontab) to understand the

cryptic time assignments. The user who needs more information on cron
should start with the man 5 crontab command, which describes the basic

syntax of the crontab file and operation of cron in general.

Note that if you are not a privileged user, you will want to explore the cron
–l and cron –e commands for dealing with cron and crontab. Although

this section deals mainly with Linux and cron, Windows users can use the

Windows Scheduler application to schedule tasks to run at preset time(s).

We will develop this reminder tool and symbolically link it inside the
/etc/cron.daily so that the reminder tool is run once a day automatically. In
most systems, daily tasks are run very early in the morning (for example,
4:00 A.M.). First, let’s examine what our reminder system will offer.

Chapter 16: Command-Line PHP Utilities 569

21 549669 ch16.qxd 4/4/03 9:26 AM Page 569

Features of the reminder tool
The reminder tool will offer the following features:

◆ It will process reminders for all users on the system.

◆ All users can have their own set of reminders, which they can manage
using configuration files and message templates.

◆ Each reminder can be sent using a separate message template.

◆ Types of reminders supported are daily, weekly, monthly, and yearly.

◆ For each type of reminder, there can be an unlimited number of reminders
per user.

Now let’s implement this tool.

Implementing the reminder tool
Listing 16-5 shows a configuration file that we will use for our reminder tool. The
DEBUG constant will be used for enabling and disabling debug messages.

The PASSWD_FILE constant points to the system’s password file. You can use a
different file, but two fields are required by the reminder system: username and
home directory. If you use a custom user list file, make sure it mimics the
/etc/passwd file in terms of the formatting and placement of username, and the
home directory field.

Reading man htpasswd and/or man passwd will help with managing

and mimicking the /etc/passwd file.

The $XMAILER variable is used to name the reminder in an X-header for each
mail message sent. This can be set to anything.

The USER_REMINDER_DIR constant is used to store the expected name of the
user’s reminder directory. Each user can have a reminder directory inside the home
directory as ~username/%USER_REMINDER_DIR/. For example, ~kabir/reminders
is the default reminder directory per the following configuration for the user kabir.

Each user’s reminder configuration is stored in the reminders.txt file pointed to
by the USER_REMINDER_FILE constant. This file must reside in a directory specified
by USER_REMINDER_DIR, within a user’s home directory. For example, the user
sheila, whose home directory is /home/sheila (i.e., ~sheila), can have /home/sheila/
reminders/reminders.txt as the full path for her reminder configuration file. The
configuration file is as follows:

570 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:26 AM Page 570

Listing 16-5: reminder.conf

<?php

define(DEBUG, TRUE);
define(PASSWD_FILE, ‘/etc/passwd’);

$XMAILER = ‘Reminder Version 1.0’;

// Reminder directory for users
// Default: ~username/reminders
define(USER_REMINDER_DIR, ‘reminders’);

// Reminder configuration file for user
// in user’s reminder directory
// (%USER_REMINDER_DIR%/filename)
// Default: %USER_REMINDER_DIR%/reminders.txt
define(USER_REMINDER_FILE, ‘reminders.txt’);

?>

Listing 16-6 shows a sample configuration file for a user. This configuration file
can be altered by the user to add, delete, and modify reminders as desired.

Listing 16-6: ~username/reminders/reminders.txt

User Reminder Configuration Format
#
Lines starting with # are ignored
Lines that are blank are ignored

Format
FREQUENCY:

#daily:todo.txt

weekly:mon:monday_plans.txt
#weekly:tue:tuesday.txt
weekly:tue:foo.txt
weekly:wed:wednesday_plans.txt
weekly:fri:friday_prayer.txt

monthly:10:groupmtg10th.txt
monthly:30:payroll.txt

Continued

Chapter 16: Command-Line PHP Utilities 571

21 549669 ch16.qxd 4/4/03 9:26 AM Page 571

Listing 16-6 (Continued)
yearly:12-10:12-10.txt
yearly:07-22:ak_birthday.txt
yearly:07-23:ak_birthday.txt

yearly:07-02:mk_birthday.txt
yearly:07-03:mk_birthday.txt

As you can see, this is a plain-text reminder configuration file. The lines that are
blank or start with the # character are ignored by the reminder tool, so a user can
use them to keep the reminder configuration readable and commented. There are
four types of configuration lines:

daily:reminder_mail_file.txt
weekly:week_day:reminder_mail_file.txt
monthly:MM:reminder_mail_file.txt
yearly:MM-DD:reminder_mail_file.txt

The first line (daily) defines a daily reminder. Whenever such a line is processed
by the reminder system, it reads the named file (reminder_mail_file.txt) and sends
e-mail to the user or anyone else specified (in the To: field) within the file.

The second line (weekly) defines a weekly reminder. The reminder is sent only if
the weekday (mon, tue, wed, thu, fri, sat, sun) reminder tool running corresponds
with the same day as the current day. For example, if the reminder tool is running
on a Saturday (sat) and a line such as the following is found:

weekly:sat:myweekend_plan.txt

the reminder system will load the myweekend_plan.txt file and e-mail the user
(or whomever else is listed in the To:, Bcc:, and Cc: fields in the file).

Similarly, the third line (monthly) is used for monthly reminders. The MM field
is simply the two-digit day of the month. For example, to send a reminder on the
27th of each month, a user can set up the following:

monthly:27:oh_no_its_27th_already.txt

Finally, the yearly reminder is set by the last line. The yearly reminder requires
both the MM and DD part of a (MM-DD-YYYY) date. For example, if you want to
send a reminder to yourself about a friend’s birthday on July 23, you can set up the
following:

yearly:07-23:sheila_birthday.txt

572 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:26 AM Page 572

Now let’s look at a message file to understand how users can set up the actual
reminder message sent to themselves or anyone they choose. Listing 16-7 shows an
example reminder message file that can be used in any daily, weekly, monthly, or
yearly reminders.

Listing 16-7: ~username/reminders/todo.txt

From: Reminder <reminder@evoknow.com>
To: Alter Ego <kabir@evoknow.com>
Cc: mrkabir@hotmail.com
Bcc: kabir@sac-home.evoknow.com
Content-Type: text/plain
Subject: My TODO for <%TODAY%>

I need to accomplish the following tasks today:

1. Check and respond to all my pending emails (on going)
2. Call Andrew @ 10:30 AM to discuss remote mgmt contract
3. Call Chad @ 11:30 PM to discuss security contract
4. Lunch with TLT @ 1:00 PM (Geek)
5. Write rest of the article for CMP (2 Hrs)
6. Finish spec for Metrocomia
7. Buy holiday gifts

Too much to do, too little time!

-alter-ego

This is a text reminder file. The From:, To:, Cc:, Bcc:, Content-Type:, and
Subject: lines correspond to standard e-mail headers. They are used in sending
e-mail messages. For example, if you wanted to send an HTML message as a
reminder, you could set Content-Type: text/html instead of text/plain. The message
is sent to recipients listed in the To:, Cc:, and Bcc: fields. You do not have to have
Cc: or Bcc: fields.

Listing 16-8 shows the reminder.php script that implements the reminder tool.

Listing 16-8: reminder.php

#!/usr/bin/php -q
<?php

require_once(‘reminder.conf’);

define(USER_FILE_MISSING, 1);

Continued

Chapter 16: Command-Line PHP Utilities 573

21 549669 ch16.qxd 4/4/03 9:26 AM Page 573

Listing 16-8 (Continued)
$userList = getUsers(PASSWD_FILE);

foreach($userList as $username => $homeDir)
{

doRemind(USER_REMINDER_DIR,
USER_REMINDER_FILE,
$username,
$homeDir);

}

exit;

function doRemind($userDir = null,
$userFile = null,
$username = null,
$homeDir = null)

{
$userReminderDir = sprintf(“%s/%s”,

$homeDir,
$userDir);

$userReminderFile = sprintf(“%s/%s”,
$userReminderDir,
$userFile);

$userReminderLogFile = sprintf(“%s/%s.log”,
$userReminderDir,
$username);

$logEntries = array();

if (!file_exists($userReminderFile))
{

return USER_FILE_MISSING;
}

if (DEBUG)
echo “Processing reminders for $username ...\n”;

if (DEBUG)
echo “Reminder File $userReminderFile \n”;

$mailings = getRemindersForToday(
file($userReminderFile),

574 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:26 AM Page 574

$userReminderLogFile
);

foreach ($mailings as $mail)
{

$mail = sprintf(“%s/%s”, $userReminderDir, $mail);

if (file_exists($mail))
{

if (! doMail($mail, $username))
array_push($logEntries,

“mail failed!”);;

} else
{

array_push($logEntries,
“cannot find or open $mail”);

}
}

writeLog($userReminderLogFile, $logEntries);

}

function doMail($file = null, $user = null)
{

$lines = file($file);
$lines = str_replace(“\r\n”, “\n”, $lines);
$lines = str_replace(“\r”, “\n”, $lines);
$lines = str_replace(“\n”, “\r\n”, $lines);

$today = date(‘M-d-Y h:i:s A’);

$contentTypeSet = FALSE;

$message = array();

$headers = array(“X-Mailer: “ .
$ XMAILER . “\r\n”);

$to = $user;

Continued

Chapter 16: Command-Line PHP Utilities 575

21 549669 ch16.qxd 4/4/03 9:27 AM Page 575

Listing 16-8 (Continued)
foreach ($lines as $str)
{

$index++;
if (preg_match(‘/To:\s*(.+)/i’,

$str,
$match
)

)
{

$to = $match[1];
}
else if (preg_match(‘/From:\s*(.+)/i’,

$str,
$match
)

)
{

array_push($headers, “From: $match[1] \r\n”);
}
else if (preg_match(‘/Subject:\s*(.+)/i’,

$str,
$match
)

)
{

$subject = $match[1];
}
else if (preg_match(‘/^CC:\s*(.+)/i’, $str, $match))
{

array_push($headers, “Cc: $match[1] \r\n”);
}
else if (preg_match(‘/Bcc:\s*(.+)/i’, $str, $match))
{

array_push($headers, “Bcc: $match[1] \r\n”);
}
else if (preg_match(‘/Content-Type:\s*(.+)/i’,

$str,
$match
)

)
{

if (preg_match(‘/html/’, $match[1]))
{

array_push($headers,

576 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 576

“Content-Type: text/html\r\n”);
} else {

array_push($headers,
“Content-Type: text/plain\n”);

}

$contentTypeSet = TRUE;
}
else if (preg_match(‘/MIME-Version:\s*(.+)/i’,

$str,
$match
)

)
{

array_push($headers,
“MIME-Version: $match[1] \r\n”);

} else {
array_push($message, $str);

}
}

if (! $contentTypeSet)
array_push($headers,

“Content-Type: text/plain\r\n”);

$subject = preg_replace(‘/<%TODAY%>/i’,
$today,
$subject);

$body = implode(‘’, $message);
$body = preg_replace(‘/<%TODAY%>/i’, $today, $body);

$headerStr = implode(‘’, $headers);

if (DEBUG)
echo “Sending mail to: $to (subject: $subject)\n”;

return mail($to, $subject, $body, $headerStr);
}

function getRemindersForToday($list = null,
$logFile = null)

{

Continued

Chapter 16: Command-Line PHP Utilities 577

21 549669 ch16.qxd 4/4/03 9:27 AM Page 577

Listing 16-8 (Continued)
$reminders = array();
$logEntries = array();

// Get today’s date
$thisMonth = date(‘M’);
$thisMM = date(‘m’);

$thisDay = strtolower(date(‘D’));
$thisDD = date(‘d’);

$MMDD = sprintf(“%02d-%02d”, $thisMM, $thisDD);

$lineNumber = 0;

// Parse each line in the user’s reminder file
foreach ($list as $line)
{

// Count line number (needed for error reporting)
$lineNumber++;

// Ignore lines starting with # as comments
if (preg_match(‘/^#/’, $line)) continue;

// Ignore lines that are blank
$line = ltrim($line);
if (preg_match(‘/^$/’, $line)) continue;

$line = substr($line,0, strlen($line)-1);
list ($type,$when,$what) = explode(‘:’, $line);

if (preg_match(‘/daily/i’, $type))
{

// daily reminders have only 2 parts daily:file
// so $when will have what we want in $what

// Daily reminder
array_push($reminders, $when);

}
else if (preg_match(‘/weekly/i’, $type) &&

!strcmp($thisDay, strtolower($when)) &&
!empty($what)

)
{

578 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 578

// Weekly reminder
array_push($reminders, $what);

}
else if (preg_match(‘/monthly/i’, $type) &&

($thisDD == $when) &&
!empty($what)

)
{

// Monthly reminder
array_push($reminders, $what);

}
else if (preg_match(‘/yearly/i’, $type) &&

(!strcmp($MMDD, $when)) &&
!empty($what)

)
{

// Yearly reminder
array_push($reminders, $what);

}
else if (empty($what))
{

array_push($logEntries,
“error in line $lineNumber ($line)”);

}
}

// Write log entries
writeLog($logFile, $logEntries);

// Remove duplicates from reminder list
return array_values(array_unique($reminders));

}

function writeLog($logFile = null, $entries = null)
{

if (count($entries) <1) return FALSE;

$logFD = fopen($logFile, ‘a+’);

$today = date(‘M-d-Y h:i:s A’);

if (! $logFD) return FALSE;

Continued

Chapter 16: Command-Line PHP Utilities 579

21 549669 ch16.qxd 4/4/03 9:27 AM Page 579

Listing 16-8 (Continued)
foreach ($entries as $logRecord)
{

fputs($logFD, “$today: $logRecord\n”);
}

fclose($logFD);

return TRUE;
}

function getUsers($userFile = null)
{

$users = array();

if (!file_exists($userFile))
{

return $users;
}

// For each line in the file
// create a entry in users array
// as: $users[username] = home_dir
foreach (file($userFile) as $line)
{

$userInfo = explode(‘:’,$line);

$users[$userInfo[0]] = $userInfo[5];
}

return $users;
}

?>

Here is how this script works:

◆ It first gets a list of users by calling the getUsers() function. This func-
tion is given the PASSWD_FILE file name, which is configured in
reminder.conf. The user list is returned into $userList.

◆ For each user in $userList, the script calls the doRemind() function,
which processes the reminders for the user.

Now let’s examine each of the functions used in this script.

580 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 580

doRemind()
This function obtains four things: the user’s reminder directory ($userDir, which is
USER_REMINDER_DIR set in reminder.conf), the user reminder file name
($userFile, which is USER_REMINDER_FILE set in reminder.conf), $username, and
the user’s home directory ($homeDir).

It first determines whether the user has a reminder file in the reminder directory
inside the user’s home directory. If there is no reminder configuration
(reminders.txt) file, the function returns. That ends the user’s reminder processing.

However, because the user does have a reminders.txt file in the reminders
directory, the getRemindersForToday() function is called see if any of the
reminders are meant for the current day.

The getRemindersForToday() method parses the reminders.txt file and if
any reminder matches, it returns the associated reminder mail file. For example,
suppose a user has the following configuration in reminders.txt:

weekly:mon:my_monday_tasklist.txt
weekly:tue:my_tuesday_tasklist.txt
weekly:wed:my_wednesday_tasklist.txt
weekly:thu:my_thursday_tasklist.txt
weekly:fri:my_friday_tasklist.txt
weekly:sat:my_saturday_plans.txt
weekly:sun:my_sunday_plans.txt

Whenever the reminder is run, one of the weekly reminders will match, as the
user has a weekly reminder for each day. The matching reminder mail file will be
returned in an array called $mailings by the getRemindersForToday() function.

For each of the entries in $mailings, the doMail() method is called only if the
mail file exists. In other words, if it is Monday, the preceding configuration will
return $mailings = array(‘monday_tasklist.txt’). If ~username/reminders/
monday_tasklist.txt exists, then doMail() will send out the mail.

In the case of a missing file, log entries will be created. The log is later written to
the ~username/reminders/username.log file so that the user can review it and fix
the configuration file or create missing mail files.

doMail()
This function sends the mail out. It receives a reminder mail filename, which exists
in the ~username/reminders directory. The function loads the file into an array
called $lines using the file() function.

Each line is parsed for mail headers, such as To:, From:, Cc:, Bcc:, Subject:, and
Content-Type:. These headers are stored in appropriate format in the $headers
array.

The other lines are considered part of the body of the message, and are stored in
the $messages array.

Chapter 16: Command-Line PHP Utilities 581

21 549669 ch16.qxd 4/4/03 9:27 AM Page 581

The default content type is set to text/plain in this function.

Then the $body string is created by concatenating the lines in the $messages
array using the implode() function. Both the $body and the $subject line are
parsed for the <%TODAY%> tag, which is replaced with the current date and time. The
$subject line is stored outside the $headers array even though it is a header too.
This is done because the PHP mail() function requires the subject as a separate
argument from the other headers. The same is true for the To: header, which is also
stored outside $headers in $to .

Finally, the $headers are imploded into $headerString, and the mail() func-
tion is called with all the necessary arguments. The mail is sent out. If the actual
mail() function encounters any errors a log entry is added to that effect.

getRemindersForToday ()
This function receives a list of lines (the contents of the reminders.txt file), and
parses through each line to determine whether the line is a reminder configuration
or should be ignored (blank or a comment line starting with the # character).

Each reminder configuration line is compared against the current date (MM, DD,
and weekday) values to determine whether any of the lines match a reminder for
today.

If a match is found, the reminder mail filename is added into the $reminders
array, which is returned by the function.

writeLog ()
This function writes a log file as ~username/reminders/username.log. The log
entries are generated by other functions in the script.

getUsers ()
This function loads the user list file (/etc/passwd) in an array, loops through each
record, and finds the username (field position 0) and home directory (field position
5) from each line separated by colons.

It stores each username and home directory in an associative array called $user
and returns it.

Installing the reminder tool as a cron job
To set up reminder.php as a cron job under Linux, do the following:

1. As root, create a symbolic link in /etc/cron.daily as follows:

ln -s /path/to/reminder.php

582 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 582

For example, say you kept reminder.php and reminder.conf in /usr/
local/src/reminder directory, you can run the following commands
as root to create the link:

cd /etc/cron.daily
ln -s /usr/local/src/reminder/reminder.php

2. Once the symlink is created, run: /etc/cron.daily/reminder.php
as a test. If you get an error message about reminder.conf not being
found, you need to edit the reminder.php to change require_once
(‘reminder.conf’) to require_once(‘/path/to/reminder/
reminder.conf’). For our example case, this would be
require_once(‘/usr/local/src/reminder/reminder.conf’).

3. Make sure reminder.php is executable. You can run

chown root:root reminder.*
chmod 700 reminder.php

from the directory of the script to allow root to own and be able to exe-
cute the reminder scripts. If your cron daemon does not run as root, make
sure you replace root:root with the appropriate user and group names that
enable cron to execute the script.

4. Now you can set up reminders in one or more user reminder directories
(~username/remidners/reminders.txt) and create necessary mail files
in the reminders directory.

5. Let cron run the job at the regularly scheduled time and you should
receive reminders if you have set any for yourself. If you do not receive
a reminder you expect to receive, check the ~usernmame/reminders/
username.log file. Also check /var/log/cron for possible file
execute permission issues

Building a Geo Location
Finder Tool for IP
Ever find an IP address in a log file that looked suspicious or interesting and you
wanted to know from which part of the world that IP came? A trace route might
give you clues but it is too much work to find geographic locations of an IP
address.

In this section, we will develop a simple script called geolocator.php using the
netgeo.php class, which you can download from http://www.phpclasses.org/
netgeoclass.

Chapter 16: Command-Line PHP Utilities 583

21 549669 ch16.qxd 4/4/03 9:27 AM Page 583

This class uses The Internet Geographic Database, which maps IP addresses to
physical world locations. To learn more about this, visit http://www.caida.org/
tools/utilities/netgeo.

Listing 16-9 shows the geolocator.php script.

Listing 16-9: geolocator.php

#!/usr/bin/php -q
<?php

require_once(“netgeo.php”);

// Get a list of hosts/ip from command line
$hostList = getHostList();

// if no host/ip was given show syntax msg
if (count($hostList) < 1)
{

echo “Syntax: “ . basename($GLOBALS[‘argv’][0]) .
“ host | ip_address\n”;

exit;
}

// For each host/ip find geo location
foreach ($hostList as $host)
{

findLocation($host);
echo “-------------------------\n”;

}

exit;

function findLocation($hostname = null)
{

// Create a netgeo class object
$netgeo=new netgeo_class;

// Find location for the given host/ip
if($netgeo->GetAddressLocation($hostname,$location))
{

// Set longitude and latitude from retrieved data
$longitude=doubleval($location[“LONG”]);
$latitude=doubleval($location[“LAT”]);

584 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 584

// Show output
echo $host”: Approximate location:\n”;

if(IsSet($location[“CITY”]) ||
IsSet($location[“STATE”]) ||
IsSet($location[“COUNTRY”]))

{
if(IsSet($location[‘CITY’]))
echo “City : “ . $location[‘CITY’] . “\n”;

if(IsSet($location[‘STATE’]))
echo “State :” . $location[‘STATE’] . “\n”;

if(IsSet($location[‘COUNTRY’]))
echo “Country :”. $location[‘COUNTRY’] . “\n”;

}

echo “Longitude:” .
($longitude>=0.0 ? $longitude .
“degree East” : (-$longitude).”degree West”).”\n”;

echo “Latitude:”.
($latitude>=0.0 ? $latitude .
“degree North” : (-$latitude).”degree South”).”\n”;

}
else
{

echo “Cannot find location.\n”;
echo “Error: “.$netgeo->error.”\n”;

}
}

function getHostList()
{

$arr = array();

// Except for the first argument in the command
// line, insert all in a list as host/ip
// Note: first argument is the name of the script.
foreach($GLOBALS[‘argv’] as $key => $value)
{

if ($key) array_push($arr, $value);
}

return $arr;
}

?>

Chapter 16: Command-Line PHP Utilities 585

21 549669 ch16.qxd 4/4/03 9:27 AM Page 585

This script requires the netgeo.php class. It works as follows:

◆ It gets a list of IP addresses or host names from the command line using
the getHostList() function.

◆ For each given IP or host name, it performs netgeo lookup using
findLocation(), which prints the geographic data available for the given
IP or host name. Note that not all IP addresses or host names are in the
netgeo database, so a result might not always be available.

Here are some example runs of this script:

$./geolocator.php www.yahoo.com
www.yahoo.com: Approximate location:
City : SUNNYVALE
State :CALIFORNIA
Country :US
Longitude:122degree West
Latitude:37.4degree North

You can see that www.yahoo.com appears to be located in Sunnyvale, CA, U.S.
Following is another example:

$./geolocator.php www.amazon.com
www.amazon.com:Approximate location:
City : SEATTLE
State :WASHINGTON
Country :US
Longitude:122.31degree West
Latitude:47.55degree North

In the preceding example, you can see that www.amazon.com appears to be
located in Seattle, Washington, U.S.

One last example:

$./geolocator.php www.csus.edu
www.csus.edu: Approximate location:
City : SACRAMENTO
State :CALIFORNIA
Country :US
Longitude:121.44degree West
Latitude:38.57degree North

586 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 586

You can see www.csus.com (California State University, Sacramento) appears to
be located in Sacramento, CA, U.S., which makes sense.

This script should be used from the command line as needed. However, if you
wish to make it available to everyone, you can install it in /usr/bin, which is typi-
cally in any user’s path. Here is how:

1. Make a directory called /usr/local/src/php/gelocator and copy the
netgeo.php class into that directory. Make sure the directory is r+x by all
users. In addition, make sure netgeo.php is readable by all users, but nei-
ther should be writable.

2. Copy geolocator.php into /usr/bin as geolocator. We remove the php
extension because executable scripts typically do not need extensions.

3. Modify /usr/bin/geolocator such that require_once(“netgeo.php”)
now is require_once(“/usr/local/src/php/geolocator/netgeo.php”).
This will ensure that when users run geolocator from the command line,
the /usr/bin/geolocator script will find the netgeo.php class.

Now you and your users can run geolocator from anywhere.

Note that the geolocator script is fairly accurate, but its output should not be

used as a final (and perhaps critical) determination of a particular host’s

location.

Building a Hard Disk Usage
Monitoring Utility
Now we will develop a hard disk usage monitoring tool that uses Linux proc file
system information to determine hard disk usage, and if usage for a given mounted
file system exceeds a specified percentage, the utility sends an e-mail message to
the administrator.

The script we will develop here requires the classLinux.inc.php and com-
mon_functions.php classes from the phpSysInfo project, which is located at
http://phpsysinfo.sourceforge.net/project.

Download the phpSysInfo project and you will find the common_
functions.php in the main distribution directory; the class.Linux.
inc.php can be found in the os subdirectory within the includes directory.

Chapter 16: Command-Line PHP Utilities 587

21 549669 ch16.qxd 4/4/03 9:27 AM Page 587

Listing 16-10 shows an example configuration file for this script.

Listing 16-10: hdmonitor.conf

<?php

define(DEBUG, FALSE);

// Send email when mounted filesystem reaches
// percentage or more as given here
$MAXSIZE[‘/’] = 30;
$MAXSIZE[‘/usr’] = 50;
$MAXSIZE[‘/mnt/win’] = 90;

$MAIL_TEMPLATE = ‘hdmonitor_mail.txt’;

?>

Defined in the $MAXSIZE array are three mount points (partitions), which can be
also written as follows:

$MAXSIZE = array (‘/’ => 30,
‘/usr’ => 50,
‘/mnt/win’ => 90
);

These three mount points will be monitored by the script when it is run daily via
cron. Whenever any of these mount points exceed the usage percentage stated here,
the $MAIL_TEMPLATE file is used to send mail to the e-mail addresses listed in this
mail template. Listing 16-11 shows the monitoring script called hdmonitor.php.

Listing 16-11: hdmonitor.php

#!/usr/bin/php -q
<?php

require_once(‘hdmonitor.conf’);
require_once(‘class.Linux.inc.php’);
require_once(‘common_functions.php’);

$alertInfo = array();

$system = new sysinfo;
$alertInfo[‘/<%HOST%>/’] = $system->chostname();
$alertInfo[‘/<%IP_ADDR%>/’] = $system->ip_addr();
$alertInfo[‘/<%KERNEL%>/’] = $system->kernel();
$alertInfo[‘/<%TODAY%>/’] = date(‘M-d-Y h:i:s A’);

588 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 588

$diskInfo = getDiskInfo($system->filesystems());

$alert = 0;

foreach ($diskInfo as $mount => $currentPercent)
{
if (!empty($MAXSIZE[$mount]) &&

$MAXSIZE[$mount] <= $currentPercent
)

{
$alert++;
$alertInfo[‘/<%DISK_STATUS%>/’] .=

“Filesystem: $mount exceeds limit. “ .
“Currently used: $currentPercent%\n”;

if (DEBUG)
echo “Filesystem: $mount exceeds limits.\n”;

}
}

if ($alert) sendAlert($alertInfo);

exit;

function sendAlert($info = null)
{
$lines = file($GLOBALS[‘MAIL_TEMPLATE’]);

$contentTypeSet = FALSE;

$message = array();

$headers = array();

foreach ($lines as $str)
{
$index++;
if (preg_match(‘/To:\s*(.+)/i’,

$str, $match))
{

$to = $match[1];
}
else if (preg_match(‘/From:\s*(.+)/i’,

$str, $match))

Continued

Chapter 16: Command-Line PHP Utilities 589

21 549669 ch16.qxd 4/4/03 9:27 AM Page 589

Listing 16-11 (Continued)
{

array_push($headers, “From: $match[1] \r\n”);
}
else if (preg_match(‘/Subject:\s*(.+)/i’,

$str, $match))
{

$subject = $match[1];
}
else if (preg_match(‘/^CC:\s*(.+)/i’,

$str, $match))
{

array_push($headers, “Cc: $match[1] \r\n”);
}
else if (preg_match(‘/Bcc:\s*(.+)/i’,

$str, $match))
{

array_push($headers, “Bcc: $match[1] \r\n”);
}
else if (preg_match(‘/Content-Type:\s*(.+)/i’,

$str, $match))
{
if (preg_match(‘/html/’, $match[1]))
{

array_push($headers,
“Content-Type: text/html\r\n”);

} else {
array_push($headers,

“Content-Type: text/plain\n”);
}

$contentTypeSet = TRUE;
}
else if (preg_match(‘/MIME-Version:\s*(.+)/i’,

$str, $match))
{
array_push($headers,

“MIME-Version: $match[1] \r\n”);

} else {
array_push($message, $str);

}
}

if (! $contentTypeSet)

590 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 590

array_push($headers,
“Content-Type: text/plain\r\n”);

$body = implode(‘’, $message);

$search = array_keys($info);

$replace = array_values($info);

$body = preg_replace($search,
$replace,
$body);

$subject = preg_replace($search,
$replace,
$subject);

$headerStr = implode(‘’, $headers);

if (DEBUG)
echo “Sending mail to: $to ($subject)\n”;

mail($to, $subject, $body, $headerStr);
}

function getDiskInfo($fs = null)
{

$info = array();

foreach($fs as $disk)
{

$mountPoint = $disk[‘mount’];
$percent = $disk[‘percent’];

// remove % sign
$info[$mountPoint] = substr($percent,

0,
strlen($percent) -1);

}

return $info;
}

?>

Chapter 16: Command-Line PHP Utilities 591

21 549669 ch16.qxd 4/4/03 9:27 AM Page 591

This script works as follows:

1. It requires the class.Linux.inc.php and common_functions.php
classes.

2. It creates a sysinfo object called $system, which is used to retrieve host
name, IP address, and kernel information, using the chostname(),
ip_addr(), and kernel() methods.

3. It calls the getDiskInfo() function with an array of disk information
returned by the filesystems() method of the $system object.

4. The getDiskInfo() function returns an array called $diskInfo, which
returns each mount point (file system) in the system and the usage per-
centage.

5. For each mount point returned in $diskInfo, the usage percentage is
compared against the maximum allowed usage percentage stored in $MAX-
SIZE (from the hdmonitor.conf file).

6. If current usage is greater than or equal to the $MAXSIZE usage specified
for that mount point, an alert record is appended in $alertInfo[‘/
<%DISK_STATUS%>/’]. The alert count $alert is incremented.

7. If disk usage alerts (i.e., $alert > 0) are found, then sendAlert() is
called to e-mail the alert information stored in the $alertInfo array.

Listing 16-12 shows the alert message template. The To:, From:, Subject:, and
Content-Type: headers are used in creating the e-mail message headers. There are
custom tags such as <%HOST%>, <%IP_ADDR%>, <%KERNEL%>, and <%DISK_STATUS%>.
These are replaced with the $alertInfo contents. The following message is in
HTML, but you can use plain text as well by setting the Content-Type: header to
text/plain and removing HTML tags from the message body as needed.

Listing 16-12: hdmonitor_mail.txt

To: kabir@example.com
From: THE REDEYE GROUP <admin@example.com>
Subject: Disk(s) on <%HOST%> need your attention
Content-Type: text/html

<html>
<body>
The following disk(s) have exceeded set limit in hdmonitor.conf:

592 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 592

<table border=0 cellpadding=1 cellspacing=0 width=”400”
bgcolor=”#000000”>
<tr>
<td>
<table border=0 cellpadding=3 cellspacing=0 width=”400”
bgcolor=”red”>
<tr> <td> Disk Information
 </td> </tr>
<tr> <td> <%DISK_STATUS%> </td> </tr>
</table>
</td>
</tr>
</table>

<table border=0 cellpadding=1 cellspacing=0 width=”400”
bgcolor=”#000000”>
<tr>
<td>
<table border=0 cellpadding=3 cellspacing=0 width=”400”
bgcolor=”#cccccc”>
<tr> <td colspan=2> System Information </td></tr>
<tr> <td>Hostname </td><td> <%HOST%></td></tr>
<tr> <td>IP Addr </td><td> <%IP_ADDR%></td></tr>
<tr> <td>Kernel </td><td> <%KERNEL%></td></tr>
</table>
</td>
</tr>
</table>

Thanks,

The Wheel Group

</body>
</html>

The hdmonitor.php script contains the following functions.

Chapter 16: Command-Line PHP Utilities 593

21 549669 ch16.qxd 4/4/03 9:27 AM Page 593

sendAlert()
This function sends an e-mail message by loading the message template from the
hdmonitor.conf configuration variable $GLOBALS[‘MAIL_TEMPLATE’]. Each line of
this message is parsed for e-mail headers such as To:, From:, Cc:, Bcc:, Subject:, and
Content-Type:, which are stored in variables needed for the mail() function. The
lines constituting the body of the message are stored in $messages, which is later
imploded into the $body string.

The $body string is searched for special tags stored in $alertInfo, which is
passed to the sendAlert() function as an associative array called $info. The keys
of the $info array are stored in $search using the array_keys() function, and the
values are stored in $replace using the array_values() function. The $search
array contains tags such as <%HOST%>, <%IP_ADDR%>, <%DISK_STATUS%>, and so on,
which were inserted into $info (i.e., $alertInfo) prior to calling the sendAlert()
function.

These tags are replaced with their values in the $body string using the
preg_replace() function. The fully expanded template body is e-mailed along
with the $headers using mail().

getDiskInfo()
This function returns an associative array called $info with mount points as keys
and their usage percentage as values. The function is called with disk statistics as a
parameter.

Installing the hdmonitor tool as a cron job
To set up hdmonitor.php as a cron job under Linux, do the following:

1. As root, create a symbolic link in /etc/cron.daily as follows:

ln -s /path/to/hdmonitor.php

For example, if you kept hdmonitor.php and hdmonitor.conf in the
/usr/local/src/hdmonitor directory, you could run the following com-
mands as root to create the link:

cd /etc/cron.daily
ln -s /usr/local/src/hdmonitor/hdmonitor.php

2. Once the symlink is created, run /etc/cron.daily/hdmonitor.php as a test.
If you get an error message that hdmonitor.conf was not found, or
that any of the classes were not found (class.Linux.inc.php or
common_functions.php), you need to edit hdmonitor.php to change
require_once(‘hdmonitor.conf’), require_once(‘class.
Linux.inc.php’), and require_once(‘common_functions.php’);
to require_once(‘/path/to/hdmonitor/hdmonitor.conf’),

594 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 594

require_once(‘/path/to/hdmonitor/class.Linux.inc.php),
and require_once(‘/path/to/hdmonitor/common_functions.php’),
respectively. For our example case, this would be require_once(‘/usr/
local/src/hdmonitor/hdmonitor.conf’), require_once(‘/usr/
local/src/hdmonitor/class.Linux.inc.php’), and require_once
(‘/usr/local/src/hdmonitor/common_functions.php ‘).

3. Make sure hdmonitor.php is executable. You can run

chown root:root hdmonitor.* \
class.Linux.inc.php \
common_functions.php

chmod 700 hdmonitor.php

from the directory of the script to allow root to own and be able to exe-
cute the hdmonitor scripts. If your cron daemon does not run as root,
make sure you replace root:root with the appropriate user and group
names that enable cron to execute the script.

4. Configure the hdmonitor.conf file to reflect what mount points you want
to monitor and at what level. In addition, customize the mail template as
needed.

5. Let cron run the job at the regularly scheduled time and you should
receive disk alert messages when any of your mount points exceeds the
$MAXSIZE limit.

6. To test your installation, you can set the $MAXSIZE limits to a very low
number, which will trigger an alert the next time hdmonitor.php is run
by cron. If you do not receive an alert that you expect to receive, check
the var/log/cron file for possible file execute permission issues.

Building a CPU Load
Monitoring Utility
In this section, we will develop a system load-average monitoring tool that will
enable us to monitor a Linux system’s load average automatically, and when the load
average exceeds a specified limit, an alert message will be sent out to administrators.
We define multiple levels of alert so that an administrator can take appropriate
actions based on the alert levels indicated.

Like the hdmonitor script, this script requires the class.Linux.inc.php and
common_functions.php classes from the phpSysInfo project, which is located at
http://phpsysinfo.sourceforge.net/project.

Chapter 16: Command-Line PHP Utilities 595

21 549669 ch16.qxd 4/4/03 9:27 AM Page 595

Listing 16-13 shows a sample configuration file for the load monitoring tool.

Listing 16-13: loadmonitor.conf

<?php

define(DEBUG, TRUE);

$ALERT_CONDITIONS = array(‘RED’, ‘YELLOW’, ‘BLUE’);

// When system load has been in any of the following
// alert condition for at least last 15 minutes
// system is said to be at that alert level
// Note: the order does not matter as loadmonitor
// automatically chooses the highest alert level
$ALERT[‘RED’] = 25;
$ALERT[‘YELLOW’] = 15;
$ALERT[‘BLUE’] = 5;

$MAIL_TEMPLATE = ‘loadmonitor_mail.txt’;

// Mail every n seconds when alert condition exists
// Mail is sent only if the loadmonitor is run
// every n-1 seconds. Recommend running loadmonitor
// every 5 min and mail frequency 30 min (30 * 60 sec)
// 0 = always send mail
$MAIL_FREQUENCY = 30 * 60;

// Store when was the last time mail was sent
// in a file so that we don’t mail bomb the
// admin
$MAIL_CONTROL_FILE = ‘/tmp/loadmonitor.out’;

// Include this program output in mail
$PS_BIN = ‘top’;
$PS_OPT = ‘ -b -n 1’;

?>

Here we have defined $ALERT_CONDITIONS as an array of alerts. Currently, there
are three alert conditions: RED, YELLOW, BLUE. These names are arbitrary and you
can choose any name you like.

An associative array called $ALERT defines the load average associated with each
alert level. For example, alert condition RED is set to load average 25. This means
that a RED alert is sent out when the system is experiencing a load average of 25
for at least the last 15 minutes until the current time.

596 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 596

Similarly, a load average of 15 triggers an alert condition YELLOW, and a load
average of 5 triggers a BLUE alert.

Whenever an alert condition is reached, the $MAIL_TEMPLATE file is used to send
out the alert message. However, we do not want to bombard an administrator about
an alert condition that exists among multiple runs of the loadmonitor script. For
example, if loadmonitor were run every minute, it could note an alert condition
and message the administrator every minute. This would be bad, so we can use
$MAIL_FREQUENCY to control how frequently an administrator is notified when an
alert condition is identified. The sample setting is 1800, which is 30 minutes.
Therefore, we only resend notification about an alert condition if the last message
was sent at least 30 minutes ago. The $MAIL_CONTROL_FILE keeps the timestamp
information for each notification sent. This information is used to determine the
last delivery time of the alert mail. The $PS_BIN and $PS_OPT are set to the top
command and its argument -b and -n 1. The output of the top command is
appended in the mail message to enable an administrator get a glimpse of the trou-
bled system just from the e-mail. This is very useful if the main administrator
receives the alert from a remote location; he or she can guide on-site junior admin-
istrators to appropriately deal with the situation based on the information provided
by the top command.

Listing 16-14 shows the loadmonitor script.

Listing 16-14: loadmonitor.php

#!/usr/bin/php -q
<?php

require_once(‘loadmonitor.conf’);
require_once(‘class.Linux.inc.php’);
require_once(‘common_functions.php’);

$alertInfo = array();

$system = new sysinfo;
$alertInfo[‘/<%HOST%>/’] = $system->chostname();
$alertInfo[‘/<%IP_ADDR%>/’] = $system->ip_addr();
$alertInfo[‘/<%KERNEL%>/’] = $system->kernel();
$alertInfo[‘/<%TODAY%>/’] = date(‘M-d-Y h:i:s A’);

$loadInfo = $system->loadavg();

$load0 = $loadInfo[0];
$load5 = $loadInfo[1];
$load15 = $loadInfo[2];
$alertInfo[‘/<%LOAD%>/’] = “Now: $load0 “.

“Last 5 Min: $load5”.
“Last 15 Min: $load15”;

Continued

Chapter 16: Command-Line PHP Utilities 597

21 549669 ch16.qxd 4/4/03 9:27 AM Page 597

Listing 16-14 (Continued)

$highestAlertRange = 0;
$highestAlert = null;

foreach ($ALERT_CONDITIONS as $alertType)
{

$alertRange = $ALERT[$alertType];

if (DEBUG)
echo “Alert: $alertRange => “.

“Current $load0 $load5 $load15\n”;

if (
($alertRange <= $load0) &&
($alertRange <= $load5) &&
($alertRange <= $load15)

)
{

if (DEBUG)
echo “Alert: $alertType ($alertRange)”.

“ as load for last 15 min till “.
“ now is $load15 $load0 \n”;

if ($alertRange > $highestAlertRange)
{

$highestAlertRange = $alertRange;
$highestAlert = $alertType;

}
}

}

if ($highestAlert != null)
{

if (DEBUG)
echo “Highest alert $highestAlert \n”;

$alertInfo[‘/<%ALERT%>/’] = $highestAlert;
$ps =execute_program($PS_BIN, $PS_OPT);
$alertInfo[‘/<%PSAUX%>/’] = $ps;

// Find out if last mail sent was
// within mail frequency range
// or not, if not send mail
if (isOKtoSendMail($MAIL_CONTROL_FILE,

$MAIL_FREQUENCY))
{

598 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 598

sendAlert($alertInfo);
}

}

exit;

function isOKtoSendMail($ctrlFile = null,
$interval = null)

{
$now = time();
if (DEBUG)

echo “Now: “ . date(‘M-d-Y h:i:s A’, $now) . “\n”;

if (file_exists($ctrlFile))
{

// Read file
$lastTime = file($ctrlFile);
if (DEBUG)

echo “Last time mail sent: “ .
date(‘M-d-Y h:i:s A’, $lastTime[0]) . “\n”;

} else {
// If control file does not exist
// Create one and yes we can send mail
if (DEBUG)

echo “Create new control file.\n”;

writeControlFile($ctrlFile);

return TRUE;
}

// If current time - last time is greater than
// or equal to the mail interval, we can send mail
if ($now - $lastTime[0] >= $interval)
{

// Update file
if (DEBUG)

echo “$now - $lastTime[0] => $interval\n”;

writeControlFile($ctrlFile);

return TRUE;
}

Continued

Chapter 16: Command-Line PHP Utilities 599

21 549669 ch16.qxd 4/4/03 9:27 AM Page 599

Listing 16-14 (Continued)

// No cannot send mail as we already
// did not too long ago
return FALSE;

}

function writeControlFile($file = null)
{

$now = time();
$fp = fopen($file, ‘w’);
if ($fp)
{

if (DEBUG)
echo “Writing control $file: $now\n”;

fputs($fp, $now);

fclose($fp);

return TRUE;

} else {

echo “Error: could not create “.
“control file $file \n”;

}

return FALSE;
}

function sendAlert($info = null)
{

$lines = file($GLOBALS[‘MAIL_TEMPLATE’]);

$contentTypeSet = FALSE;

$message = array();

$headers = array();

foreach ($lines as $str)
{

$index++;

600 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 600

if (preg_match(‘/To:\s*(.+)/i’,
$str,
$match))

{
$to = $match[1];

}
else if (preg_match(‘/From:\s*(.+)/i’,

$str,
$match))

{
array_push($headers, “From: $match[1] \r\n”);

}
else if (preg_match(‘/Subject:\s*(.+)/i’,

$str,
$match))

{
$subject = $match[1];

}
else if (preg_match(‘/^CC:\s*(.+)/i’,

$str,
$match))

{
array_push($headers, “Cc: $match[1] \r\n”);

}
else if (preg_match(‘/Bcc:\s*(.+)/i’,

$str,
$match))

{
array_push($headers, “Bcc: $match[1] \r\n”);

}
else if (preg_match(‘/Content-Type:\s*(.+)/i’,

$str,
$match))

{
if (preg_match(‘/html/’, $match[1]))
{

array_push($headers,
“Content-Type: text/html\r\n”);

} else {
array_push($headers,

“Content-Type: text/plain\n”);
}

Continued

Chapter 16: Command-Line PHP Utilities 601

21 549669 ch16.qxd 4/4/03 9:27 AM Page 601

Listing 16-14 (Continued)

$contentTypeSet = TRUE;
}
else if (preg_match(‘/MIME-Version:\s*(.+)/i’,

$str,
$match))

{
array_push($headers,

“MIME-Version: $match[1] \r\n”);

} else {
array_push($message, $str);

}
}

if (! $contentTypeSet)
array_push($headers,

“Content-Type: text/plain\r\n”);

$body = implode(‘’, $message);

$search = array_keys($info);
$replace = array_values($info);
$body = preg_replace($search, $replace, $body);
$subject = preg_replace($search,

$replace,
$subject);

$headerStr = implode(‘’, $headers);

if (DEBUG)
echo “Sending mail to: $to “.

“(subject: $subject)\n”;

mail($to, $subject, $body, $headerStr);
}

?>

The loadmonitor script works as follows:

1. It creates a sysinfo object called $system.

2. The $system object is used to retrieve host name, IP address, and kernel
information into an associative array called $alertInfo. The $alertInfo

602 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 602

stores the information using custom tags as keys. For example, <%HOST%>
stores the host name returned by the $system->chostname() method.

3. The load average information is retrieved by calling the loadavg()
method of the $system object. The returned load average array is stored
in the $loadInfo array. The current load $loadInfo[0], the 5-minute-old
load average $loadInfo[5], and the 15-minute-old load average
$loadInfo[15] are stored separately in $load0, $load5, and $load15,
respectively.

4. For each known alert condition, the script compares the current,
5-minute-old, and 15-minute-old loads against the alert condition’s
maximum load average, stored in $alertRange. If the alert condition’s
maximum load is less than or equal to the current, last 5-minute, and last
15-minute load average, the system can be said to be in that alert status
for the last 15 minutes. The three points in time serve as three samples of
time in that 15-minute interval, which is sufficient for our purposes to
make the assumption that the system has entered an alert condition.

5. However, to find the highest alert condition met by the system, the system
keeps track of matched alert conditions using the $highestAlert and
$highestAlertRange variables. These variables are set only if the current
alert condition is higher than the last one.

6. Finally, if there is an alert condition set in $highestAlert, the
$alertInfo[‘/<%ALERT%>/’] entry is set to $highestAlert; and the
PS_BIN program is run with PS_OPT options using the execute_pro-
gram() method found in the common_functions.php script.

7. The output of the PS_BIN (i.e., the top command) is stored in
$alertInfo[‘/<%PSAUX%>/’].

8. Finally, the isOKtoSendMail () function is called to determine whether
the current alert condition has been already reported within the alert mail
control interval. If it has not been reported yet or was reported before the
interval expired, the sendAlert() method is called to send the e-mail
alert.

The loadmonitor tool has the following methods.

isOKtoSendMail ()
This function determines if an alert mail message should be sent in the event of an
alert condition. This check is performed to ensure that the administrator is not sent
repetitive alert messages too frequently if the loadmonitor is run frequently via
cron or other means.

This function is passed the mail control file name and the alert mail frequency,
both of which are configured in loadmonitor.conf. The isOKtoSendMail() function

Chapter 16: Command-Line PHP Utilities 603

21 549669 ch16.qxd 4/4/03 9:27 AM Page 603

loads the previous mailing’s timestamp stored in the mail control file (if any) and
compares it against the current time.

If the difference between the current time and the last alert message timestamp
is greater than or equal to the allowed interval, it returns TRUE and updates the mail
control file with the current time. Otherwise, it returns FALSE.

writeControlFile ()
This function writes the mail control file. The mail control file stores the last time
an alert mail was sent. This timestamp is used to ensure that alert messages do not
bombard the administrator’s mailbox if the loadmonitor is run frequently.

sendAlert()
See the sendAlert() function details in the hdmonitor section above.

Listing 16-15 shows the default e-mail template:

Listing 16-15: loadmonitor_mail.txt

To: kabir@example.com
From: THE LOAD WATCHER <admin@example.com>
Subject: [ALERT-<%ALERT%>] load on <%HOST%> need your attention
Content-Type: text/html

<html>
<body>
The <%HOST%> is experiencing <%ALERT%> level load.

Current load averages are <%LOAD%>

Here is the output of the top command:

<pre>
<font color=”<%ALERT%>”>
<%PSAUX%>

</pre>

Thanks,

The Wheel Group

</body>
</html>

604 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 604

Installing the loadmonitor tool as a cron job
To set up loadmonitor.php as a cron job under Linux, do the following:

1. As root, create a symbolic link in /etc/cron.daily as follows:

ln -s /path/to/loadmonitor.php

For example, if you kept loadmonitor.php and loadmonitor.conf in the
/usr/local/src/loadmonitor directory, you could run the following
commands as root to create the link:

cd /etc/cron.daily
ln -s /usr/local/src/loadmonitor/loadmonitor.php

2. Once the symlink is created, run /etc/cron.daily/loadmonitor.
php as a test. If you get an error message that loadmonitor.conf
was not found or that any of the classes (class.Linux.inc.php
or common_functions.php) were not found, you need to edit
loadmonitor.php to change require_once(‘loadmonitor.conf’),
require_once(‘class.Linux.inc.php’), and require_once
(‘common_functions.php’); to require_once(‘/path/to/
loadmonitor/loadmonitor.conf’), require_once(‘/path/to/
loadmonitor/class.Linux.inc.php), require_once(‘/path/
to/loadmonitor/common_functions.php’), respectively. For
our example case, this would be require_once(‘/usr/local/src/
loadmonitor/loadmonitor.conf’), require_once(‘/usr/local/
src/loadmonitor/class.Linux.inc.php’), and require_once
(‘/usr/local/src/loadmonitor/common_functions.php ‘).

3. Make sure loadmonitor.php is executable. You can run:

chown root:root loadmonitor.* \
class.Linux.inc.php \
common_functions.php

chmod 700 loadmonitor.php

from the directory of the script to allow root own and be able to execute
the loadmonitor scripts. If your cron daemon does not run as root, make
sure you replace root:root with the appropriate user and group names that
enable cron to execute the script.

4. Configure the loadmonitor.conf file to set the load averages that you want
to consider as RED, YELLOW, and BLUE. Set the mail frequency you want
to use.

5. Let cron run the job at the regularly scheduled time; you should receive
excessive load alert messages when the load average exceeds the specified
alert condition level.

Chapter 16: Command-Line PHP Utilities 605

21 549669 ch16.qxd 4/4/03 9:27 AM Page 605

Summary
In this chapter, you learned how to develop command-line PHP scripts that can be
run via a cron job to automate user reminders, to monitor system resources, and to
protect your POP3 user mailboxes from SPAM and other unwanted e-mail.

606 Part IV: Using PHP for Sysadmin Tasks

21 549669 ch16.qxd 4/4/03 9:27 AM Page 606

Chapter 17

Apache Virtual Host Maker
IN THIS CHAPTER

◆ Learning the basics of an Apache Virtual Host

◆ Developing an Apache Virtual Host Maker

◆ Configuring Apache for virtual hosts

◆ Deploying virtual hosts using an Apache Virtual Host Maker

APACHE IS THE MOST POPULAR Web server in the world. Approximately 60 percent of
the Web servers available on the Internet are running Apache or Apache-like (e.g.,
Zeus) Web servers. Not only is it Open Source software, but Apache is capable of
hosting multiple Web sites on a single physical Web server system. These virtual
hosts make Apache a great platform to deploy in organizations of any size. Internet
service providers and large organizations often prefer Apache because they can
deploy tens to hundreds of Web sites on a single system. In this chapter, you will
develop a command-line PHP script to help you manage Apache virtual hosts for a
Linux system. The script should work on other UNIX-like platforms as well.

The following section outlines the basics of Apache virtual hosts.

Understanding an
Apache Virtual Host
To understand how Apache virtual hosts work, first assume that you have a Linux
server running the latest stable version of Apache. Furthermore, assume that your
server’s IP address is 192.168.1.100 and that Apache is installed in the /usr/local/
httpd directory.

607

22 549669 ch17.qxd 4/4/03 9:27 AM Page 607

To create a virtual host called www.mynewsite.com manually, you have to edit
the httpd.conf file (usually stored in the /usr/local/httpd/conf/ directory) by
adding lines such as the following:

NameVirtualHosts *

<VirtualHost 192.168.1.100>
ServerName www.mynewsite.com
DocumentRoot /www/mynewsite/htdocs
ErrorLog /www/mynewsite/logs/errors.log
CustomLog /www/mynewsite/logs/access.log common

</VirtualHost>

The first line tells Apache that the name-based virtual host feature should be
enabled — and should appear only once in the config file. This means that a single
IP address can represent multiple Web server names, and that Apache should find a
name in a specific HTTP (HOST) header from Web browser requests.

The configuration enclosed in the <VirtualHost ...> container defines
www.mynewsite.com as a virtual host. Each of these lines represents an Apache
directive. For example, the ServerName directive defines the name of the virtual
host. The DocumentRoot directive defines the path to the Web site’s document tree.
The ErrorLog and CustomLog directives define the paths to the error and access log
file, respectively.

You can add many directives within a virtual host container to define the virtual
hosts as needed. To add a second virtual host called www.mysecondsite.com, dupli-
cate the <VirtualHost ...> container for the new site with any appropriate site-
specific changes, as shown in the following example:

NameVirtualHosts *

defines www.mynewsite.com
<VirtualHost 192.168.1.100>

ServerName www.mynewsite.com
DocumentRoot /www/mynewsite/htdocs
ErrorLog /www/mynewsite/logs/errors.log
CustomLog /www/mynewsite/logs/access.log common

</VirtualHost>

defines www.mysecondsite.com
<VirtualHost 192.168.1.100>

ServerName www. mysecondsite.com
DocumentRoot /www/ mysecondsite /htdocs
ErrorLog /www/ mysecondsite /logs/errors.log
CustomLog /www/ mysecondsite /logs/access.log common

</VirtualHost>

608 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 608

Visit www.apache.org for documentation on Apache and more directives

for use with virtual hosts.

After a new configuration is added to httpd.conf, the Web server needs to be
restarted so that it can reload the new configuration. This is done using the follow-
ing command:

/usr/local/httpd/bin/apachectl restart

The location of the script to control the Apache server is dependent upon

the version of Linux you are running.

Once restarted, the virtual Web sites become available via http://www.
mynewsite.com/ and http://www.mysecondsite.com/ as long as the domains
have the appropriate DNS records defined on the server.

Name server configuration management is covered in Chapter 17, so this

discussion will assume that the DNS configuration points virtual host names

to their respective Web server hosts.

Defining Configuration Tasks
In most cases, adding a new virtual host to a system involves the following tasks:

1. Creating a DNS address (A) record for the new host in the name server
configuration for that domain.

This chapter assumes that you have the appropriate DNS configuration.
Chapter 18 shows you how to manage DNS configuration using another
tool.

2. Creating a virtual host configuration in the httpd.conf file. This can be
complex or very simple depending on your needs.

3. Creating appropriate directory structure and permission settings so that
the virtual host configuration you created in httpd.conf has a physical
document tree in your Web server’s disk.

Chapter 17: Apache Virtual Host Maker 609

22 549669 ch17.qxd 4/4/03 9:27 AM Page 609

4. Creating a user account to enable someone to manage Web contents via
FTP or a shell.

5. Installing default access control (.htaccess) or other site-specific files, such
as missing file handler (404 error handler) pages.

6. Copying default Web contents (if any) to the new site.

7. Optionally, creating a MySQL database account for the Web site.

8. Restarting the Web server to make the site accessible via the Web.

9. Testing the new site using a Web browser to ensure that it is accessible.

As you can see, this is quite a list. If these tasks are undertaken manually, there
are many places where an administrator could make a mistake, and spend hours to
retrace steps and fix problems.

Therefore, we want to build a tool (called makesite) that will enable administra-
tors to perform most of these operations using a single command line such as the
following:

./makesite -add \
--user username \
--pass password \
--vhost www.example.com \
--type gold \
--restart \
--test \
--notify_email username@example.com

This application is built as a command-line tool instead of a Web form for

security reasons. With the correct permissions (namely 700), this script can

only be run by a privileged user. If constructed as a Web form, the applica-

tion would be far less secure due to it being much easier to access remotely.

Despite taking various precautions to secure critical Web pages, making

them accessible via the standard Web server is just a bad idea.

The preceding command line will do the following:

1. Create a user account, called username, with a password.

2. Create an Apache virtual host configuration for www.example.com.

610 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 610

3. Create all the necessary Web and user account configurations and copy
appropriate contents based on account type “gold.” In other words, all the
“gold” account features will be implemented. This may include enabling
PHP, CGI, SSI, and other Web features, or the installation of custom soft-
ware such as phpMyAdmin, and so on.

4. Automatically restart Apache server.

5. Automatically test the new Web site by making requests to see if the site
is operational.

6. Automatically notify the account owner via e-mail that the site is opera-
tional, and provide necessary instructions to access and manage the
Web site.

Clearly, this script reduces quite a bit of work for a Web administrator, and
therefore it is well worth developing. However, before we can make such an inter-
esting script, we need to define a set of standard account types for the system.

Creating a Configuration Script
The makesite script uses the -type=account_type command-line argument to
determine numerous tasks that need to be performed in the virtual host setup
process. For example, we can define the following accounts:

$ACCOUNT_TYPE[‘standard’] = array(
vhost_template => ‘std_vhost.conf’,
master_contents =>’std_contents.conf’,
mail_template => ‘std_vhost.mail’,
shell => ‘/bin/true’
);

$ACCOUNT_TYPE[‘gold’] = array(
vhost_template => ‘gold_vhost.conf’,
master_contents =>’gold_contents.conf’,
mail_template => ‘gold_vhost.mail’,
shell => ‘/bin/tcsh’
);

$ACCOUNT_TYPE[‘platinum’] = array(
vhost_template => ‘platinum_vhost.conf’,
master_contents =>’platinum_contents.conf’,
mail_template => ‘platinum_vhost.mail’,
shell => ‘/bin/bash’,
);

Chapter 17: Apache Virtual Host Maker 611

22 549669 ch17.qxd 4/4/03 9:27 AM Page 611

This script defines three types of Web site accounts: standard, gold, and plat-
inum. These names are arbitrary, of course. You can choose whatever names you
like. For example, a university administrator might choose: coursesite, deptsite, stu-
dentsite, and so on, as account types. Now let’s examine one of the account config-
urations. The standard account type defines that the virtual host configuration
(vhost_template) template is std_vhost.conf. This is a PHP-based virtual host con-
figuration generator script. The std_contents.conf script is another PHP-based con-
tents configuration script. The mail template is simply a text file with special tags
that are replaced before it is sent to the account owner.

When creating a standard account, the makesite script does the following:

1. It uses the vhost_template (std_vhost.conf) to create the Apache
configuration.

2. It uses the master_contents (std_contents.conf) to do content-specific
configuration.

3. Optionally (if told to do so), it uses the mail_template (std_vhost.mail) to
send an e-mail to the account owner.

Note that there is no restriction governing how many types of accounts you can
define as long as you also create the necessary configuration templates.

Developing makesite
As you have seen, the makesite script has several pieces that must be created and fit
together for the script to operate. The following sections will cover the development
of the various pieces.

Creating the makesite.conf file
The makesite script uses the makesite.conf file, as shown in Listing 17-1. The make-
site configuration file is the central configuration file for the application.

Listing 17-1: makesite.conf

<?php

// Set this to the PEAR directory
$PEAR_DIR = ‘/example/intranet/htdocs/pear’ ;

ini_set(‘include_path’, ‘:’ . $PEAR_DIR . ‘:’ . ini_get(‘include_path’));

require_once “Console/Getopt.php”;

define(DEBUG, FALSE);

612 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 612

$APACHE_INFO = array(
‘user’ => ‘httpd’,
‘group’ => ‘httpd’,
‘path’ => ‘/usr/local/apache’,
‘bin_dir’ => ‘bin’,
‘conf_dir’ => ‘conf’,
‘conf_flie’ => ‘httpd.conf’,
‘server_bin’ => ‘httpd’,
‘config_chk_opt’ => ‘-t -f’,
‘restart_opt’ => ‘-k restart’,
‘vhost_conf_dir’ => ‘conf/vhosts’

);

$SYSTEM_INFO = array(
‘passwd_file’ => ‘/etc/passwd’,
‘home_dir’ => ‘/home’,
‘min_passwd_length’ => 5,
‘group_file’ => ‘/etc/group’,
‘server_ip’ => ‘192.168.0.11’,
‘useradd_bin’ => ‘/usr/sbin/useradd’,
‘www_partition’ => ‘/www’,
‘permission’ => ‘0755’,
‘symlink_bin’ => ‘/bin/ln’,
‘symlink_opt’ => ‘-s’,
‘cp_bin’ => ‘/bin/cp’,
‘cp_opt’ => ‘-r’,
‘mkdir_bin’ => ‘/bin/mkdir’,
‘chmod_bin’ => ‘/bin/chmod’,
‘chown_bin’ => ‘/bin/chown’

);

define(DEFAULT_ACCOUNT_TYPE , ‘standard’);
define(DEFAULT_SYMLINK_USER_TO_WEBSITE , TRUE);

//$TEMPLATE_DIR = ‘/www/vhosts’;
$TEMPLATE_DIR = ‘vhosts’;

$ACCOUNT_TYPE[‘standard’] = array(
vhost_template => ‘std_vhost.conf’,
master_contents =>’std_contents.conf’,
mail_template => ‘std_vhost.mail’,
shell => ‘/bin/true’
);

Continued

Chapter 17: Apache Virtual Host Maker 613

22 549669 ch17.qxd 4/4/03 9:27 AM Page 613

Listing 17-1 (Continued)

$ACCOUNT_TYPE[‘gold’] = array(
vhost_template => ‘gold_vhost.conf’,
master_contents =>’gold_contents.conf’,
mail_template => ‘gold_vhost.mail’,
shell => ‘/bin/tcsh’
);

$ACCOUNT_TYPE[‘platinum’] = array(
vhost_template => ‘platinum_vhost.conf’,
master_contents =>’platinum_contents.conf’,
mail_template => ‘platinum_vhost.mail’,
shell => ‘/bin/bash’,
);

?>

This configuration file defines a set of the $ACCOUNT_TYPE associative array as
discussed previously and also defines the following:

◆ $APACHE_INFO is an associative array that holds information about vari-
ous Apache-specific configurations. For example, the sample configura-
tion indicates that the Apache server is run as the ‘httpd’ user, as
$APACHE_INFO[user] is set to ‘httpd’. Similarly, it indicates that Apache is
installed in $APACHE_INFO[path], which is set to /usr/local/apache.
Numerous other configuration parameters specify options to check,
options for restarting the server, and locations of configuration files.

◆ $SYSTEM_INFO is an associative array that holds information specific
to the system on which the Apache server is running. For example,
$SYSTEM_INFO[passwd_file] points to the password file used by
the system, which is /etc/passwd. Similarly, it defines $SYSTEM_INFO
[server_ip], the IP address Apache server listens on. Numerous other
configuration parameters specify paths to system commands, the main
path to the www directory, and the value of various options to be set by
the script.

◆ The DEFAULT_ACCOUNT_TYPE constant defines the default account type.

◆ The DEFAULT_SYMLINK_USER_TO_WEBSITE constant is set to TRUE if a
symbolic soft link is to be created from the user’s home directory to his or
her Web server’s directory.

◆ The $TEMPLATE_DIR constant points to the subdirectory in the makesite
script directory, which holds the account-specific templates. For example,
the standard account templates (std_vhost.conf, std_contents.conf, and
std_vhost.mail) are stored in the vhosts directory.

614 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 614

The makesite script uses the Console/Getopt.php class from PEAR; therefore,

the makesite.conf script loads this script in the beginning of the configura-

tion file. Make sure that the $PEAR_DIR variable in makesite.conf is set

properly to point to your PEAR installation.

Creating the virtual host configuration
Listing 17-2 shows the standard account’s virtual host configuration,
std_vhosts.conf. This is loaded by the makesite script and processed by calling the
makeVirtualHost() function within the configuration file.

Listing 17-2: vhosts/std_vhost.conf

<?php

function makeVirtualHost()
{

$www = $GLOBALS[SYSTEM_INFO][www_partition];
$ipAddr = $GLOBALS[SYSTEM_INFO][server_ip];
$server = $GLOBALS[SERVER_NAME];

$serverRoot = sprintf(“%s/%s”, $www, $server);
$docRoot = sprintf(“%s/%s/htdocs”, $www, $server);
$logDir = sprintf(“%s/%s/logs”, $www, $server);

$vhostConfig = <<<STD_VHOST_CONF

#
Automated virtual host configuration for $GLOBALS[SERVER_NAME]
#
Account Type: standard
#
<VirtualHost $ipAddr>

ServerName $server
DocumentRoot “$docRoot”
ErrorLog “$logDir/errors.log”
CustomLog “$logDir/access.log” common

Continued

Chapter 17: Apache Virtual Host Maker 615

22 549669 ch17.qxd 4/4/03 9:27 AM Page 615

Listing 17-2 (Continued)

<Directory />
<Files “*.conf”>

deny from all
</Files>

</Directory>

</VirtualHost>

STD_VHOST_CONF;

$output[‘config’] = $vhostConfig;

$output[‘makedir’] = array(
‘SERVER_ROOT’ => $serverRoot,
‘DOCUMENT_ROOT’ => $docRoot,
‘LOG_DIR’ => $logDir);

return $output;

}
?>

The makesite script loads this file if the account type is specified as standard. The
standard template can be selected by either explicitly selecting --type standard or
not specifying any account type, as the standard type is set as the default in make-
site.conf (DEFAULT_ACCOUNT_TYPE). Of course, you can specify any account type as
the default. When the std_vhost.conf file is loaded, the makeVirtualHost()
function is called from makesite, which must return an Apache virtual server con-
figuration enclosed in a <VirtualHost ..> container.

In this sample configuration, a virtual host configuration is returned. That
defines the server name, using the ServerName directive; the Web document root,
using the DocumentRoot directive; and the error and access logs, using the
ErrorLog and CustomLog directives, respectively. It also specifies that any files
with .conf extensions are not allowed for Web browsing. You can create highly cus-
tomizable configurations using PHP in the makeVirtualHost() function. The sam-
ple configuration is simply a basic example.

To learn more about Apache 2 configurations, visit http://httpd.
apache.org to review online documentation.

616 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 616

Creating the contents configuration file
Listing 17-3 shows the contents configuration file, std_contents.conf, which is
stored in the vhosts subdirectory pointed to by $TEMPLATE_DIR in makesite.conf.

This configuration file is loaded once the new user account, the virtual host con-
figuration, and the necessary directory structure have been created. The purpose of
this configuration file is to enable you to install contents.

Listing 17-3: vhosts/std_contents.conf

<?php

// Master contents for standard account

function copyContentsToSite($site = null)
{

$MASTER_CONTENTS_DIR = “vhosts/standard/htdocs/*”;

$CP_BIN = $GLOBALS[SYSTEM_INFO][cp_bin];
$CP_OPT = $GLOBALS[SYSTEM_INFO][cp_opt];

$CHOWN_BIN = $GLOBALS[SYSTEM_INFO][chown_bin];
$CHMOD_BIN = $GLOBALS[SYSTEM_INFO][chmod_bin];

$user = $site[user];
$group = $site[group];

$docRoot = $site[DOCUMENT_ROOT];

$cmd = “$CP_BIN $CP_OPT $MASTER_CONTENTS_DIR $docRoot”;

echo “$cmd\n”;
exec($cmd, $output, $status);

$cmd = “$CHOWN_BIN -R $user:$group $docRoot”;
exec($cmd, $output, $status);

$cmd = “$CHMOD_BIN -R 755 $docRoot”;
exec($cmd, $output, $status);

return TRUE;
}

?>

Chapter 17: Apache Virtual Host Maker 617

22 549669 ch17.qxd 4/4/03 9:27 AM Page 617

In the sample version, once the configuration file is loaded, the
copyContentsToSite() function is run by the makesite script. This function per-
forms a copy operation that copies all files in vhosts/standard/htdocs/* (includ-
ing subdirectories) to the newly created Web site’s document root directory. Then it
sets the directory ownership and file permissions for the entire document root so
that files can be both accessible by the owner of the account and read by the
Apache server.

Of course, you can do much more using this configuration file. For example, you
can install any specific applications you want to offer users of this account type.

Creating the e-mail template
Listing 17-4 shows the e-mail template, which is also stored in the vhosts directory
pointed to by the $TEMPLATE_DIR variable in makesite.conf. This is a simple text
file that stores e-mail headers and a message body containing a set of custom tags.
These tags are parsed and replaced before mail is sent out. The mail is sent to the
email address specified by the --notify_email=email_address command-line
argument for makesite.

Listing 17-4: vhosts/std_vhost.mail

From: Your Friendly ISP <admin@examplep.net>
Content-Type: text/html
Subject: Your <%VHOST%> is now ready [Account Type: <%TYPE%>]

Dear Customer,

Your web site <%VHOST%> is now ready.

You can access it via http://<%VHOST%>

Your account information is as follows:

Shell account: <%USER%> [GROUP: <%GROUP%>]
Password: <%PASSWD%>

Your Web site information is as follows:

[] PHP
[] CGI
[] SSI

Server Root: <%SERVER_ROOT%>
Document Root: <%DOCUMENT_ROOT%>
Log dir: <%LOG_DIR%>

618 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 618

Thanks.

Account Team,
Your ISP

Ideally, this e-mail is sent with enough instructions for the new account owner
to be able to start using the Web site account.

Creating the makesite script
Listing 17-5 shows the makesite script.

Listing 17-5: makesite

#!/usr/bin/php -q
<?php

require_once(‘makesite.conf’);

$CMD_SHORT_OPTIONS = ‘hu:p:v:t:rtn:g:’;

$CMD_LONG_OPTIONS = array(‘help’,
‘add’,
‘enable’,
‘disable’,
‘user=’,
‘group=’,
‘pass=’,
‘vhost=’,
‘type=’,
‘restart’,
‘test’,
‘notify_email=’
);

$cmd = getCommandLineOptions(Console_Getopt::getopt($GLOBALS[‘argv’],
$CMD_SHORT_OPTIONS,
$CMD_LONG_OPTIONS)
);

$SITE_INFO = null;

Continued

Chapter 17: Apache Virtual Host Maker 619

22 549669 ch17.qxd 4/4/03 9:27 AM Page 619

Listing 17-5 (Continued)

if (empty($cmd) || (getValue($cmd, ‘v’, ‘vhost’)) == null)
{

syntax();
exit;

}

if (isset($cmd[‘add’]))
{

$request = makeAddRequest($cmd);
if ($request != null)
{

$type = $request[type];
$account = $GLOBALS[ACCOUNT_TYPE][$type];

// See if user account already exists or not
// if new, create
if(! userExists($request[user]) &&

! createUser($request[user], $request[passwd], $account[shell]))
{

echo “User $request[user] does not exist\n”;
echo “User $request[user] could not be created.\n”;
return FALSE;

}

// See if group already exists or not
// If new, create
if(! groupExists($request[group]))
{

echo “Group $request[group] does not exist\n”;
return FALSE;

}

$addOK = addSite($request);

// If site was added successfully see if we need to
// restart or test
if ($addOK && (isset($request[restart]) ||

isset($request[test])
)

)
{

if (!restartApache())
{

620 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 620

echo “Error: Apache could not be restarted!\n”;
return FALSE;

}

if (isset($request[test]) && !testNewSite($request[vhost]))
{

echo “Error: site test failed!\n”;
return FALSE;

}
}

// Now link the user account to the web site document root
if ($addOK &&

DEFAULT_SYMLINK_USER_TO_WEBSITE &&
! createSymLink($request[user], $request[vhost]))

{
echo “Error: could not create symbolic link to site in user

account!\n”;
return FALSE;

}

// Now process content configuration
if ($addOK && ! addContents($SITE_INFO, $account[master_contents]))
{

echo “Error: could not add contents!\n”;
return FALSE;

}
// Now process content configration
if ($addOK && isset($request[notify_email]) &&

! sendMail($SITE_INFO, $request, $account[mail_template]))
{

echo “Error: could not send mail!\n”;
return FALSE;

}
}

}

if (isset($cmd[‘enable’]))
{

echo “Enable named site \n”;
enableSite($siteName);

}

Continued

Chapter 17: Apache Virtual Host Maker 621

22 549669 ch17.qxd 4/4/03 9:27 AM Page 621

Listing 17-5 (Continued)

if (isset($cmd[‘disable’]))
{

echo “Disable named site \n”;
}

//print_r($cmd);

exit;

function createUser($user = null, $pass = null, $shell =null)
{

echo “Creating user account: $user with password $pass shell=$shell\n”;
if (empty($pass) || strlen($pass) <

$GLOBALS[SYSTEM_INFO][min_passwd_length])
{

echo “Error: Password is missing or too short.\n”;
return FALSE;

}

if ($shell != null)
{

$shell = “-s $shell”;
}

$cmd = $GLOBALS[SYSTEM_INFO][useradd_bin];
exec(“$cmd -p $pass $shell $user”);
return TRUE;

}

function userExists($user = null)
{

$passwdFile = $GLOBALS[SYSTEM_INFO][passwd_file];

$lines = file($passwdFile);
foreach($lines as $record)
{
$str = explode(‘:’, $record);
if (!strcmp($str[0], $user)) return TRUE;

}

return FALSE;
}

622 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 622

function groupExists($group = null)
{

$groupFile = $GLOBALS[SYSTEM_INFO][group_file];

$lines = file($groupFile);
foreach($lines as $record)
{
$str = explode(‘:’, $record);
if (!strcmp($str[0], $group)) return TRUE;

}

return FALSE;
}

function addSite($request = null)
{

$vhost = $request[vhost];
$type = $request[type];
$user = $request[user];
$group = $request[group];

echo “Creating $vhost configuration\n”;

// config file
$vhostConfigFile = sprintf(“%s/%s/%s”, $GLOBALS[‘APACHE_INFO’][‘path’],

$GLOBALS[‘APACHE_INFO’][‘vhost_conf_dir’],
$vhost);

// See if this virtual host already exists or not
if (file_exists($vhostConfigFile))
{

echo “Error: $vhostConfigFile already exists. Cannot add site!\n”;
return FALSE;

}

$account = $GLOBALS[‘ACCOUNT_TYPE’][$type];

if (!isset($account))
{

echo “Error: given account type ($type) not defined in
makesite.conf\n”;

return FALSE;
}

Continued

Chapter 17: Apache Virtual Host Maker 623

22 549669 ch17.qxd 4/4/03 9:27 AM Page 623

Listing 17-5 (Continued)

// Configure Apache Virtual Host
$GLOBALS[SERVER_NAME] = $vhost;
$results = loadVhostTemplate($account[vhost_template]);

if ($results == null) return FALSE;

$success = writeVirtualConfigFile($results[config], $vhostConfigFile);
if (! $success) return FALSE;

// Create directories
if (DEBUG) echo “Create directories\n”;
foreach($results[makedir] as $dirName => $dirPath)
{

makeDirectory($GLOBALS[SYSTEM_INFO][permission],$dirPath);
setOwnerAndGroup($user, $group, $dirPath);
setPermissions($GLOBALS[SYSTEM_INFO][permission], $dirPath);
$GLOBALS[SITE_INFO][$dirName] = $dirPath;

}

// Perform apache syntax check for vhost configuration
$success = checkApacheSyntax($vhostConfigFile);
if (! $success) return FALSE;

$success = appendVhostConfigToApacheConfig($vhostConfigFile);
if (! $success) return FALSE;

return TRUE;
}

function checkApacheSyntax($file = null)
{

$serverBin = sprintf(“%s/%s/%s”, $GLOBALS[APACHE_INFO][path],
$GLOBALS[APACHE_INFO][bin_dir],
$GLOBALS[APACHE_INFO][server_bin]

);

if (! file_exists($serverBin))
{

echo “Error: could not find $serverBin\n”;
return FALSE;

}

$cmd = “$serverBin “ . $GLOBALS[APACHE_INFO][config_chk_opt] . “ “ .
$file ;

624 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 624

echo “Checking syntax: $file\n”;

exec($cmd, $output, $status);

return ($status) ? FALSE : TRUE;

}

function restartApache()
{

$serverBin = sprintf(“%s/%s/%s”, $GLOBALS[APACHE_INFO][path],
$GLOBALS[APACHE_INFO][bin_dir],
$GLOBALS[APACHE_INFO][server_bin]

);

if (! file_exists($serverBin))
{

echo “Error: could not find $serverBin\n”;
return FALSE;

}

$cmd = “$serverBin “ . $GLOBALS[APACHE_INFO][restart_opt];

echo “Restarting Apache: $cmd\n”;

exec($cmd, $output, $status);

return ($status) ? FALSE : TRUE;

}

function writeTestPage()
{

$testFile = sprintf(“%s/test.txt”, $GLOBALS[SITE_INFO][DOCUMENT_ROOT]);

echo “Writing test page: $testFile \n”;

$fp = fopen($testFile, ‘w’);
if ($fp)
{

fputs($fp, “SUCCESS”);
fclose($fp);

Continued

Chapter 17: Apache Virtual Host Maker 625

22 549669 ch17.qxd 4/4/03 9:27 AM Page 625

Listing 17-5 (Continued)

return TRUE;
}
return FALSE;

}

function createSymLink($user = null, $vhost = null)
{

$link = sprintf(“%s/%s/%s”, $GLOBALS[SYSTEM_INFO][home_dir],$user, $vhost);

$cmd = sprintf(“%s %s %s %s”, $GLOBALS[SYSTEM_INFO][symlink_bin],
$GLOBALS[SYSTEM_INFO][symlink_opt],
$GLOBALS[SITE_INFO][SERVER_ROOT],
$link

);

echo “Creating symbolic link using $cmd\n”;

if (file_exists($link))
{

echo “Warning! Symlink: $link already exists.\n”;
return TRUE;

}

exec($cmd, $output, $status);
if ($status)
{

echo “Error: could not make symbolic link: $cmd\n”;
return FALSE;

}
return TRUE;

}

function removeTestPage()
{

$testFile = sprintf(“%s/test.txt”, $GLOBALS[SITE_INFO][DOCUMENT_ROOT]);

if (! file_exists($testFile))
{

return FALSE;

626 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 626

}

$status = unlink($testFile);

return $status;
}

function testNewSite($host = null)
{

// Write a test page in document root
// of the new site
if (! writeTestPage())
{

echo “Could not write test page in $GLOBALS[SITE_INFO][DOCUMENT_ROOT]
\n”;

return FALSE;
}

$url = sprintf(“http://%s/test.txt”, $host);

echo “Testing: requesting $url ...”;

$fp = fopen($url, ‘r’);

if ($fp)
{

while(!feof($fp))
{

$buffer .= fgets($fp, 1024);
}

removeTestPage();

if (preg_match(‘/SUCCESS/’, $buffer))
{

echo “successful.\n”;
return TRUE;

} else {
echo “failed.\n”;

}
}

Continued

Chapter 17: Apache Virtual Host Maker 627

22 549669 ch17.qxd 4/4/03 9:27 AM Page 627

Listing 17-5 (Continued)

return FALSE;

}

function appendVhostConfigToApacheConfig($vhostFile = null)
{

$httpdConf = sprintf(“%s/%s/%s”, $GLOBALS[APACHE_INFO][path],
$GLOBALS[APACHE_INFO][conf_dir],
$GLOBALS[APACHE_INFO][conf_flie]

);

if (! file_exists($httpdConf))
{

echo “Error: could not find $httpdConf\n”;
return FALSE;

}

$newDirective = “#\n#\n# Following line loads configuration\n”;
$newDirective .= “# for the “. basename($vhostFile) . “ virtual host\n”;
$newDirective .= “Include $vhostFile \n\n\n”;

echo “Appending Include $vhostFile in $httpdConf\n”;

if (DEBUG) echo $newDirective;

$fp = fopen($httpdConf, ‘a’);
if (! $fp)
{

echo “Error: could not open $httpdConf in append mode.\n”;
return FALSE;

}

fputs($fp, $newDirective);

fclose($fp);

return TRUE;

}

function makeDirectory($mode = ‘0750’, $path = null)
{

$cmd = $GLOBALS[SYSTEM_INFO][mkdir_bin] . “ -m $mode -p $path”;

628 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 628

if (DEBUG) echo “$cmd\n”;
exec($cmd);

}

function setPermissions($mode = null, $path = null)
{

$cmd = $GLOBALS[SYSTEM_INFO][chmod_bin] . “ -R $mode $path”;
if (DEBUG) echo “$cmd\n”;
exec($cmd);

}

function setOwnerAndGroup($user = null, $group = null, $path = null)
{

$cmd = $GLOBALS[SYSTEM_INFO][chown_bin] . “ -R $user:$group $path”;
if (DEBUG) echo “$cmd\n”;
exec($cmd);

}

function writeVirtualConfigFile($contents = null, $file = null)
{

$fp = fopen($file, ‘w’);
if (! $fp)
{

echo “Cannot write $file !\n”;
return FALSE;

}

fputs($fp, $contents);
fclose($fp);

return TRUE;
}

function loadVhostTemplate($template = null)
{

$file = sprintf(“%s/%s”, $GLOBALS[TEMPLATE_DIR], $template);

$contents = null;

if (!file_exists($file))
{

echo “Virtual host template $file does not exists!\n”;
return null;

}

Continued

Chapter 17: Apache Virtual Host Maker 629

22 549669 ch17.qxd 4/4/03 9:27 AM Page 629

Listing 17-5 (Continued)

// Load template
require_once($file);

$contents = makeVirtualHost();
return $contents;

}

function checkVhostName($host = null)
{

$hostParts = explode(‘.’, $host);

// host must be at least: domain.tld
return (count($hostParts) <= 1) ? FALSE : TRUE;

}

function makeAddRequest($cmd = null)
{

$request = array();
$request[vhost] = strtolower(getValue($cmd, ‘v’, ‘vhost’));
$request[user] = strtolower(getValue($cmd, ‘u’, ‘user’));
$request[group] = strtolower(getValue($cmd, ‘g’, ‘group’));
$request[restart] = getValue($cmd, ‘r’, ‘restart’);
$request[test] = $cmd[test];
$request[passwd] = getValue($cmd, ‘p’, ‘pass’);
$request[type] = getValue($cmd, ‘t’, ‘type’);
$request[type] = ($request[type] != null) ?

$request[type] : DEFAULT_ACCOUNT_TYPE;
$request[notify_email] = (isset($cmd[notify_email])) ?

strtolower($cmd[notify_email]) : null;

if (empty($request[vhost]) ||
empty($request[user]) ||
empty($request[type])
)

{
echo “You must provide --vhost --user --type “.

“values to create a new virtual host.\n”;

return null;
}

// Remove leading or trailing dots from hostname
$request[vhost] = preg_replace(‘/\.$/’, ‘’, $request[vhost]);
$request[vhost] = preg_replace(‘/^\./’, ‘’, $request[vhost]);

630 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 630

// Copy in to SITE_INFO
$GLOBALS[SITE_INFO][user] = $request[user];
$GLOBALS[SITE_INFO][group] = $request[group];
$GLOBALS[SITE_INFO][vhost] = $request[vhost];

// Check to see if given vhost is a hostname
if (!checkVhostName($request[vhost]))
{

echo “Error: virtual hostname $request[vhost] is not valid.\n”;
return null;

}

if (empty($request[group]))
{

$request[group] = $request[user];
}

return $request;
}

function getValue($cmd = null, $short, $long)
{

return (isset($cmd[$short])) ? $cmd[$short] : $cmd[$long];
}

function syntax()
{

$script = basename($GLOBALS[‘argv’][0]);

echo<<<HELP

Syntax $script [options]

-h
--help shows this help

-u username
--user username the name of the user account

Continued

Chapter 17: Apache Virtual Host Maker 631

22 549669 ch17.qxd 4/4/03 9:27 AM Page 631

Listing 17-5 (Continued)

-p password
--pass password the password for the user account

-v hostname
--vhost hostname the virtual hostname

-t account_type
--type account_type sets type of account

-r
--restart restarts Apache after configuration test OK

-t
--test runs test to access http://hostname

HELP;

}

function getCommandLineOptions($options)
{

$type = gettype($options);

if (gettype($options) != “array”)
{

// Error in command line
echo “$options->message \n”;
return null;

}

$cmd = array();

foreach ($options[0] as $argArray)
{

$argName = preg_replace(‘/[^\w]/’ , ‘’, $argArray[0]);

$argValue = $argArray[1];

if ($argValue[0] == ‘-’)
{

echo “$argName cannot have $argValue\n”;
return array();

}

632 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 632

$cmd[$argName] = ($argValue != ‘’) ? $argValue : TRUE;
}

return (count($cmd) > 0) ? $cmd : null;

}

function addContents($site = null, $template = null)
{

$file = sprintf(“%s/%s”, $GLOBALS[TEMPLATE_DIR], $template);

if (!file_exists($file))
{

echo “Virtual host content template $file does not exists!\n”;
return null;

}

// Load template
require_once($file);

$results = copyContentsToSite($site);
return $results;

}

function sendMail($info = null, $request = null, $template = null)
{

$mailTemplate = sprintf(“%s/%s”, $GLOBALS[TEMPLATE_DIR], $template);

echo “Sending mail to $to using $mailTemplate\n”;

$to = $request[notify_email];

if (! file_exists($mailTemplate))
{

echo “Error: mail template $mailTemplate not found! \n”;
return FALSE;

}

$lines = file($mailTemplate);

$contentTypeSet = FALSE;

$message = array();

Continued

Chapter 17: Apache Virtual Host Maker 633

22 549669 ch17.qxd 4/4/03 9:27 AM Page 633

Listing 17-5 (Continued)

$headers = array();

foreach ($lines as $str)
{

$index++;
if (preg_match(‘/From:\s*(.+)/i’, $str, $match))
{

array_push($headers, “From: $match[1] \r\n”);
}
else if (preg_match(‘/Subject:\s*(.+)/i’, $str, $match))
{

$subject = $match[1];
}
else if (preg_match(‘/^CC:\s*(.+)/i’, $str, $match))
{

array_push($headers, “Cc: $match[1] \r\n”);
}
else if (preg_match(‘/Bcc:\s*(.+)/i’, $str, $match))
{

array_push($headers, “Bcc: $match[1] \r\n”);
}
else if (preg_match(‘/Content-Type:\s*(.+)/i’, $str, $match))
{

if (preg_match(‘/html/’, $match[1]))
{

array_push($headers, “Content-Type: text/html\r\n”);
} else {

array_push($headers, “Content-Type: text/plain\n”);
}

$contentTypeSet = TRUE;
}
else if (preg_match(‘/MIME-Version:\s*(.+)/i’, $str, $match))
{

array_push($headers, “MIME-Version: $match[1] \r\n”);

} else {
array_push($message, $str);

}
}

if (! $contentTypeSet) array_push($headers, “Content-Type:
text/plain\r\n”);

$body = implode(‘’, $message);

634 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 634

$search = array();
$replace = array();

foreach ($info as $key => $value)
{

array_push($search, ‘/<%’ . strtoupper($key) . ‘%>/’);
array_push($replace, $value);

}

foreach ($request as $key => $value)
{

array_push($search, ‘/<%’ . strtoupper($key) . ‘%>/’);
array_push($replace, $value);

}

$body = preg_replace($search, $replace, $body);
$subject = preg_replace($search, $replace, $subject);

$headerStr = implode(‘’, $headers);

mail($to, $subject, $body, $headerStr);

return TRUE;
}

?>

This makesite script builds on the command-line examples discussed throughout
this portion of the book. The makesite script uses the two types of command-line
arguments, short and long.

The short arguments that are allowed are defined in the $CMD_SHORT_OPTIONS
string, and the long ones are defined in $CMD_LONG_OPTIONS. These strings are
needed for the Console_Getopt::getopt() function, which is available from the
Console/Getopt.php class in the PEAR package.

The makesite script works as follows:

1. It retrieves all the command-line arguments using the getCommandLine
Options() function and stores them in the $cmd array.

2. If –add is included as a command-line argument then the script performs
the actual task of adding the new virtual Web site.

3. It calls the makeAddRequest() method to create an array called $request
with user-supplied information such as virtual host name (supplied using
the --vhost host name or the -v hostname), account type (-t
account_type or --type account_type), username (--user username),
password (-p password or --pass password), and so on.

Chapter 17: Apache Virtual Host Maker 635

22 549669 ch17.qxd 4/4/03 9:27 AM Page 635

4. It determines whether the named user account in the command line
already exists, using the userExists() function. If the user account does
not exists, it creates the account using the createUser() function.

5. Similarly, the script determines whether the user-supplied group name
exists, using the groupExists() function. Note that if the user does not
supply a group name using the --group option, the username is assumed
as the default group name. This is possible because in popular Linux sys-
tems such as Red Hat Linux, each user is assigned to his or her own group
when the user account is created using a standard account-creation tool
like useradd. If your system does not create a group corresponding to the
username, you should supply the --group option with an appropriate
group name.

6. Once usernames and groups are checked and/or created as needed, the
script calls addSite() to create the virtual site configuration along with
the actual directory structure of the site on the disk.

7. Once the configuration is created, the script checks to see if the user wants
to restart Apache (--restart) or test (--test) the configuration. If either
case is true, the Web server is restarted using the restartApache()
function.

8. If the test option (--test) was provided in the command line, the
testNewSite() function is called to test the new site. The test is per-
formed by adding a test.txt file in the site and retrieving it as an HTTL get
request. If the test.txt can be retrieved via an HTTP get request, the site is
assumed to be installed and operating properly.

9. If DEFAULT_SYMLINK_USER_TO_WEBSITE is set to TRUE, a symbolic soft
link is created from the user’s home directory to the new Web site using
the createSymLink() function.

10. Next, the addContents() function is called to optionally add any con-
tents using the master_content template for the current account type.

11. Finally, if the --notify_email option was provided with an e-mail
address, the sendMail() function is called to send an e-mail message to
the given e-mail address using the mail template specified for the current
account type.

Installing makesite on Your System
The complete makesite package is provided in the CDROM/ch17 directory in make-
site.tar.gz. Extract this package on your Linux system and modify the configu-
ration files as needed. The makesite.conf file has two path settings that are likely to
differ from your system:

$PEAR_DIR = ‘/example/intranet/htdocs/pear’ ;

636 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 636

The $PEAR_DIR must point to the directory in which you installed PEAR, or at
least the Console/Getopt.php package from PEAR:

$APACHE_INFO[path] = ‘/usr/local/apache’,

The preceding path should point to the top directory of your Apache Web server.
For example, if you have installed Apache in /home/httpd, you should change it.

The makesite script assumes that your Apache directory structure is as follows:

Top Apache Directory: /usr/local/apache
Apache Binary Directory: /usr/local/apache/bin
Apache Configuration Directory: /usr/local/apache/conf
Apache Virtual Host Configuration Directory: /usr/local/apache/conf/vhosts

You will have to create the virtual host configuration directory manually, as it is
not standard in the Apache installer.

In addition, the makesite.conf file has a few other system-dependent configura-
tions, such as server_ip and www_partition, in $SYSTEM_INFO. You should review
all the configurations in makesite.conf to ensure that the paths and values reflect
your system as closely as possible.

The www_partition should point to the top directory of your system, where you
want to create the actual virtual host sites. For example, the sample configuration
assumes /www as the www_partition, and therefore a –virtual host www.exam-
ple.com is created as follows:

/www
Site directory: /www/www.example.com
Site’s document root: /www/www.example.com/htdocs
Site’s log directory: /www/www.example.com/logs

If this is now the directory structure you want to implement, you have to change
www_partition to reflect the top directory, and then you have to change each
account’s vhost_template code to reflect your requirements.

For example, the std_vhost.conf file (used for standard account) creates the
following:

$serverRoot = sprintf(“%s/%s”, $www, $server);
$docRoot = sprintf(“%s/%s/htdocs”, $www, $server);
$logDir = sprintf(“%s/%s/logs”, $www, $server);

These can be changed to reflect your directory structure.

Chapter 17: Apache Virtual Host Maker 637

22 549669 ch17.qxd 4/4/03 9:27 AM Page 637

Testing makesite
Once you have installed and configured makesite in a directory, you can run it as
root from the script directory.

For example:

./makesite --add --user mrfrog -p 12345 -v r2d2.exampleexample.com --type
gold –test

Here, the makesite script is asked to create a virtual host configuration for a host
called r2d2.exampleexample.com using the account type of gold. The script also
indicates that the host will be owned by the user mrfrog, with the password 12345.

Here is the sample output:

Creating user account: mrfrog with password 12345 shell=/bin/tcsh
Creating r2d2.exampleexample.com configuration
Checking syntax: /usr/local/apache/conf/vhosts/r2d2.examplexample.com
Syntax OK
Appending Include /usr/local/apache/conf/vhosts/r2d2.exampleexample.com in
/usr/local/apache/conf/httpd.conf
Restarting Apache: /usr/local/apache/bin/httpd -k restart
Writing test page: /www/r2d2.exampleexample.com/htdocs/test.txt
Testing: requesting http://r2d2.exampleexample.com/test.txt ...successful.
Creating symbolic link using /bin/ln -s /www/r2d2.exampleexample.com
~mrfrog/r2d2.exampleexample.com

The actual virtual host configuration used by Apache is stored in the
conf/vhosts/r2d2.exampleexample.com file, which looks like the following:

#
Automated virtual host configuration for

r2d2.exampleexample.com
#
Account Type: standard
#
<VirtualHost 192.168.0.11>

ServerName r2d2.exampleexample.com
DocumentRoot “/www/r2d2.exampleexample.com/htdocs”
ErrorLog

“/www/r2d2.exampleexample.com/logs/errors.log”
CustomLog

“/www/r2d2.exampleexample.com/logs/access.log” common

638 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 638

<Directory />
<Files “*.conf”>

deny from all
</Files>

</Directory>

</VirtualHost>

The httpd.conf file is appended with the following lines:

#
#
Following line loads configuration
for the r2d2.exampleexample.com virtual host
Include /usr/local/apache/conf/vhosts/r2d2.exampleexample.com

When the Apache server restarts, it loads the virtual host configuration for
r2d2.exampleexample.com host from /usr/local/apache/conf/vhosts/r2d2.example-
example.com.

This ensures that your httpd.conf file is not cluttered with numerous virtual host
configurations, as the Include directive enables you to keep the virtual host con-
figuration outside the main httpd.conf file.

You must have a NameVirtualHost directive specified in httpd.conf

before any “name virtual hosts” configurations are added. For example:

NameVirtualHost *
Include /usr/local/apache/conf/vhosts/

r2d2.exampleexample.com
Include /usr/local/apache/conf/vhosts/

diablo.exampleexample.com

To better understand the tasks that are performed by makesite, you can set DEBUG
to TRUE in makesite.conf to see what gets done. For example:

./makesite --add --user mrfrog --vhost r2d2.exampleexample.com -p 12345 --
notify_email=kabir

Chapter 17: Apache Virtual Host Maker 639

22 549669 ch17.qxd 4/4/03 9:27 AM Page 639

Here is a sample output:

Creating user account: mrfrog with password 12345 shell=/bin/true
Creating r2d2.example.com configuration
Create directories
/bin/mkdir -m 0755 -p /www/r2d2.example.com
/bin/chown -R mrfrog:mrfrog /www/r2d2.example.com
/bin/chmod -R 0755 /www/r2d2.example.com
/bin/mkdir -m 0755 -p /www/r2d2.example.com/htdocs
/bin/chown -R mrfrog:mrfrog /www/r2d2.example.com/htdocs
/bin/chmod -R 0755 /www/r2d2.example.com/htdocs
/bin/mkdir -m 0755 -p /www/r2d2.example.com/logs
/bin/chown -R mrfrog:mrfrog /www/r2d2.example.com/logs
/bin/chmod -R 0755 /www/r2d2.example.com/logs
Checking syntax: /usr/local/apache/conf/vhosts/r2d2.example.com
Syntax OK
Appending Include /usr/local/apache/conf/vhosts/r2d2.example.com in
/usr/local/apache/conf/httpd.conf
#
#
Following line loads configuration
for the r2d2.example.com virtual host
Include /usr/local/apache/conf/vhosts/r2d2.example.com

Creating symbolic link using /bin/ln -s /www/r2d2.example.com
/home/mrfrog/r2d2.example.com
/bin/cp -r vhosts/standard/htdocs/* /www/r2d2.example.com/htdocs
Sending mail to using vhosts/std_vhost.mail

Summary
In this chapter, you learned how to develop a command-line PHP script that helps
you manage Apache virtual hosts on your Linux system. Using this script creating,
changing, and removing virtual servers becomes almost easy.

Remember to visit www.apache.org for documentation on Apache and

more directives for use with virtual hosts.

640 Part IV: Using PHP for Sysadmin Tasks

22 549669 ch17.qxd 4/4/03 9:27 AM Page 640

Chapter 18

BIND Domain Manager
IN THIS CHAPTER

◆ Developing a BIND administrator tool

◆ Using the BIND administrator tool

IN THIS CHAPTER, we will develop a simple DNS management application that runs
via the command line and creates DNS configurations for domains that you can
host on your Linux-based BIND server. BIND is the most widely used DNS server on
the Linux/UNIX platform. The script developed here creates only forward domain
configuration, as reverse DNS domain management is the primary task of ISPs.

Features of makezone
The DNS administration tool we will develop is called makezone. The makezone
utility has the following features:

◆ It is a command-line tool that can be run by the root user to create new
DNS configurations for domains that are primarily used for Web service.

◆ It uses a template-based configuration that enables an administrator to
create classes of DNS configurations. For example, an administrator can
create a DNS configuration template that creates a new DNS domain with
the bare minimum number of entries, namely the name server entries, a
Web server entry, an FTP server entry, and two mail (MX) server records
(with differing priorities). The administrator can also create another
configuration template that creates multiple round-robin Web server
configurations.

◆ The utility works only with forward domains, as reverse DNS is primarily
handed by ISPs, and requires a fair amount of knowledge of DNS and IP
addresses to implement. Our focus is to create a Web server host DNS
configuration, which can often work without any reverse DNS setup.

Note that this utility assumes you are running on a Linux server and running a
suitable version of BIND. If you are using another DNS server application you can
still use this application, but significant editing of the templates, file names, and 641

23 549669 ch18.qxd 4/4/03 9:27 AM Page 641

configuration files. Also note that some versions of Linux store their BIND files in
other locations — edit the configuration for this application according to your ver-
sion of BIND.

To determine if your machine is running BIND, use the following command:

ps –A | grep “named”

If the system replies with something similar to the following, you are run-

ning BIND:

15314 ? 00:00:04 named

If nothing is returned,named (the BIND server) is not running.

Following is a sample command line of makezone. Here, makezone is instructed
to add a new zone called example.com using the standard template.

./makezone --add=zone --name=example.com --template=standard

Creating the Configuration File
Listing 18-1 shows the makezone.conf configuration file. This is the primary con-
figuration file for the makezone script.

The makezone script uses the Console/Getopt.php package from the PEAR
package; therefore, the PEAR path must be added using $PEAR_DIR. The sample
PEAR path /www/pear is not likely to be the same as yours, so you should change
it and any other paths to reflect your system configuration.

The NAMED_CONF constant points to the central BIND configuration file
/etc/named.conf. The ZONE_DIR constant points to the standard BIND zone direc-
tory /var/named. The ZONE_TEMPLATE_DIR constant points to the template direc-
tory, which is a subdirectory of the makezone script directory. The makezone script
looks for two types of templates: one to create the /etc/named.conf configuration
and another to create the actual zone configuration.

The DEFAULT_TEMPLATE constant specifies the name of the default template. The
rest of the configuration defines various host name and IP addresses that are used
in the zone configuration, and will be discussed later in this section when we cover
the standard template.

Listing 18-1: makezone.conf

<?php

// Set this to the PEAR directory
$PEAR_DIR = ‘/www/pear’ ;

642 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 642

ini_set(‘include_path’, ‘:’ .
$PEAR_DIR . ‘:’ . ini_get(‘include_path’));

require_once “Console/Getopt.php”;

define(DEBUG, TRUE);

define(NAMED_CONF, ‘/etc/named.conf’);
define(ZONE_DIR, ‘/var/named’);
define(ZONE_TEMPLATE_DIR, ‘templates’);
define(ZONE_MASTER_TEMPLATE, ‘named.master_zone.conf’);
define(DEFAULT_TEMPLATE, ‘standard’);

$DOMAIN = ‘example.com’;
$PRIMARY_NAME_SERVER = ‘192.168.0.11’;
$SECONDARY_NAME_SERVER = ‘192.168.1.254’;
$PRI05_MAIL_SERVER = ‘192.168.0.100’;
$PRI10_MAIL_SERVER = ‘192.168.0.101’;
$WWW_SERVER_IP_ADDR = ‘192.168.0.12’;
$FTP_SERVER_IP_ADDR = ‘192.168.0.12’;
$WWW_SERVER_ALIAS = ‘apache.example.com’;

?>

As mentioned before, the makezone script uses two types of template, one of
which is used to create the zone. There can be many different zone templates.
Listing 18-2 shows a zone template called standard.template. This template is used
to create a new zone when the option --template=standard is provided.

The DEFAULT_TEMPLATE is set to standard; therefore, in the absence of a --

template option, the standard template is used. If you wish to use a different

template as the default, change the value of the DEFAULT_TEMPLATE
constant.

For example, if you specify --template=advanced, makezone will use the tem-
plates/advanced.template file as the zone template. Now let’s look at the standard.
template in detail.

Chapter 18: BIND Domain Manager 643

23 549669 ch18.qxd 4/4/03 9:27 AM Page 643

Listing 18-2: standard.template

<?php

function getZoneConfiguration()
{

$output = <<<DNS
;
; This zone file is generated automatically by makezone script
; If you edit this file manually, the changes will be lost
; if you regenerate the zone again using makezone
;
\$TTL 86400
\$ORIGIN $GLOBALS[ZONE].
@ 1D IN SOA @ root (

01 ; serial
3H ; refresh
15M ; retry
1W ; expiry
1D) ; minimum

1D IN NS $GLOBALS[PRIMARY_NAME_SERVER]
1D IN NS $GLOBALS[SECONDARY_NAME_SERVER]
1D IN MX 5 $GLOBALS[PRI05_MAIL_SERVER]
1D IN MX 10 $GLOBALS[PRI10_MAIL_SERVER]

ns 1D IN A $GLOBALS[PRIMARY_NAME_SERVER]

www 1D IN A $GLOBALS[WWW_SERVER_IP_ADDR]
www IN CNAME $GLOBALS[WWW_SERVER_ALIAS].

ftp 1D IN A $GLOBALS[FTP_SERVER_IP_ADDR]

DNS;

return $output;

}

?>

644 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 644

As you can see, the standard template is a PHP script, which means you can do
anything you want in this template using the power of PHP. The standard template
defines a zone that has a Start of Authority (SOA) record, two name servers (NS)
records, two mail exchanger (MX) records, three address (A) records, and a CNAME
alias.

The configuration shown here (number of records and types) is simply a

solution. Feel free to edit the template according to your own needs, adding

or removing records as you see fit.

If you need more information about BIND, pick up a copy of....

When this zone template is loaded, the makezone script calls the
getZoneConfiguration() function, which returns a complete zone configuration.
Listing 18-3 shows a sample configuration created using the standard.template.

Listing 18-3: Sample Output of standard.template

;
; This zone file is generated automatically by makezone script
; If you edit this file manually, the changes will be lost
; if you regenerate the zone again using makezone
;
$TTL 86400
$ORIGIN example.com.
@ 1D IN SOA @ root (

01 ; serial
3H ; refresh
15M ; retry
1W ; expiry
1D) ; minimum

1D IN NS 192.168.0.11
1D IN NS 192.168.1.254
1D IN MX 5 192.168.0.100
1D IN MX 10 192.168.0.101

ns 1D IN A 192.168.0.11

www 1D IN A 192.168.0.12
www IN CNAME apache.example.com.

ftp 1D IN A 192.168.0.12

Chapter 18: BIND Domain Manager 645

23 549669 ch18.qxd 4/4/03 9:27 AM Page 645

All the IP addresses and host names are inserted using various $GLOBALS set
from the makezone script and makezone.conf file.

You can create as many zone templates as you wish. To use them, just call
the desired zone template using the --template=zone_template option.
Remember to place your zone template in the templates directory pointed to by the
ZONE_TEMPLATE_DIR constant in makezone.conf.

Make sure your template is a PHP script containing the getZone
Configuration() function, which returns the full zone configuration.

The zone template produced configuration is stored in the ZONE_DIR directory
as a separate zone file.

There is one other kind of template that makezone uses for creating the config-
uration needed to add a new zone configuration to /etc/named.conf. This template
is shown in Listing 18-4.

Listing 18-4: named.master_zone.conf

<?php

function getNamedZoneConfig()
{

$output = <<<MASTER_ZONE_NAMED_CONF

//
// Master zone configuration for $GLOBALS[ZONE]
//
zone “$GLOBALS[ZONE]” IN {

type master;
file “$GLOBALS[ZONE_FILE]”;
allow-update { none; };

};

MASTER_ZONE_NAMED_CONF;

return $output;
}

?>

646 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 646

Like the zone template, this is also a PHP script. It has a function called
getNamedZoneConfig(), which is called by makezone. This function returns the
configuration that is appended to the /etc/named.conf file to hook up the new
zone to the DNS server. The following code shows sample output of this template:

//
// Master zone configuration for example.com
//
zone “example.com” IN {

type master;
file “example.com.zone”;
allow-update { none; };

};

This configuration is appended to /etc/named.conf. Notice that we only create a
master configuration for the new forward domain.

When makezone is run successfully to create a new zone, a zone file is created in
the location specified by ZONE_DIR, and the appropriate configuration is appended
to the file specified by NAMED_CONF to enable the DNS server to find the new zone
configuration.

Once makezone is successful, you can restart the BIND name server using the
following:

/etc/rc.d/init.d/named restart

This will load the new zone, and you can test your new zone data using the dig
command, which is discussed in the section, “ Testing makezone.”

Understanding makezone
The makezone utility is implemented in Listing 18-5. This script works as follows:

◆ It expects the command-line arguments and options defined in
$CMD_SHORT_OPTIONS and $CMD_LONG_OPTIONS.

◆ It retrieves the command-line arguments and options into $cmd
using the getCommandLineOptions() function, which is called with
Console_Getopt::getopt() output, which returns valid command-line
arguments and options or an error object.

◆ If no command-line argument is provided, the syntax() function is called
to display syntax.

◆ If the --add option is specified, the addZone() function is called to create
the new zone.

Chapter 18: BIND Domain Manager 647

23 549669 ch18.qxd 4/4/03 9:27 AM Page 647

Listing 18-5: makezone

#!/usr/bin/php -q
<?php

require_once(‘makezone.conf’);

$CMD_SHORT_OPTIONS = ‘h’;

$CMD_LONG_OPTIONS = array(‘help’,
‘add=’,
‘name=’,
‘template=’,
‘enable’,
‘disable’,
‘test’
);

$cmd = getCommandLineOptions(
Console_Getopt::getopt($GLOBALS[‘argv’],

$CMD_SHORT_OPTIONS,
$CMD_LONG_OPTIONS)
);

if (empty($cmd)) syntax();

if ($cmd[add] == ‘zone’)
{

addZone($cmd[name], $cmd[template]);
}

exit;

function addZone($zone =null, $template = null)
{

// First check if zone is already created
$zoneFile = getFQPNZoneFile($zone);

if (zoneExists($zoneFile))
{

echo “Error: $zoneFile exists.\n”;
return FALSE;

648 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 648

}

$zoneTemplate = getFQPNZoneTemplate($template);

if (empty($zoneTemplate)) return FALSE;

echo “Adding $zone using $zoneTemplate \n”;

require_once($zoneTemplate);

$GLOBALS[ZONE] = $zone;

$config = getZoneConfiguration();

echo $config;

$status = writeZoneFile($zoneFile, $config);

$namedMasterZoneTemplate =
getFQPNNamedMasterZoneTemplate();

if (! file_exists($namedMasterZoneTemplate))
{

echo “Error: $namedMasterZoneTemplate is missing\n”;
return FALSE;

}

echo “Loading $namedMasterZoneTemplate ...”;

require_once($namedMasterZoneTemplate);

echo “OK.\n”;

$GLOBALS[ZONE_FILE] = basename($zoneFile);

$baseZoneFile = basename($zoneFile);

if (! zoneInNamedConf($baseZoneFile))
{

$namedConf = getNamedZoneConfig();

$status = appendNamedConfFile($namedConf);

Continued

Chapter 18: BIND Domain Manager 649

23 549669 ch18.qxd 4/4/03 9:27 AM Page 649

Listing 18-5 (Continued)

echo $namedConf;

} else {

echo “Warning: $baseZoneFile “.
“already used in “ . NAMED_CONF . “\n”;

}

return TRUE;
}

function zoneInNamedConf($file = null)
{

$lines = file(NAMED_CONF);

if (count($lines) <1) return FALSE;

$search = ‘/’ . $file . ‘/’;

foreach ($lines as $named_conf)
{

if (preg_match($search, $named_conf)) return TRUE;
}

return FALSE;
}

function appendNamedConfFile($config = null)
{

$fp = fopen(NAMED_CONF, ‘a’);
if (! $fp)
{

echo “Error: could not open “ .
NAMED_CONF . “ for update.\n”;

return FALSE;
}

fputs($fp, $config);
fclose($fp);

return TRUE;

650 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 650

}

function getFQPNNamedMasterZoneTemplate()
{

return sprintf(“%s/%s”,
ZONE_TEMPLATE_DIR,
ZONE_MASTER_TEMPLATE);

}

function writeZoneFile($file = null, $config = null)
{

$fp = fopen($file, ‘w+’);
if (! $fp)
{

echo “Error: $file could “.
“ not be open for writing!\n”;

return FALSE;
}

echo “Writing zone file ($file)....\n”;
fputs($fp, $config);
fclose($fp);
echo “OK.\n”;

}

function getFQPNZoneFile($zone = null)
{

return sprintf(“%s/%s.zone”, ZONE_DIR, $zone);
}

function zoneExists($file = null)
{

echo “Looking for zone file: $file ... “;

if (!file_exists($file))
{

echo “not found\n”;
return null;

}

echo “OK.\n”;

Continued

Chapter 18: BIND Domain Manager 651

23 549669 ch18.qxd 4/4/03 9:27 AM Page 651

Listing 18-5 (Continued)

return $file;
}

function getFQPNZoneTemplate($template = null)
{

$file = sprintf(“%s/%s.template”, ZONE_TEMPLATE_DIR,
$template);

echo “Looking for zone template file: $file ... “;

if (!file_exists($file))
{

echo “not found\n”;
return null;

}

echo “OK.\n”;

return $file;
}

function syntax()
{

$script = basename($GLOBALS[‘argv’][0]);

echo<<<HELP

Syntax $script [options]

--add=zone
--name=name of zone e.g --name=example.com
--template=template_name e.g --template=standard

HELP;

}

function getCommandLineOptions($options)
{

$type = gettype($options);

if (gettype($options) != “array”)

652 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 652

{
// Error in command line
echo “$options->message \n”;
return null;

}

$cmd = array();

foreach ($options[0] as $argArray)
{

$argName = preg_replace(‘/[^\w]/’ , ‘’, $argArray[0]);

$argValue = $argArray[1];

if ($argValue[0] == ‘-’)
{

echo “$argName cannot have $argValue\n”;
return array();

}

$cmd[$argName] = ($argValue != ‘’) ? $argValue : TRUE;
}

return (count($cmd) > 0) ? $cmd : null;

}

?>

The makezone Functions
The makezone script has the following functions:

addZone()
This function adds a new zone in the DNS configuration. Here is how it works:

1. It first creates a variable called $zoneFile using getFQPNZoneFile().
This variable stores the fully qualified path name of the new zone file.
The zone name is specified by the user, using the --name option in the
command line.

2. If the zone file already exists, the function displays an error message and
returns FALSE.

Chapter 18: BIND Domain Manager 653

23 549669 ch18.qxd 4/4/03 9:27 AM Page 653

3. A $zoneTemplate variable is used to store the fully qualified path name
of the zone template using getFQPNZoneTemplate(). The zone template is
selected by the user, using the --template option in the command line.

4. The zone template is loaded using require_once() and the $GLOBALS[ZONE]
value is set to the new zone. The getZoneConfiguration() function found in
the zone template is called to return the complete zone configuration in
$config.

5. The new zone configuration is then written to the zone file using the
writeZoneFile() function.

6. The fully qualified master zone template is retrieved using getFQPNNamed
MasterZoneTemplate(), and the path is stored in $namedMasterZone
Template. If the $namedMasterZoneTemplate is missing, the function
displays an error and returns FALSE.

7. The master template is loaded using require_once(). The $GLOBALS
[ZONE_FILE] value is set to the zone file created earlier. The base
name of the zone file is stored in $baseZoneFile. If the $baseZone
File value is found in NAMED_CONF (/etc/named.conf) using the
zoneInNamedConf() function, then the zone is already added to the
NAMED_CONF file and the function displays a warning message.
Otherwise, it appends the master zone configuration in NAMED_CONF
using appendNamedConfFile().

8. Finally, the function returns TRUE to indicate success.

zoneInNamedConf()
This function returns TRUE if a given zone already exists in NAMED_CONF
(/etc/named.conf). Otherwise, it returns FALSE.

appendNamedConfFile()
This function appends the given configuration to the NAMED_CONF (/etc/named.
conf) file.

getFQPNNamedMasterZoneTemplate()
This function returns the fully qualified master zone file template path.

writeZoneFile()
This function writes the zone file in the ZONE_DIR directory.

getFQPNZoneFile()
This function returns the fully qualified name of the zone file.

654 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 654

zoneExists()
This function returns TRUE if the given zone file already exists. Otherwise, it returns
FALSE.

getFQPNZoneTemplate()
This function returns the fully qualified zone template path. If the zone template
does not exist, it displays an error message and returns null. If it does exist, it
returns the zone file path.

syntax()
This function provides syntax help.

getCommandLineOptions()
This function returns the command-line arguments as an array if valid arguments
were entered by the user. If an invalid argument is entered, the function displays an
error message and returns null.

Installing makezone
To install this script, you need to extract CDROM/ch18/ch18.tar.gz in a suitable
directory. You will see makezone, makezone.conf, and a template directory with
two files named.master_zone.conf and standard.template.

If you wish to run makezone from any directory, you should do the following:

1. Install makezone in /usr/bin, which is typically in the root user’s path.

2. Store makezone and the template directory with the files in the /usr/
local/makezone directory.

3. Edit makezone.conf to change $PEAR_DIR to point to your PEAR
installation directory, and ZONE_TEMPLATE_DIR to point to /usr/
local/makezone/templates.

4. Change the file ownership of makezone to be readable and executable
by only the root user as follows:

chown root:root /usr/bin/makezone
chown -R root:root /usr/local/makezone
chmod -R 700 /usr/bin/makezone
chmod -R 700 /usr/local/makezone

5. Now you should be able to run makezone from anywhere. To create new
zone templates, copy the standard template to another file and modify
it to fit your needs. Make sure new template file name ends with the
.template extension.

Chapter 18: BIND Domain Manager 655

23 549669 ch18.qxd 4/4/03 9:27 AM Page 655

Testing makezone
Running makezone is simple. Here is a test run:

./makezone --add=zone --name=example.com --template=standard

This creates the /var/named/example.com.zone zone file for example.com using
the standard zone template. The contents of this zone file look like the following:

;
; This zone file is generated automatically by makezone script
; If you edit this file manually, the changes will be lost
; if you regenerate the zone again using makezone
;
$TTL 86400
$ORIGIN example.com.
@ 1D IN SOA @ root (

01 ; serial
3H ; refresh
15M ; retry
1W ; expiry
1D) ; minimum

1D IN NS 192.168.0.11
1D IN NS 192.168.1.254
1D IN MX 5 192.168.0.100
1D IN MX 10 192.168.0.101

ns 1D IN A 192.168.0.11

www 1D IN A 192.168.0.12
www IN CNAME apache.example.com.

ftp 1D IN A 192.168.0.12

the /etc/named.conf has the following lines appended:
//
// Master zone configuration for example.com
//
zone “example.com” IN {

type master;
file “example.com.zone”;
allow-update { none; };

};

656 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 656

Now, if the BIND server is restarted using the /etc/rc.d/init.d/named
restart command, it loads the new zone.

On some systems the named control script will be located in a different

directory.

You can test the new zone using the dig command.
For example:

dig www.example.com A

outputs something like the following:

; <<>> DiG 9.2.1 <<>> www.example.com A
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50838
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 0

;; QUESTION SECTION:
;www.example.com. IN A

;; ANSWER SECTION:
www.example.com. 26922 IN A 192.168.0.12

;; AUTHORITY SECTION:
example.com. 86400 IN NS ns.example.com.

;; Query time: 3469 msec
;; SERVER: 192.168.0.11#53(192.168.0.11)
;; WHEN: Sat Dec 14 03:03:58 2002
;; MSG SIZE rcvd: 127

Similarly, you can query about other records, as shown here:
The following will show mail exchanger (MX) records:

dig example.com MX

Chapter 18: BIND Domain Manager 657

23 549669 ch18.qxd 4/4/03 9:27 AM Page 657

The following will show name server (NS) records:

dig example.com NS

Summary
In this chapter, you learned how to develop a command-line PHP script that helps
you manage DNS configuration on your Linux system. Such scripts can take the
tedium out of administering the several files that need updating when you add a
domain. Scripts such as this also maintain the integrity of the configuration by
helping omit typos and other mistakes.

658 Part IV: Using PHP for Sysadmin Tasks

23 549669 ch18.qxd 4/4/03 9:27 AM Page 658

Internet Applications
CHAPTER 19

Web Forms Manager

CHAPTER 20
Web Site Tools

Part V

24 549669 PP05.qxd 4/4/03 9:27 AM Page 659

24 549669 PP05.qxd 4/4/03 9:27 AM Page 660

Chapter 19

Web Forms Manager
IN THIS CHAPTER

◆ Developing a Web Forms Manager

◆ Installing the Web Forms Manager

◆ Using the Web Forms Manager

WEB FORMS ARE COMMON in virtually any commercial Web site. Using Web forms,
you can collect data from users and perform business operations such as sending a
quotation or brochures or soliciting feedback. In this chapter, you will design a
general-purpose Web Forms Management application that enables you to manage
virtually any single-page Web form. The virtue of managing all your Web forms by
using a central general-purpose Web forms application suite is that you can control
and manage your data security from a single point, thus eliminating a great deal of
the time and effort that goes into managing multiple form scripts for security and
other issues.

Functionality Requirements
Our general-purpose Web Forms Management application suite offers the following
feature set:

◆ A single application for Web form processing. All single-page Web
forms can be managed by a single application.

◆ Central, smart CSV downloading. A central CSV export application
enables a site administrator to download new data at any time. The
application enables the administrator to export data from the form data-
base by using either a range of dates or the last download. This is a nice
feature if, for example, your business has a department that retrieves data
from your Web forms and sends out brochures or other documents to
potential customers.

◆ Central form data reporting. A single interface to view form data as
stored in a database.

661

25 549669 ch19.qxd 4/4/03 9:27 AM Page 661

◆ Inbound and outbound e-mail. When a form is submitted, the Web form
processor can send e-mail to both the submitter and the Web administrator
or to anyone else to whom inbound e-mail should be directed. The e-mail
messages sent are created by using mail templates and are, therefore, very
flexible.

◆ A template-driven interface. Each form should have its own thank-you
page template and inbound and outbound message template.

◆ Automatic return to the referred page. If the Web form provides a return
URL, the form processing application should return the user to the return
URL once processing is completed.

Understanding Prerequisites
This is an Internet application and does not require central authentication tech-
niques. Therefore, it is not dependent on intranet tools discussed in earlier chapters.

However, it does require the application framework classes discussed in Chapter 4.
You must install the application framework classes along with the PHPLIB and PEAR
packages.

Designing the Database
Figure 19-1 shows the database diagram for the Web Forms Manager. Here, I will
describe the only table (WEBFORMS_DL_TBL) of the database. Furthermore, there will
be one or more tables, depending on the number of forms. This means that each
form to be managed will have its own table. For your convenience, I will describe a
sample form table along with WEBFORMS_DL_TBL.

Figure 19-1: The WEBFORMS database diagram.

662 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 662

WEBFORMS_DL_TBL table
This table is responsible for storing the track of record ID for each form up to which
the user has downloaded the data. This helps the user download the latest data
for a form. This table stores the form code (FORM_ID), timestamp of download
(DOWNLOAD_TS), and the record ID (RECORD_ID) up to which the form data have been
downloaded.

X_TBL table (a sample form table)
This is a form-specific table. X_TBL stores the data collected from the X form. The
two fields of this table that are common to all form tables are the record ID (id) and
the time of form submission (SUBMIT_TS). The record ID is auto-incremented with
each insertion. Depending on the particular form, you can have many other fields
in each of the form tables. These fields are used to store the data collected from the
form.

Listing 19-1 shows an implementation of the WEBFORMS database in MySQL. To
implement this WEBFORMS database in MySQL, you can create a database called
WEBFORMS in your MySQL database server and run the following command:

mysql -u root -p -D WEBFORMS < webforms.sql

Make sure that you change the username (root) to whatever is appropriate for
your system.

Listing 19-1: WEBFORMS.mysql

phpMyAdmin MySQL-Dump
version 2.2.5
http://phpwizard.net/phpMyAdmin/
http://phpmyadmin.sourceforge.net/ (download page)
#
Host: localhost
Generation Time: Dec 13, 2002 at 07:50 PM
Server version: 3.23.35
PHP Version: 4.1.0
Database : `WEBFORMS`
--

#
Table structure for table `WEBFORMS_DL_TBL`
#

CREATE TABLE WEBFORMS_DL_TBL (

Continued

Chapter 19: Web Forms Manager 663

25 549669 ch19.qxd 4/4/03 9:27 AM Page 663

Listing 19-1 (Continued)

FORM_ID varchar(255) NOT NULL default ‘0’,
DOWNLOAD_TS bigint(20) NOT NULL default ‘0’,
RECORD_ID int(11) NOT NULL default ‘0’

) TYPE=MyISAM;
--

#
Table structure for table `X_TBL`
#

CREATE TABLE X_TBL (
id int(11) NOT NULL auto_increment,
x_field_1 varchar(255) NOT NULL default ‘’,
x_field_2 text NOT NULL,
x_field_3 int(11) NOT NULL default ‘0’,
SUBMIT_TS bigint(20) NOT NULL default ‘0’,
PRIMARY KEY (id)

) TYPE=MyISAM;

Note that the X_TBL is really an example table; you should rename it to match
your form name. For example, if you have a form called ASK.php or ASK.html,
with three fields named first, last, and e-mail, you can create it as follows:

CREATE TABLE ASK_TBL (
id int(11) NOT NULL auto_increment,
first varchar(25) NOT NULL default ‘’,
last varchar(25) NOT NULL,
email varchar(60) NOT NULL,
SUBMIT_TS bigint(20) NOT NULL default ‘0’,
PRIMARY KEY (id)

) TYPE=MyISAM;

Notice that the id and SUBMIT_TS fields are required for managing the forms.

Designing and Implementing
the Web Forms Manager
Application Classes
As shown in the system diagram (see Figure 19-2), five objects are needed to imple-
ment the Web Forms Manager application.

664 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 664

Figure 19-2: System diagram of the Web Forms Manager.

In this section, you will develop the class that provides the objects needed for
your Web Forms Manager application.

Designing and implementing the ACL class
The ACL (Access Control List) class is used to control access to the application. The
ch19/apps/class/class.ACL.php file on the CD-ROM implements this class,
which implements the methods described in the following sections.

ACL()
This is the constructor method. It sets the member variables $IP, $ALLOW, and $DENY
from the given parameter $param. $IP holds the IP address of the current machine;
$ALLOW holds the comma-separated list of allowed IP addresses; and $DENY holds the
list of denied IP addresses.

isAllowed()
This method identifies whether the current IP is allowed to access the application. If
the list of denied IPs is not empty, this method matches the current IP with each of
the denied IPs. It uses the isNetworkAddr() method and the isNodeOf() method
to ensure that the current IP is not part of any denied network address. The method
returns TRUE or FALSE depending on the match result.

isDenied()
This method uses the isAllowed() method to decide whether the current IP is
denied access to the application. It returns exactly the opposite value (TRUE/FALSE)
of the result of the isAllowed() method.

Form Submission Application

Form Reporter Application

CSV Export Application

PHP Application Framework

Web Form Management
Application

DataCleanup Object class.DataCleanup.php

Form Submission Object class.FormSubmission.php

DataValidator Object class.DataValidator.php

FormData Object class.FormData.php

ACL Object class.ACL.php

Chapter 19: Web Forms Manager 665

25 549669 ch19.qxd 4/4/03 9:27 AM Page 665

isNodeOf()
This method determines whether the current IP is a part of the given network. This
is how it works:

◆ It first takes the octets of both IPs (the current IP and the network IP) into
two arrays named $currentOctets and $networkOctets.

◆ It removes the fourth octet of the network IP (if it exists) and the current IP.

◆ Each octet (three in total) of the current IP is matched with the octets of
the network IP. The match counter $matchCount is incremented with each
successful match.

◆ The method returns TRUE if the match counter is exactly equal to the
number of octets of the network; otherwise, it returns FALSE.

isNetworkAddr()
This method determines whether the given IP is a network address. It first takes the
octets of the IP in an array. Then it determines whether the given IP is a network
address by matching it with any of the following three conditions: whether the
length of the array is less than four; whether the second to last element of the octet
array is a zero; and whether the second to last element of the octet array is an “x”.

Designing and implementing
the DataCleanup class
The DataCleanup class is used to clean up form data collected from the user. The
ch19/apps/class/class.DataCleanup.php file on the CD-ROM implements this
class, which implements the methods described in the following sections.

DataCleanup()
This is the constructor method. Basically, it is used by the caller application to
instantiate the class.

cleanup_none()
This is the basic cleanup method, which does the simple job of returning the string
passed to the method as a parameter without any formatting.

cleanup_ucwords()
This method takes a string as a parameter and returns it after formatting the first
character of each word into an uppercase character.

666 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 666

cleanup_ltrim()
This method returns the given string after removing all whitespace from the left of it.

cleanup_rtrim()
This method returns the given string after removing all whitespace from the right
of it.

cleanup_trim()
This method returns the given string after removing all whitespace around it.

cleanup_lower()
This method takes a string as a parameter and returns it after converting all the
characters to lowercase characters.

Designing and implementing
the DataValidator class
The DataValidator class is used to validate form data collected from the user. The
ch19/apps/class/class.DataValidator.php file on the CD-ROM implements
this class, which implements the methods described in the following sections.

DataValidator()
This is the constructor method. Basically, it is used by the caller application to
instantiate the class.

validate_size()
This method validates the size of the input. This is how it works:

◆ It takes as parameters the data to be validated ($str), the size permitted
($size), and the type of the data ($type).

◆ The $size parameter is provided as a string that has “size=” at the
beginning. Therefore, the method first gets the actual permitted size by
removing the string “size=” from the given $size.

◆ The method directly returns TRUE if it finds that the permitted size is “any”.

◆ Otherwise, $size is passed into the get_size() method to find the mini-
mum and maximum allowed size.

◆ Depending on the type (text/number) of the data, the validate_string_
size() method or the validate_number_range() method is called to
validate the size of the data.

Chapter 19: Web Forms Manager 667

25 549669 ch19.qxd 4/4/03 9:27 AM Page 667

get_size()
This method takes the permitted size as a string and returns an array with informa-
tion about the minimum and maximum allowed size. This is how it works:

◆ It first checks whether there is a ‘-’ in the given size string, which means
that two sizes are provided on either side of the ‘-’, indicating both a
minimum and a maximum. Otherwise, the method assumes that the given
size is the only size allowed, and hence it returns the given size as both
minimum and maximum size.

◆ If there is a ‘-’ in the given parameter, the method explodes the string
and determines the minimum and maximum allowed size.

◆ It then looks for a ‘KB’ or ‘MB’ in the string that identifies the maximum
size. If it finds such a string, this method converts the sizes accordingly (it
multiplies by 1024 in the case of ‘KB’) and keeps them in the associative
array.

◆ Finally, the array indicating the minimum and maximum allowed size is
returned.

validate_number_range()
This method takes three numbers as input (the number to be validated, the upper
bound, and the lower bound) and determines whether the first number falls within
the other two numbers.

validate_string_size()
This method validates the length of the string. It takes the string and the two
bounds (minimum and maximum length) and determines whether the string length
is within the boundary allowed.

validate_name()
This method determines whether the given string is a valid name by checking it for
numbers and unusual characters (anything other than the alphabets).

validate_org_name()
This method determines whether the given string is a valid organization name by
checking it for unusual characters (anything other than the alphabet, numeric char-
acters, or the comma, period, and hyphen).

validate_number()
This method determines whether the given string is a valid number by allowing
only numeric characters and the period (“.”).

668 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 668

validate_any_string()
This method takes a string as input and always returns TRUE.

validate_email()
This method takes a string as input and determines whether it is a valid e-mail
address by using a complex regular expression taken from http://www.php.net/
manual/en/function.preg-match.php.

validate_url()
This method validates the given string by checking it for valid schemes (http,
https, or ftp).

validate_file_size()
This method determines whether the given file size falls within the specified allowed
size. This method uses the get_size() method to determine the allowed maximum
and minimum size.

Designing and implementing
the FormSubmission class
The FormSubmission class is used to process the submission of the form. The ch19/
apps/class/class.FormSubmission.php file on the CD-ROM implements this
class, which implements the methods described in the following sections.

FormSubmission()
This is the constructor method. It sets member variables $DBI (to hold the DBI
object), $ID (to hold the form ID), $KNOWN_FORMS (to hold the array of known
forms), and $ERRORS (to hold the array of errors).

hasError()
This method determines whether the array for holding the errors is empty, returning
either TRUE or FALSE.

getErrors()
This method returns the member variable $ERROR, which is an array of the errors.

getErrorMessage()
This method is used to retrieve the form-specific error messages. This is how it works:

◆ This method takes two parameters: $lang (for the language of the error
message) and $err (for the error/array of errors).

◆ If $err is not supplied, this method takes $ERROR, the member variable of
the class.

Chapter 19: Web Forms Manager 669

25 549669 ch19.qxd 4/4/03 9:27 AM Page 669

◆ If $err is given as a string and not an array, this method gets the single
error message from the member variable $FORM_ERRORS, which is set in
the loadConfigFile() method.

◆ If $err is an array, each of the error messages is retrieved from
$FORM_ERRORS and returned as one string (by imploding a line break
among them).

setupForm()
This method is used for the form setup. This is how it works:

◆ It uses the member variable $FORM_FIELDS, which is set in the
loadConfigFile() method.

◆ $FORM_FIELDS is an associative array that holds all the field names of the
form and their configurations. This method breaks down each of the
field’s configurations and sets them as member variables to be used later.

isKnownForm()
This method determines whether the current form is one of the known and config-
ured forms by matching its ID with IDs of the $KNOWN_FORMS array.

loadConfigFile()
This method is responsible for loading the configuration file specific to the form.
Every form to be managed has its own configuration file. Therefore, this method
identifies the configuration file for the current form and includes it for later usage.
It sets member variables $FORM_FIELDS, $FORM_ERRORS, and $FILE_LOAD_FIELDS
from that configuration file.

processForm()
This method takes care of the entire processing of the form submission. This is how
it works:

◆ It first calls the haveRequiredData() method to determine whether all
of the form’s required data has been submitted. If not, it returns with the
proper error signal.

◆ It then calls the validateData() method to validate the given data. If it
fails, it returns with the proper failure signal.

◆ The cleanupData() method is called to clean up the given data.

◆ After that, submitData() is invoked to insert the data into the database.

◆ The uploadFile() method is called to manage any file uploads.

◆ The method then sends outbound (to user) and/or inbound (to admin)
e-mails, if specified in the form configuration.

670 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 670

haveRequiredData()
This method determines whether the required fields for the form are provided. It
uses the member variable $REQUIRED, which is set in the setupForm() method.

validateData()
This method validates all the fields for the form. This is how it works:

◆ It first creates an object of class DataValidator.

◆ Then the method validate() of DataValidator is called, with type, size,
and validation methods for each field of the form. If data validation fails,
the field is pushed into the $ERRORS array.

◆ The method returns TRUE if none of the fields fail during data validation.

cleanupData()
This method is responsible for cleaning up the given data as prescribed in the form
configuration file. This is how it works:

◆ It first creates an object of the DataCleanup class.

◆ For each field, the list of clean-up methods is retrieved. Those methods are
called from the DataCleanup class.

◆ All the field data is returned after cleanup.

submitData()
This method is responsible for adding the given data into the form table in the
database. This is how it works:

◆ First, the fields with type text are escaped for characters such as quotation
marks and slashes by using the $this->_DBI->quote(addslashes())
methods.

◆ The common field for all forms, SUBMIT_TS (to store the time of form sub-
mission), is prepared from the current time and added to the insert query
statement.

◆ The insert query statement is executed using the query() method of the
DBI object.

◆ The method returns TRUE or FALSE depending on the success of the inser-
tion process.

Chapter 19: Web Forms Manager 671

25 549669 ch19.qxd 4/4/03 9:27 AM Page 671

uploadFile()
This method is responsible for uploading any attachments from the user. This is
how it works:

◆ It first creates an object of the DataValidator class to validate the size of
the file(s) to be uploaded.

◆ For each upload field retrieved from the form configuration file, the
method determines whether it is a required upload. If the upload is
required but not supplied, it returns with a proper failure signal.

◆ The method moves the uploaded file to the appropriate destination direc-
tory as specified in the form configuration file.

sendMail()
This method is responsible for sending the form-specific inbound or outbound
e-mail to the user or the administrator. This is how it works:

◆ It takes the list of recipients, the message template file name, and the sub-
ject as parameters.

◆ It immediately returns FALSE if the list of recipients is empty.

◆ It determines whether a form-specific template for the message exists. If
not, it uses the default template directory of the application to instantiate
the template class.

◆ Data received from the form is sent to the message template. Then the
template is parsed and sent as the body to the recipient(s) using the
mail() API with the given subject.

Designing and implementing the FormData class
The FormData class manipulates the submitted form data. For example, it is used in
a report generation application to show the report to administrative users. The
ch19/apps/class/class.FormData.php file on the CD-ROM implements this
class, which implements the methods described in the following sections.

FormData()
This is the constructor method. It sets the member variables $DBI and $DL_TBl to
hold the DBI object and the name of the download track table, respectively. Then it
calls the setFormID() method to set the form ID.

setFormID()
This method first sets the given form ID as the member variable $fid. Then it
includes the configuration file for the form. Two more member variables —
$fieldArr (an array of form fields and their configurations) and $fields (a

672 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 672

comma-separated list of the fields) — are set by retrieving the list of fields from the
form configuration file.

getFormData()
This method is used to retrieve form data from the database. This is how it works:

◆ The setFormID() method is called to set the given form ID.

◆ If no sort criteria are supplied, the default sort criteria is set to the ID field.

◆ If no lower bound for submission time is given, it is assumed to be zero.
Similarly, if no upper bound is supplied, it is assumed to be the current time.

◆ The SELECT query statement is prepared with the help of the member
variable $fields.

◆ The name of the table is taken from the form configuration file, which has
already been included.

◆ The SELECT query is executed using the query() method of the DBI
object, and all rows of the query result are returned as an array.

getDataAfterRecordID()
This method returns all the data of a form that has a record ID greater than the
given record ID. This is how it works:

◆ It first calls setFormID() to set the given form ID.

◆ The query statement is prepared using the member variable $fields and
the given record ID.

◆ The name of the table is taken from the form configuration file, which has
already been included.

◆ The SELECT query is executed using the query() method of the DBI
object, and all rows of the query result are returned as an array.

getLastDLRecordID()
This method returns the largest record ID number for a given form that has been
tracked in the download track table. This is how it works:

◆ First, it calls setFormID() to set the given form ID.

◆ The query statement is prepared.

◆ The name of the table is taken from the form configuration file, which has
already been included.

◆ Finally, the SELECT query is executed using the query() method of the
DBI object, and the maximum record ID is returned after retrieving it from
the query result.

Chapter 19: Web Forms Manager 673

25 549669 ch19.qxd 4/4/03 9:27 AM Page 673

updateDownloadTrack()
This method updates the download track table whenever a download is performed
by the user. It takes the form ID and the top record ID up to the time at which the
data was downloaded. Then it inserts them along with the current timestamp into
the download track table. It returns TRUE or FALSE depending on the status of the
insertion operation.

Creating the Application
Configuration Files
Like all other applications we have developed in this book, the Web Forms Manager
application also uses a standard set of configuration and error files. These files are
discussed in the following sections.

Creating the main configuration file
The primary configuration file for the entire system is called webforms.conf. Table
19-1 describes each configuration variable.

TABLE 19-1 THE WEBFORMS.CONF VARIABLES THAT NEED TO BE CHANGED

Configuration Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR package;
specifically, the DB module needed for class.DBI.php
in our application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the
PHPLIB packages; specifically, the template.inc
package needed for template manipulation.

$APP_FRAMEWORK_DIR Set to our application framework directory.

$PATH Set to the combined directory path consisting
of the $PEAR_DIR, $PHPLIB_DIR, and the
$APP_FRAMEWORK_DIR. This path is used with the
ini_set() method to redefine the php.ini entry for
include_path to include $PATH ahead of the default
path. This enables PHP to find our application
framework, PHPLIB, and PEAR-related files.

$APPLICATION_NAME Internal name of the application.

674 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 674

Configuration Variable Purpose

$DEFAULT_LANGUAGE Set to the two-digit default characterslanguage
code.

$ROOT_PATH Set to the root path of the application.

$REL_ROOT_PATH Relative path to the root directory.

$REL_APP_PATH Relative application path as seen from a Web browser.

$TEMPLATE_DIR The fully qualified path to the template directory.

$CLASS_DIR The fully qualified path to the class directory.

$ACL_CLASS Name of the ACL class file.

$DATA_VALIDATOR_CLASS Name of the DataValidator class file.

$FORM_SUBMISSION_CLASS Name of the FormSubmission class file.

$DATA_CLEANUP_CLASS Name of the DataCleanup class file.

$FORMDATA_CLASS Name of the FormData class file.

$FORM_DB_URL The fully qualified URL for the database used to store
the form information.

$MISSING_REQUIRED_VALUES Code for identifying the signal that required data is
missing.

$BAD_DATA Code for identifying the signal that the data is invalid.

$DATABASE_FAILURE Code for identifying the signal that the form table does
not exist.

$INVALID_FILE_SIZE Code for identifying the signal that the file size is
invalid.

$KNOWN_FORMS The associative array of forms holding the form ID, along
with its configuration file name.

$FORM_CONF_FILE_DIR The directory that holds the configuration files of
different forms.

$REPORT_TEMPLATE The template used for showing the form data report.

$ODD_COLOR Color used as background in odd-numbered rows in the
report.

$EVEN_COLOR Color used as background in even-numbered rows in the
report.

Continued

Chapter 19: Web Forms Manager 675

25 549669 ch19.qxd 4/4/03 9:27 AM Page 675

TABLE 19-1 THE WEBFORMS.CONF VARIABLES THAT NEED TO BE CHANGED
(Continued)

Configuration Variable Purpose

$DEFAULT_COLOR Default color used as background in any row in the
report.

$MAX_YEAR The maximum year to be used in the report prompt.

$MIN_YEAR The minimum year to be used in the report prompt.

$REPORTER The name of the application that manages the report.

$CSV_EXPORTER The name of the application that exports form data
as CSV.

$DOWNLOAD_TRACK_TBL The name of the table that tracks download information.

$DOWNLOAD_TYPE_LATEST The code for identifying the type of download for which
only the latest data is downloaded.

$DOWNLOAD_TYPE_ALL The code for identifying the type of download for which
all data is downloaded.

The directory structure used in the webforms.conf file supplied in the ch19
directory on the CD-ROM might need to be tailored to your own system’s require-
ments. The current directory structure looks like the following:

htdocs ($ROOT_PATH == %DocumentRoot%)
|
+---webforms (Web Forms Manager Applications)

|
+---apps (apps and configuration files)

|
+---class (class files)
|
+---templates (HTML templates)
|
+---temp (Temporary folder to store the files to be downloaded)
|
+---site_forms (form configuration files)

|
+---x (configuration file for x form)

676 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 676

By changing the following configuration parameters in webforms.conf, you
can modify the directory structure to fit your site requirements:

$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;
$APP_FRAMEWORK_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/webforms’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;
$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;

Creating a sample form configuration file
Now to examine a sample form configuration file. Assuming the name of the form
is x, the configuration file name should be x.conf. Table 19-2 describes the config-
uration variables of x.conf, a typical form configuration file.

TABLE 19-2 THE X.CONF CONFIGURATION VARIABLES

Configuration Variable Purpose

$ FORM_NAME The name of the form to be configured.

$FORM_TABLE The name of the table in which the form data will be
stored.

$ACL_ALLOW_FROM Comma-separated list of IP addresses that are allowed to
access this form.

$ACL_DENY_FROM Comma-separated list of IP addresses that are denied
access to this form.

$FORM_LOG_FILE The name and path of the log file for the form.

$FORM_FIELDS_ARRAY The array of form fields, along with their configurations.

$UPLOAD_FILE The code to identify whether there is an upload for this
form or not.

$UPLOAD_FILE_DIR The name and path of the directory to store the uploaded
file.

Continued

Chapter 19: Web Forms Manager 677

25 549669 ch19.qxd 4/4/03 9:27 AM Page 677

TABLE 19-2 THE X.CONF CONFIGURATION VARIABLES (Continued)

Configuration Variable Purpose

$FRM_TEMPLATE_DIR Form-specific template directory. Whenever a template
is required, the application first searches for it here. If it
doesn’t find it here, it searches the default application
template directory.

$UPLOAD_FILE_FIELDS_ARRAY The array to identify any upload-related field names and
their configurations.

$SEND_OUTBOUND_MAIL The code to identify whether there should be outbound
mail or not.

$OUTBOUND_MAIL_TEMPLATE The template file used to send outbound mail.

$OUTBOUND_MAIL_SUBJECT The subject line to be used in outbound mail.

$EMAIL_FIELD The name of the form field containing the e-mail address
of the user.

$SEND_INBOUND_MAIL The code to identify whether there should be inbound
mail or not.

$INBOUND_MAIL_TEMPLATE The template file used to send outbound mail.

$INBOUND_MAIL_TO The e-mail address to which inbound mail will be sent.

$INBOUND_MAIL_SUBJECT The subject line to be used in outbound mail.

$SHOW_THANKYOU_TEMPLATE The name of the template file used to thank the user
after filling out the form.

$AUTO_REDIRECT The code to identify whether the page should be
redirected after the form is submitted.

$AUTO_REDIRECT_URL The URL to which the page should be redirected after
form submission.

$ERRORS The array of error messages related to different fields.

Creating the errors file
The error messages displayed by the Web Forms Manager applications are stored in
the ch19/apps/webforms.errors file on the CD-ROM. You can modify the error
messages by using a text editor.

678 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 678

Creating Application Templates
The HTML interface templates needed for the applications are included on the
CD-ROM. These templates contain various template tags for displaying necessary
information dynamically. These templates are described in Table 19-3.

TABLE 19-3 HTML TEMPLATES

Configuration Variable Template File Purpose

$REPORT_TEMPLATE report.html This template is used to
show reports data collected
via Web forms.

$OUTBOUND_MAIL_TEMPLATE Outbound_mail.html This template is used to
send mail to the user who
fills out the form.

$INBOUND_MAIL_TEMPLATE Inbound_mail.html This template is used to
send mail to the form owner
or the administrator.

$SHOW_THANKYOU_TEMPLATE thanks.html This template is used to
thank the user after the
form has been filled out.

Creating the Web Forms Submission
Manager Application
This application, submit.php, is responsible for managing the entire form-submission
process. This application is included on the CD-ROM in the ch19/apps directory.

It implements the following functionality:

◆ Adds submitted data to the database

◆ Sends mail to the appropriate recipient

◆ Shows error messages in case of invalid data

◆ Displays a thank-you page or redirects the user to a specified URL after
form submission

Chapter 19: Web Forms Manager 679

25 549669 ch19.qxd 4/4/03 9:27 AM Page 679

This application contains the methods described in the following sections.

run()
When the application is run, this method is called. This is how it works:

◆ First, it creates a FormSubmission object. Then it determines whether the
id of the form for which the request is being made is configured. If it
isn’t, it displays an error alert and returns null.

◆ Otherwise, the loadConfigFile() method of the FormSubmission class is
called to load the configuration file for the form. Then the setupForm()
method of the same class is called to set up the form variables.

◆ Next, the authorize() method is called to authorize the request. If autho-
rization is successful, the processForm() method is called to process the
form data.

◆ If processForm() returns a positive status, this method determines
whether an auto redirect for this form exists. If yes, the user is redirected
to the specified URL; otherwise, a thank-you message for submitting the
form is displayed to the user by calling the showPage() method.

◆ If processForm returns a negative status, the error message is prepared
using the getErrorMessage() method of the Formsubmission class. Then
the exact violation issue is retrieved, and the error message is displayed as
an alert to the user.

showPage()
This method renders the given template on the user’s browser. This is how it works:

◆ It first determines whether the requested template exists in the form-
specific template directory. If it does, the template directory for the
template class is assumed to be the form template directory; otherwise,
the default application template directory is assumed to be the template
directory for the template class.

◆ After the template class is instantiated with the appropriate template
directory, all the data posted by the user is set to the template.

◆ Finally, the template is parsed and printed to the user’s browser.

680 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 680

authorize()
This method authorizes the client IP in the following way:

◆ First, it determines the client IP.

◆ Then it creates an object of class ACL (Access Control List) with the client
IP, the allowed IP(s), and the denied IP(s).

◆ Finally, the isAllowed() method of the ACL class is used to determine
whether the client is allowed to access the application.

Creating the Web Forms
Reporter Application
This application, webformsreporter.php, is responsible for showing the form
report to the administrator. This application included is on the CD-ROM in the
ch19/apps directory.

This application has the methods described in the following sections.

run()
When the application is run, this method is called. This is how it works:

◆ It calls the showReport() method with the form id, the range of the
report (start and end date), the sorting criteria, and the toggle flag.

◆ Form id, sort criteria, and toggle flag values are taken directly from the
client request. If no starting or ending range is given, it assumes the start
of the current day as the starting timestamp and the end of the current
day as the ending timestamp.

showReport()
This method is responsible for showing the form report. This is how it works:

◆ First, the template class is created with the report template file of the default
template directory. All the blocks of the templates are set accordingly.

◆ Then it determines whether the form id is valid. If it is empty, an error
message is stored in $msg and the block to show the link for a data down-
load for a specific form is set to null.

Chapter 19: Web Forms Manager 681

25 549669 ch19.qxd 4/4/03 9:27 AM Page 681

◆ It determines whether the given range for the report is valid. If not, an
error message is stored in $msg, to be shown later.

◆ If both of the preceding checks pass, an object of the FormData class is
created and the getFormData() method is called to get the data submitted
within that range of time from the given form. This data is stored in an
array named $dataArr.

◆ Dynamic contents of the report template are set. The form names and
IDs are set to the select combo box for the forms. The starting date and
ending date are set to the combo boxes accordingly.

◆ Then the $dataArr array is checked to determine whether it has any data.
If not, $msg is checked for any error messages. If there is an error message,
it is set to the template to be parsed and printed to the user. Otherwise, it
means that the requested range doesn’t have any data for the given form.
Therefore, a message is set and printed accordingly.

◆ If $dataArr has any data in it, the headings of the data are set to the
heading block of the template. Then the data block is set with the rows of
data. The row colors are maintained according to the odd and even colors
prescribed in the configuration file.

◆ If the form id is selected and it is a valid and known form, the links for
data download are set to the template.

◆ Finally, the template is parsed and printed to the user’s browser.

Creating the CSV Data
Exporter Application
This application, CSVExporter.php, is responsible for allowing form administrators
to download the data for a form. This application is included on the CD-ROM in the
ch19/apps directory.

This application has the methods described in the following sections.

run()
When the application is run, this method is called. It calls the processRequest()
method with the form ID and the type of download (all records or latest records) to
enable users to download data.

682 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 682

processRequest()
This method is responsible for the entire process of enabling a user to download the
form data. This is how it works:

◆ First, it determines whether the passed form ID is valid. If it is empty, it
displays an alert message and returns null.

◆ Next, an object of FormData is created. Depending on the type of down-
load (all records or latest records), the getFormData() or getData
AfterRecordID() method is called to retrieve the appropriate data and
then store it in the $dataArr array. In the case of the latest data down-
load, the getLastDLRecordID() method is called to retrieve the top
record id of the previously downloaded data so that the new download
can start after it.

◆ If $dataArr is not empty, a CSV file is created and opened in the temp
directory of the application, and the $dataArr values are written in it,
separated by commas.

◆ After the data writing in the CSV file is done, the updateDownloadTrack()
method is called to store the record id of the row that was last written in
the CSV file.

◆ Finally, the user is redirected to the CSV file, from which he can download
the data as a CSV file.

◆ If $dataArr is empty, the user is shown an alert message stating that the
requested dataset is empty.

Installing the Web Forms Manager
In this section, it is assumed that you are using a Linux system with MySQL and the
Apache server installed. During the installation process for the Web Forms Manager,
we will refer to the Web document root directory as %DocumentRoot%.

It is also assumed that you have installed the PHPLIB and PEAR libraries.
Normally, these are installed during PHP installation. For your convenience, these
are provided in the lib/phplib.tar.gz and lib/pear.tar.gz directories on the
CD-ROM. In the following sample installation steps, it is further assumed that these
are installed in the %DocumentRoot/phplib and %DocumentRoot/pear directories.
Because your installation locations for these libraries are likely to differ, make sure
that you replace these paths in the configuration files.

Chapter 19: Web Forms Manager 683

25 549669 ch19.qxd 4/4/03 9:27 AM Page 683

Here is how you can get your Web Forms Manager application up and running:

◆ Install the application framework. If you have not yet installed the appli-
cation framework discussed in Chapter 4, you must do so before proceeding
further.

◆ Install the WEBFORMS database. The quickest way to create the WEBFORMS
database is to run the following commands:

mysqladmin –u root –p create WEBFORMS
mysql –u root –p –D WEBFORMS < webforms.sql

◆ The WEBFORMS.mysql script can be found on the accompanying CD-ROM
in the ch19/sql directory. The second command in the preceding listing
will create two tables, X_TBL and ASK_TBL, in your WEBFORMS database. The
X_TBL is not really used, as it is a generic table that explains how a form X
can be configured. However, ASK_TBL can be used by the ask.php form.

◆ Note that if you cannot create a new database called WEBFORMS, you can
use an existing one. Just make sure that you change the database URL in
webforms.conf to reflect your database name as discussed in the follow-
ing step.

◆ Install the WEBFORMS applications. Now, from the ch19 directory of the
CD-ROM, extract ch19.tar.gz in %DocumentRoot%. This will create WEB-
FORMS in your document root. Configure %DocumentRoot%/webforms/
apps/webforms.conf for the path and database settings. The applications
are installed in the %DocumentRoot%/webforms/apps directory, and the
templates are stored in %DocumentRoot%/webforms/apps/templates. You
will have to keep your form-specific files (configuration files and upload
directories) in different form directories in %DocumentRoot%/webforms/
apps/site_forms.

If your MySQL server is hosted on the Internet Web server, it can be
accessed via localhost. However, if your MySQL database is on a differ-
ent server than your Web server, you can easily modify the database URLs
in each application’s configuration files. For example, the webforms.conf
file has a database URL as follows:

define(‘FORM_DB_URL’,
‘mysql://root:foobar@localhost/WEBFORMS’);

Suppose that your database server is called db.domain.com and the user-
name and password to access the WEBFORMS database (which you will cre-
ate during this installation process) are admin and db123, respectively. In
such a case, you would modify the database access URLs throughout each
configuration file as follows:

define(‘FORM_DB_URL’,
‘mysql://admin:db132@db.domain.com/WEBFORMS’);

684 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 684

◆ Set file/directory permissions. Make sure that you have changed the file
and directory permissions so that your intranet Web server can access all
the files.

Once you have performed the preceding steps, you are ready to test your Web
Forms Manager applications.

Testing the Web Forms Manager
Once everything is installed, make a copy of one of your existing Web forms and
rename it oldname.php. Here, we will rename a Web form called ask.html to
ask.|php. The ask.php form can be found on the CD-ROM that accompanies this
book in the ch19/webforms/example_forms directory. It is already configured for
the setup discussed here.

The changes in the Web form that we need to make are as follows:

◆ Change the FORM ACTION line as shown here:

<form action=”/webforms/apps/submit.php” method=”POST”>

The action line should be pointing at the submit.php location. The preced-
ing line shows the recommended location and what we used for this test.

◆ Add the following two hidden fields

<input type=hidden name=”form_id”
value=”X9393948482339292929”>

<input type=hidden name=”return_url” value=”<?php echo
$_SERVER[‘HTTP_REFERER’]; ?>”>

The form_id value is something you choose arbitrarily. This value must
be used in webforms.conf as follows:

$KNOWN_FORMS = array(
‘X9393948482339290000’ => “contact.conf”,
‘X9393948482339295000’ => “newsletter.conf”,
‘X9393948482339292929’ => “askform.conf”
);

Here, the form_id ‘X9393948482339292929’ is associated with a config-
uration file called askform.conf. This configuration file must reside in
the /webforms/apps/site_forms/askform directory. A sample configu-
ration is shown in Listing 19-2. This configuration defines the form-
specific database table name using FORM_TABLE.

Chapter 19: Web Forms Manager 685

25 549669 ch19.qxd 4/4/03 9:27 AM Page 685

◆ Create a database table in your WEBFORMS database using the name given
(FORM_TABLE) in askform.conf. This table should have all the fields in
your Web form and the ID and SUBMIT_TS fields. The following CREATE
TABLE statement is used for our sample ask.php form:

#
Table structure for table `ASK_TBL`
#

CREATE TABLE ASK_TBL (
id bigint(20) NOT NULL auto_increment,
fname varchar(30) NOT NULL default ‘’,
lname varchar(30) NOT NULL default ‘’,
company varchar(30) NOT NULL default ‘’,
email varchar(70) NOT NULL default ‘’,
url varchar(127) NOT NULL default ‘’,
about tinytext NOT NULL,
subject tinytext NOT NULL,
details text NOT NULL,
SUBMIT_TS bigint(20) NOT NULL default ‘0’,
PRIMARY KEY (id,email)

) TYPE=MyISAM

◆ Once you have created the appropriate database table, you are ready to
submit requests. Make sure that you configure the rest of askform.conf to
match your requirements. For example, to control access to your Web form
via an IP address, you can use the ACL_ALLOW_FROM and ACL_DENY_FROM
lists.

The $FORM_FIELDS_ARRAY should be used to define the fields that you
have in your Web form (exactly as they appear in your Web form),
whether they are required or not; and the type of validation and clean-up
operations you want to perform on them before submission is stored in
the database. For example, the askform.conf shown in Listing 19-2 shows
the following:

‘fname’ => ‘1:text:size=3-30:name:trim|lower|ucwords’,

Here, the Web form has a field called fname. The above configuration line
states that this field is required and can be of size 3 to 30 characters long.
The field is to be validated using the validate_name() method. If the
field is valid, the value of the field is to be cleaned up using trim, lower,
and ucwords functions. This means that a valid fname field value will be
trimmed for whitespaces and lowercases and, finally, each word of the
value will be uppercased before storing in the WEBFORMS database.
Similarly, the URL field (url) is defined using the following:

‘url’ => ‘0:text:size=3-60:url:trim|lower’,

686 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 686

However, it is not required (0), and it is considered text data; it is consid-
ered to be of size 3 to 60 and validated using validate_url() method.
Once validated, the field data is trimmed and lowercased before being
stored in a database.

As you can see, each field is defined in terms of required/not required,
type (text, number, name, e-mail, and so on), size requirements, validation
method, and cleanup functions.

◆ If you have a file upload field, make sure that you create the
UPLOAD_FILE_DIR directory (/webforms/apps/site_forms/askform/
uploadfile) and make it writable by the Web server user. You also have
to define $UPLOAD_FILE_FIELDS_ARRAY to list the Web form fields that
are file names. For example, the sample ask form configuration shows a
field called attachment as the file upload field, as follows:

‘attachment’ => ‘0:size=0-60KB’,

The uploaded file is not required (0) and cannot exceed size 60 kilobytes.

◆ If you do not want to use the default templates used for the thank-you
response and inbound (to whomever you wish) and outbound mail (to
the submitter), you can store your own templates per form in the FRM_
TEMPLATE_DIR directory. Make sure that this directory is stored in
/webforms/apps/site_forms/askform/templates for the current
example.

◆ If you want to send an e-mail message to the submitter upon submission,
set SEND_OUTBOUND_MAIL to 1 as done in askform.conf. Set EMAIL_FIELD
to point to the e-mail field in your Web form. The OUTBOUND_MAIL_
TEMPLATE template is used for mailing the message. You should customize
this message as needed. The OUTBOUND_MAIL_SUBJECT defines the subject
line used in the message. Note that if you do not supply a custom mail tem-
plate, the default mail template from /webforms/apps/templates is used.

◆ To receive an e-mail for each successful form submission, set SEND_
INBOUND_MAIL to 1 as done in askform.conf. The INBOUND_MAIL_
TEMPLATE template is used for mailing this message to you. You should
customize this message as needed. The INBOUND_MAIL_SUBJECT defines
the subject line used in the message. Note that if you do not supply a
custom mail template, the default mail template from /webforms/apps/
templates is used. The users who can receive inbound messages are listed
in INBOUND_MAIL_TO.

◆ The thank-you template is specified using SHOW_THANKYOU_TEMPLATE. If
you do not have a Web form–specific thank-you template in the form’s
own template directory, the default template is used.

Chapter 19: Web Forms Manager 687

25 549669 ch19.qxd 4/4/03 9:27 AM Page 687

◆ Upon successful completion of a Web form, if you want to automatically
redirect users to an URL other than the one from which they came, you
can set AUTO_REDIRECT to 1 and specify a value for AUTO_REDIRECT_URL.
Note that if your Web form is a PHP script, you can redirect users to the
URL from which they clicked the Web form by incorporating the following
lines in the Web form:

<input type=hidden name=”return_url” value=”<?php echo
$_SERVER[‘HTTP_REFERER’]; ?>”>

◆ Finally, define the error messages that you want to show when a required
field is missing. This is done using the following lines in askform.conf:

$ERRORS[‘US’][‘ERROR_FNAME’] = “First name - missing.”;
$ERRORS[‘US’][‘ERROR_LNAME’] = “Last name - missing.”;
$ERRORS[‘US’][‘ERROR_EMAIL’] = “Email address - missing.”;
$ERRORS[‘US’][‘ERROR_COMPANY’] = “Company name - missing.”;
$ERRORS[‘US’][‘ERROR_SUBJECT’] = “Subject of your question -
missing.”;
$ERRORS[‘US’][‘ERROR_DETAILS’] = “Details of your question -
missing.”;

Here, when the fname field is required but missing, the $ERRORS[ERROR_
FNAME] value is displayed using a JavaScript alert window. You can
customize these messages as you see fit.

Now you are ready to test the ask.php form.

Listing 19-2: askform.conf

<?php

// Name of the Web form
define(FORM_NAME, ‘Ask Form’);

// Name of the table used
define(FORM_TABLE, ‘ASK_TBL’);

define(‘ACL_ALLOW_FROM’, ‘’);
define(‘ACL_DENY_FROM’, ‘192.168.0.11’);
define(‘FORM_LOG_FILE’, $_SERVER[‘DOCUMENT_ROOT’] .

‘/webforms/askform.log’);

$FORM_FIELDS_ARRAY = array(
‘fname’ => ‘1:text:size=3-30:name:trim|lower|ucwords’,

688 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 688

‘lname’ => ‘1:text:size=3-30:name:trim|lower|ucwords’,
‘company’ => ‘1:text:size=2-60:org_name:trim|lower|ucwords’,
‘email’ => ‘1:text:size=5-60:email:trim|lower’,
‘url’ => ‘0:text:size=3-60:url:trim|lower’,
‘about’ => ‘0:text:size=3-60:any_string:trim|lower|ucwords’,
‘subject’ => ‘1:text:size=3-60:any_string:trim|lower|ucwords’,
‘details’ => ‘1:text:size=0-20KB:any_string:none’
);

//Do we need to upload file from the form 0 - not, 1 - yes
define(UPLOAD_FILE, 0);

//directory name for storing file
define(UPLOAD_FILE_DIR, ‘site_forms/askform/uploadfile/’);

//form relative template directory
define(FRM_TEMPLATE_DIR, ‘site_forms/askform/templates/’);

$UPLOAD_FILE_FIELDS_ARRAY = array(
‘attachment’ => ‘0:size=0-60KB’,
);

// Do we send email to person submitting the form? 1= yes 0 = no
define(SEND_OUTBOUND_MAIL, 1);
define(OUTBOUND_MAIL_TEMPLATE, ‘outbound_mail.html’);
define(OUTBOUND_MAIL_SUBJECT, ‘Thank you’);
define(EMAIL_FIELD,’email’);

// Do we send email to inbound (company hosting the form) per
submission? 1= yes 0 = no
define(SEND_INBOUND_MAIL, 1);
define(INBOUND_MAIL_TEMPLATE, ‘inbound_mail.html’);

define(INBOUND_MAIL_TO, ‘you@yourdomain.com,sales@yourdomain.com’);

define(INBOUND_MAIL_SUBJECT, ‘Inbound mail for new request’);

// If auto redirect is not TRUE then we show a thank you template
define(SHOW_THANKYOU_TEMPLATE, ‘thanks.html’);

// Should we automatically redirect once form is submitted
define(AUTO_REDIRECT, FALSE);

Continued

Chapter 19: Web Forms Manager 689

25 549669 ch19.qxd 4/4/03 9:27 AM Page 689

Listing 19-2 (Continued)

define(AUTO_REDIRECT_URL, ‘http://www.yourdomain.com’);

$ERRORS[‘US’][‘ERROR_FNAME’] = “First name - missing.”;
$ERRORS[‘US’][‘ERROR_LNAME’] = “Last name - missing.”;
$ERRORS[‘US’][‘ERROR_EMAIL’] = “Email address - missing.”;
$ERRORS[‘US’][‘ERROR_COMPANY’] = “Company name - missing.”;
$ERRORS[‘US’][‘ERROR_SUBJECT’] = “Subject of your question -
missing.”;
$ERRORS[‘US’][‘ERROR_DETAILS’] = “Details of your question -
missing.”;

?>

Now on Your Web browser make a request for http://yourserver/ask.php.
Figure 19-3 shows one such request.

Figure 19-3: A simple Web form called ask.php.

This form is managed by the submit.php application developed in this chapter,
but that can be noted only if you review the source code, which contains the fol-
lowing lines:

690 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 690

<form action=”/webforms/apps/submit.php” method=”POST”>

<input type=hidden name=”form_id” value=”X9393948482339292929”>

<input type=hidden
name=”return_url”
value=”<?php echo $_SERVER[‘HTTP_REFERER’]; ?>”>

If we don’t enter all the required data and submit the form, the data entry dialog
box shown in Figure 19-4 appears.

Figure 19-4: Data entry error dialog box.

After submitting valid data, submit.php shows the thank-you message shown
in Figure 19-5. Clicking the Continue button takes us to the page from which the
form originated. Note that if you directly called the form, as we did in this case, the
form cannot redirect. Ideally, you will link the form using <a href=”/path/
to/ask.php”> in a page within your site or another affiliate site. In such a case,
submit.php can return you to the referring page.

Figure 19-5: Data validated and submitted.

Chapter 19: Web Forms Manager 691

25 549669 ch19.qxd 4/4/03 9:27 AM Page 691

After submitting two requests as test data, we access the reporter application
using http://server/webforms/apps/webformsreporter.php. It displays the
interface shown in Figure 19-6.

Figure 19-6: Selecting a form in the reporter interface.

Select a Web form such as the Ask Form and click the Show Report button, which
displays a report, as shown in Figure 19-7.

Figure 19-7: Viewing data available in a Web form database.

Downloading data from the form is as easy as clicking the Download all data
from this form link shown in the report. Figure 19-8 shows the dialog box that
appears after you click the link.

692 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 692

Figure 19-8: Downloading CSV data from the Web form.

When you click the Save button, the exporter-supplied file name will be given.
For example, because the ASK form is named using FORM_NAME in askform.conf as
“ASK_FORM”, the default filename is askform.csv. Therefore, if your form names
are unique, the file names will also be unique.

Figure 19-9 shows how the downloaded data file appears in MS Excel.

Figure 19-9: Viewing CSV data in Excel.

Security Considerations
The webformsreporter.php application and the CSVExporter.php application
should be restricted using your Web server’s username/password authentication
scheme. In our example, we installed the Web forms application in %DocumentRoot%/
webforms/apps. We can create a directory called %DocumentRoot/webforms/
restricted and move CSVExporter.php and webformsreporter.php from the
/webforms/apps directory to this new directory.

Chapter 19: Web Forms Manager 693

25 549669 ch19.qxd 4/4/03 9:27 AM Page 693

In the restricted directory, we can create symbolic links to apps/class, apps/
site_forms, apps/templates, webforms.conf, and webforms.error files and
directories, as shown here:

ln -s ../apps/webforms.conf webforms.conf
ln -s ../apps/webforms.errors webforms.errors
ln -s ../apps/templates templates
ln -s ../apps/class class
ln -s ../apps/site_forms site_forms

The preceding code should produce the following results using the ls -l
command:

bash-2.03$ ls -l
total 32
-rw-r--r-- CSVExporter.php
lrwxrwxrwx class -> ../apps/class
lrwxrwxrwx site_forms -> ../apps/site_forms
lrwxrwxrwx templates -> ../apps/templates
lrwxrwxrwx webforms.conf -> ../apps/webforms.conf
lrwxrwxrwx webforms.errors -> ../apps/webforms.errors
-rw-r--r-- webformsreporter.php

In the restricted directory, create an .htaccess file such as the following:

AuthType Basic
AuthName “WebForm Administration “
AuthUserFile /path/to/.users
Require valid-user

Make sure that you change the AuthUserFile from /path/to/.users to a path
that’s outside your Web document tree but still readable by the Apache user. In this
file, create users using the htpasswd utility that comes with the Apache Web server.
For example, to create a user named joe in the nonexistent /path/to/.users file,
you can run the following:

htpasswd -c /path/to/.users joe

You will be asked to enter Joe’s new password twice, after which Joe can access
the reporter and CSV Export applications of the Web Forms Management application
suite, using the http://server/webforms/restricted/webformsreporter.php
and http://server/webforms/restricted/CSVExporter.php URLs, respectively.

694 Part V: Internet Applications

25 549669 ch19.qxd 4/4/03 9:27 AM Page 694

Summary
In this chapter, you developed a set of Web applications that can manage single-
page Web forms that do not have complex requirements. The application discussed
in this chapter also offers you a way to download data collected by using the Web
forms or view reports on collected data.

Chapter 19: Web Forms Manager 695

25 549669 ch19.qxd 4/4/03 9:27 AM Page 695

25 549669 ch19.qxd 4/4/03 9:27 AM Page 696

Chapter 20

Web Site Tools
IN THIS CHAPTER

◆ Developing a voting tool

◆ Installing the voting tool

◆ Using the voting tool

IN THIS CHAPTER, WE WILL develop a simple voting tool that enables your visitors to
cast votes on a topic of your choice. Such votes are typically gathered to review
user preferences. The following section describes the voting application’s function-
ality requirements.

Functionality Requirements
The vote application will have the following features:

◆ A single database table. It will store all vote data in a single table.

◆ An unlimited number of surveys/polls. You can set up as many surveys
or polls as you want.

◆ An unlimited number of polling options. Users can select as many
options as needed to generate the poll data. The options can be either
radio buttons or checkboxes. However, each option value must be
numeric.

◆ A customizable results page. The results page is displayed using a custom
template for each poll/survey; therefore, this page can be customized as
needed.

◆ Control over multiple votes. You can decide if you want to allow multi-
ple votes from the same person or not. For example, you can set a time
limit for the cookie used to identify Web visitors who have already voted.
This time limit is configurable, so you can allow a visitor to vote on every
visit, or disallow voting until a specified amount of time has passed. For
example, you can set the expiration time such that a visitor can vote once
per month. 697

26 549669 ch20.qxd 4/4/03 9:27 AM Page 697

Note that there are several prefab voting tools available online. However,

sometimes it’s better to create a simple, but custom application from scratch

than modify an existing application.

Understanding Prerequisites
This is an Internet application and does not require central authentication techniques.
Therefore, it is not dependent on the intranet tools discussed in earlier chapters.

However, it does require the application framework classes discussed in Chap-
ter 4. You must install the application framework classes along with the PHPLIB
and PEAR packages.

Designing the Database
Figure 20-1 shows the VOTE database diagram for the voting tool. This section
describes the only table of the database.

Figure 20-1: VOTE database diagram.

VOTES Table
This table is the integral part of the application. It holds the Poll ID (POLL_ID), the
vote value (VOTE), and the submission timestamp of the vote (VOTE_TS).

Listing 20-1 shows an implementation of the VOTE database in MySQL. To
implement this survey database in MySQL, you can create a database called VOTE
in your MySQL database server by saving the code in Listing 20-1 in a text file
(named VOTE.mysql) and running the following command:

Listing 20-1: VOTE.mysql

mysql -u root -p -D VOTE < VOTE.mysql

Make sure you change the username (root) to whatever is appropriate for your
system.

698 Part V: Internet Applications

26 549669 ch20.qxd 4/4/03 9:27 AM Page 698

Designing and Implementing the
Voting Tool Application Class
As illustrated in the system diagram shown in Figure 20-2, only one object is
needed to implement the voting tool application.

In this section, you will develop the class that provides the only object needed
for your voting tool application.

Figure 20-2: Voting tool system diagram.

Designing and implementing the Vote class
The Vote class is used to manipulate each poll. It enables the application to add votes
and retrieve poll results. The ch20/apps/class/class.Vote.php file on the accom-
panying CD-ROM implements this class, which implements the following methods:

Vote()
This is the constructor method. It works as follows:

1. It sets a member variable named dbi to point to the object provided by
the class.DBI.php, which is passed to the constructor by an application.
The dbi member variable holds the DBI object, which is used to communi-
cate with the back-end database.

2. It sets a member variable named vote_tbl to store the name of the vote
table.

3. It calls the setPollID() method to set the Poll ID that has been passed as
a parameter.

setPollID()
This method is used to set the Poll ID as the member variable “pid.” It takes the ID as a
parameter and returns it after setting it to the member variable if the ID is not empty.

Vote Application

PHP Application Framework

Vote
Application

Vote Object class.Vote.php

Chapter 20: Web Site Tools 699

26 549669 ch20.qxd 4/4/03 9:27 AM Page 699

addVote()
This method is used to add a vote to the database. This is how it works:

◆ It calls the setPollID() method to set the given poll ID to the member
variable pid.

◆ It stores the current time in a variable named $curTime.

◆ It builds a query statement, $stmt, to insert the poll ID, the given vote,
and the current timestamp into the database.

◆ Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object.

◆ The method returns TRUE or FALSE depending on the status of the inser-
tion operation.

getVoteCountByChoice()
This method is used to retrieve the number of votes per option for a given poll. This
is how it works:

1. It first calls the setPollID() method to set the given poll ID to the mem-
ber variable pid.

2. It builds a query statement, $stmt, to retrieve the number of votes posted
for the given option and poll ID.

3. Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the query
is stored in the $result object.

4. The row containing the number of votes is retrieved by fetching it from
the $result variable using the fetchRow() method.

5. Finally, the number of votes is returned from this method.

getTotalVoteCount()
This method is used to retrieve the total number of votes posted for a given poll.
This is how it works:

1. It calls the setPollID() method to set the given poll ID to the member
variable pid.

2. It builds a query statement, $stmt, to retrieve the total number of votes
posted for the given poll ID.

3. Using the DBI object ($this->dbi), the $stmt statement is run via the
$this->dbi->query() method in the DBI object. The result of the query
is stored in the $result object.

700 Part V: Internet Applications

26 549669 ch20.qxd 4/4/03 9:27 AM Page 700

4. The row containing the number of votes is retrieved by fetching it from
the $result variable using the fetchRow() method.

5. Finally, the number of votes is returned from this method.

Creating the Application
Configuration Files
Like every other application developed in this book, the voting tool application also
uses a standard set of configuration and error files. These files are discussed in the
following sections.

Creating the main configuration file
The primary configuration file for the entire system is called vote.conf. Table 20-1
describes each configuration variable.

TABLE 20-1 VOTE.CONF VARIABLES

Configuration Variable Purpose

$PEAR_DIR Set to the directory containing the PEAR package;
specifically, the DB module needed for class.DBI.php in
our application framework.

$PHPLIB_DIR Set to the PHPLIB directory, which contains the PHPLIB
packages; specifically, the template.inc package
needed for template manipulation.

$APP_FRAMEWORK_DIR Set to our application framework directory.

$PATH Set to the combined directory path consisting of
$PEAR_DIR, $PHPLIB_DIR, and
$APP_FRAMEWORK_DIR. This path is used with the
ini_set() method to redefine the php.ini entry for
include_path to include $PATH ahead of the default path.
This enables PHP to find our application framework,
PHPLIB, and PEAR-related files.

$APPLICATION_NAME Internal name of the application.

$DEFAULT_LANGUAGE Set to the two-digit default language code.

Continued

Chapter 20: Web Site Tools 701

26 549669 ch20.qxd 4/4/03 9:27 AM Page 701

TABLE 20-1 VOTE.CONF VARIABLES (Continued)

Configuration Variable Purpose

$ROOT_PATH Set to the root path of the application.

$REL_ROOT_PATH Relative path to the root directory.

$REL_APP_PATH Relative application path as seen from a Web browser.

$TEMPLATE_DIR The fully qualified path to the template directory.

$CLASS_DIR The fully qualified path to the class directory.

$REL_TEMPLATE_DIR The Web-relative path to the template directory used.

$VOTE_CLASS Name of the Vote class file.

$VOTE_DB_URL The fully qualified URL for the database used to store the
VOTE information.

$VOTE_TBL Name of the VOTES table in the database.

$COOKIE_EXPIRATION_TIME The amount of time, in seconds, that specifies the cookie
expiration time for a vote.

You may need to tailor to your own system’s requirements the directory struc-
ture used in the vote.conf file supplied in the ch20 directory on the CD-ROM. Here
is what the current directory structure looks like:

/---evoknow
|
+---intranet

|
+---htdocs ($ROOT_PATH)

|
+---vote (Voting Tool Applications)

|
+---apps (apps and configuration files)

|
+---class (class files)
|
+---templates (HTML templates)
|

+---images (images for the templates)

702 Part V: Internet Applications

26 549669 ch20.qxd 4/4/03 9:27 AM Page 702

By changing the following configuration parameters in vote.conf, you can mod-
ify the directory structure to fit your site requirements:

$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;
$PHPLIB_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/phplib’;
$APP_FRAMEWORK_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/framework’;
$ROOT_PATH = $_SERVER[‘DOCUMENT_ROOT’];
$REL_ROOT_PATH = ‘/vote’;
$REL_APP_PATH = $REL_ROOT_PATH . ‘/apps’;
$TEMPLATE_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/templates’;
$CLASS_DIR = $ROOT_PATH . $REL_APP_PATH . ‘/class’;
$REL_TEMPLATE_DIR = $REL_APP_PATH . ‘/templates/’;

Creating an errors file
The error messages displayed by the contact manager applications are stored on the
CD-ROM in the ch20/apps/vote.errors file. You can modify the error messages
using a text editor.

Creating the Application Templates
The templates used in this application are poll-specific. Every poll will have an out-
put template that will be prepared by the user who initiates the poll. You can find
an example poll output template on the CD-ROM in the ch20/apps/templates
directory. These templates must be named according to the poll ID. For example, a
poll with an ID of 99 should have an output template named 099.html.

Creating the Vote Application
This application, vote.php, is responsible for managing the entire process of the
voting system. The application is included on the CD-ROM in the ch20/apps direc-
tory. It implements the following functionality:

◆ Allows a user to submit a vote

◆ Displays the poll result

This application has the following methods.

Chapter 20: Web Site Tools 703

26 549669 ch20.qxd 4/4/03 9:27 AM Page 703

run()
When the application is run, this method is called. It first calls the setPollID()
method to set the given poll ID to a member variable. Then it creates a member
variable named “_voteObj” to hold an object of the Vote class with the member poll ID.
It determines whether a cookie has been set, which indicates that the user has already
voted for this poll. If it finds the cookie, it directly calls displayVoteResult() to
show the vote result instead of adding the vote to the database.

setPollID()
This method sets the given poll ID from the user request. It displays an alert mes-
sage when it determines that the poll ID has not been supplied from the user form.

getPollID()
This method is used to retrieve the current poll ID from the member variable
_pollID. It simply returns $this->_pollID.

addVote()
This method is responsible for adding the user vote to the database by using the
Vote class. This is how it works:

1. It first determines whether the user has selected a voting option. If not, it
displays an alert message and returns null.

2. Next, the addVote() method of the Vote class is used to add the given
vote to the database. The vote class object is instantiated with the member
poll ID in the run() method, so it is not necessary to pass the poll ID to
the addVote() method here.

3. If the vote addition status is successful, this method sets a cookie for the
user, indicating that the user submitted a vote for this poll; otherwise, it
displays an alert message indicating the failure of the addition operation.

4. Finally, the displayVoteResult() method is called to show the vote result.

displayVoteResult()
This method shows the poll result to the user. It works as follows:

1. It first determines whether the total number of options for the poll has
been supplied. If it hasn’t, it displays an error message and returns null, as
a result cannot be found unless the method can ascertain the total number
of options available.

704 Part V: Internet Applications

26 549669 ch20.qxd 4/4/03 9:27 AM Page 704

2. Next, the output template for the poll is loaded in a template object called
$template. The output template file name is determined from the poll ID.
If the output template file does not exist in the template directory, it dis-
plays an alert message and returns null.

3. Then it calls the getTotalVoteCount() method of the Vote class to
retrieve the total number of votes posted for this poll, and sets the number
to the appropriate variable in the template.

4. For each of the poll options, the getVoteCountByChoice() method is
called to retrieve the number of votes cast. This number, along with the
total number of votes for the poll, is used to determine the percentage of
votes for this option. These numbers are set to appropriate variables in the
template.

5. Finally, the entire template is parsed and printed to the user to provide a
full poll result.

Installing the Voting Tool
In this section, it is assumed that you are using a Linux system with MySQL and an
Apache server installed. Your Internet Web server document root directory is
%DocumentRoot%. Of course, if you have a different path, which is likely, you
should change this path whenever you see it in a configuration file or instruction in
this chapter.

It is further assumed that you have installed the PHPLIB and PEAR libraries.
Normally, these are installed during PHP installation. For your convenience, we
have provided these in the lib/phplib.tar.gz and lib/pear.tar.gz directories on the
CD-ROM. In these sample installation steps, it is assumed that these are installed in
the %DocumentRoot%/phplib and %DocumentRoot%/pear directories. Because
your installation locations for these libraries are likely to be different, make sure
you replace these paths in the configuration files.

Here is how you can get your voting tool applications up and running:

1. Install the application framework. If you have not yet installed the appli-
cation framework discussed in Chapter 4, you must do so before proceed-
ing further.

2. Install the VOTE database. The quickest way to create the VOTE database
is to run the following commands:

mysqladmin –u root –p create VOTE
mysql –u root –p –D VOTE < VOTE.mysql

The VOTE.mysql can be found in the vote/sql directory created from
ch20.tar.gz or you can get it from the CD-ROM’s ch20/sql directory.

Chapter 20: Web Site Tools 705

26 549669 ch20.qxd 4/4/03 9:27 AM Page 705

3. Install the VOTE applications. From the ch20 directory of the CD-ROM,
extract ch20.tar.gz in %DocumentRoot%. This will create a directory
called vote in your document root. Configure %DocumentRoot%/vote/
apps/vote.conf for path and database settings. The applications are
installed in the %DocumentRoot%/vote/apps directory, and the templates
are stored in %DocumentRoot%/vote/apps/templates.

Your MySQL server is hosted on the intranet Web server; therefore, it can
be accessed via localhost. However, if this is not the case, you can easily
modify the database URLs in each application’s configuration files. For
example, the vote.conf file has a MySQL database access URL such as the
following:

$VOTE_DB_URL = ‘mysql://root:foobar@localhost/VOTE’;

Suppose, for example, that your database server is called db.domain.com,
and that the username and password for accessing the VOTE database are
admin and db123, respectively. (You will create both during this installa-
tion process.) In such a case, you would modify the database access URL
in the vote.conf configuration file as follows:

$VOTE_DB_URL =
‘mysql://admin:db132@db.domain.com/VOTE’;

4. Set file/directory permissions. Make sure you have changed file and direc-
tory permissions such that your internet Web server can access all the files.

Once you have performed the preceding steps, you are ready to test your application.

Testing the Voting Tool
The first step in testing y our vote application is to develop a poll form. In this sam-
ple case, we will develop a simple poll form that asks voters whether they like the
current Web site. This form, which is provided on the CD-ROM in (ch20/apps/
vote/sample_polls/website_poll.html), is shown in Figure 20-3.

Figure 20-3: A sample Web site poll form.

706 Part V: Internet Applications

26 549669 ch20.qxd 4/4/03 9:27 AM Page 706

If you examine the source of this Web form, you will notice the following HTML
form code:

<form action=”/vote/apps/vote.php” target=_blank method=”POST”>

How do you rate this site? <p>

<input type=radio name=”vote” value=”1”>Great, very informative

<input type=radio name=”vote” value=”2”>Good, has good info

<input type=radio name=”vote” value=”3”>OK, needs a bit of improvement

<input type=radio name=”vote” value=”4”>Poor, needs a lot of improvement
<p>

<input type=submit value=”Vote”>
<input type=hidden name=”poll_id” value=”1”>

</form>

Notice that the form action line is set to /vote/apps/vote.php, as it is needed to
call the vote application. In addition, note that each vote radio button is called
“vote” and has a numeric value (1–4). This is needed to collect vote data. Finally,
note a hidden form field called poll_id, which is set to 1. This number identifies the
form in the vote.conf file’s $choicesPerPoll array, which is shown here:

$choicesPerPoll = array(
//POLL ID => NUMBER OF CHOICES

1 => 4,
2 => 7

);

This array in vote.conf determines the maximum number of options per polling
form. Here, our Web site polling form (poll_id 1) has four options, as shown in the
aforementioned HTML form, so the $choicesPerPoll array has the same number
specified.

Now, if you select any of the voting options for the Web site form and click
the Vote button, your vote will be stored in the VOTES table in the VOTE database.
You will be given a cookie so that you cannot vote again until the COOKIE_
EXPIRATION_TIME time specified in vote.conf expires.

As soon as you click the Vote button, you will see a pop-up window that shows
the current poll results (i.e., including your vote). This page is shown using a
results template stored in the templates directory (%DocumentRoot%/vote/
apps/templates). The name of the template is specific to each poll_id. For exam-
ple, a poll form with poll_id must have a template called 001.html in the
%DocumentRoot/%vote/apps/templates directory. Because each poll has its own
results template, you can customize each poll’s results as desired.

Chapter 20: Web Site Tools 707

26 549669 ch20.qxd 4/4/03 9:27 AM Page 707

The basic structure of a results template is as follows:

<!-- BEGIN mainBlock -->
{1_VOTE_COUNT} {1_VOTE_PERCENT}
{2_VOTE_COUNT} {2_VOTE_PERCENT}

...

{n_VOTE_COUNT} {n_VOTE_PERCENT}

{TOTAL_VOTES}
<!-- END mainBlock -->

Each of the tags within the braces is replaced with respective vote data. For
example, {1_VOTE_COUNT} is replaced with the total number of votes cast for
option #1 in a poll. The {1_VOTE_PERCENT} tag is replaced with the percentage of
votes cast for option #1 in a poll. The {TOTAL_VOTES} tag is replaced with the
grand total of votes cast in a poll. Figure 20-4 shows a sample results page for the
Web site poll described in the preceding example.

Figure 20-4: A sample Web site’s poll results.

So far, our example poll form has used multiple radio button options. However, the
vote tool also supports multiple checkbox options, for polls in which you want visitors
to cast multiple votes that identify their preferences from a group of items. For exam-
ple, Figure 20-5 shows a poll form that asks users to select one or more languages.
This form can be found in the sample_polls directory as language_poll.html.

708 Part V: Internet Applications

26 549669 ch20.qxd 4/4/03 9:27 AM Page 708

Figure 20-5: A sample language poll form using checkboxes.

The source for this form looks as follows:

<form action=”/vote/apps/vote.php” target=_blank method=”POST”>
What languages do you write code? (check all that applies)<p>

<input type=checkbox name=”vote[]” value=”1”>PHP

<input type=checkbox name=”vote[]” value=”2”>Perl

<input type=checkbox name=”vote[]” value=”3”>C

<input type=checkbox name=”vote[]” value=”4”>C++

<input type=checkbox name=”vote[]” value=”5”>Java

<input type=checkbox name=”vote[]” value=”6”>Python

<input type=checkbox name=”vote[]” value=”7”>Smalltalk

<input type=submit value=”Vote”

<input type=hidden name=”poll_id” value=”2”>

Here, notice that the vote field name is not vote but vote[], to indicate that we
are returning an array of options. The values are still numeric.

When this poll form is submitted with multiple selections, each vote is added in
the database. Figure 20-6 shows an example results page (displayed using tem-
plates/002.html).

Chapter 20: Web Site Tools 709

26 549669 ch20.qxd 4/4/03 9:27 AM Page 709

Figure 20-6: A favorite language poll results page.

Summary
In this chapter, you learned how to develop a vote application that could be used to
poll your Web site visitors about issues related to your Web site or other matters
about which you are interested to know their opinions. This is a nifty tool to have
for most Web sites.

710 Part V: Internet Applications

26 549669 ch20.qxd 4/4/03 9:27 AM Page 710

Tuning and Securing PHP
Applications

CHAPTER 21
Speeding Up PHP Applications

CHAPTER 22
Securing PHP Applications

Part VI

27 549669 PP06.qxd 4/4/03 9:27 AM Page 711

27 549669 PP06.qxd 4/4/03 9:27 AM Page 712

Chapter 21

Speeding Up PHP
Applications
IN THIS CHAPTER

◆ Benchmarking your PHP application

◆ Stress-testing your PHP application

◆ Compressing your PHP application output

◆ Using output caching using jpcache

◆ Using output caching using the PEAR cache

◆ Using function caching using the PEAR cache

◆ Using PHP opcode caching techniques

THIS CHAPTER DESCRIBES HOW YOU can speed up your PHP applications using vari-
ous techniques, including fine-tuning code, output buffering, output compression,
output caching, and code caching. These techniques will enable you to turbocharge
your application for the high-volume access scenarios usually present in heavy-
traffic Web sites with PHP applications.

Optimization isn’t a task that should be undertaken on every piece of code.

You must ask yourself, before starting to optimize code, “is this code fast

enough?” If the answer is “yes,” optimization probably isn’t necessary.

Spending time optimizing existing code could be time wasted if you neglect

other tasks for the optimization time. The best advice is to use good tech-

niques while constructing the code in the first place and only optimize code

that actually needs it.

713

28 549669 ch21.qxd 4/4/03 9:27 AM Page 713

Benchmarking Your PHP Application
Most Web programming is done quickly, and often carelessly. When someone needs
a new Web application, notifying the developers is often the last priority. Once the
developers are notified, the application gets the “was needed yesterday” status.
Therefore, developers design quick-and-dirty applications, and lack the necessary
time to fine-tune the code.

When you plan to develop a new application, try to allocate one-third of your
project time to fine-tuning your code. The first step in fine-tuning your code is
identifying the most commonly used code segments. You can easily do this by
adding spurious print statements to your code or enabling logging/debugging for
critical segments of your applications.

Once you have identified the segments of code that are most commonly required
to service a request, you need to identify any elements that are not operating at
optimal speed.

To identify slow code, you should review your code as frequently as possible,
using the benchmarking techniques described in the following section.

Note that optimizing code won’t always improve performance. It’s impor-

tant to consider the whole picture when you are experiencing performance

problems — if your database is maxed out, your bandwidth not adequate

for your traffic, or hardware not keeping up with the demand, optimizing

code won’t improve a thing.

Benchmarking your code
The PEAR package discussed in Chapter 4 includes a set of benchmark classes that
you can use to benchmark your code without writing a lot of new code. For exam-
ple, Listing 21-1 shows a PHP script that benchmarks a function called
myFunction.

Listing 21-1: bench1.php

<?php

// If you have installed PEAR packages in
// a different directory than %DocumentRoot%/pear
// change the setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

$PATH = $PEAR_DIR;

714 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 714

ini_set(‘include_path’, ‘:’ .
$PATH . ‘:’ . ini_get(‘include_path’));

require_once ‘Benchmark/Iterate.php’;

$benchmark = new Benchmark_Iterate;

$benchmark->run(10, ‘myFunction’, $argument);

$result = $benchmark->get();

echo “<pre>”;
print_r($result);
echo “</pre>”;
exit;

function myFunction($var) {
// do something
echo ‘x ‘;

}

?>

The $PEAR_DIR variable points to the PEAR directory, which in this case is
installed in %DocumentRoot%/pear. The $PEAR_DIR variable is included in the
include_path using the ini_set() call. Then the Benchmark/Iterate.php class is
loaded into the application.

A benchmark Iterate object called $benchmark is created. This object is used to
run the myFunction function 10 times. The $argument variable is passed to
myFunction each time it is called. The profiling result of the multiple execution,
$result, is retrieved using the get() method of the benchmark object. The result is
output to the screen using the print_r() function. A sample of typical output
looks as follows:

x x x x x x x x x x
Array
(

[1] => 0.00074100494384766
[2] => 0.00013399124145508
[3] => 0.00013101100921631
[4] => 0.0001380443572998
[5] => 0.00014901161193848
[6] => 0.00013506412506104
[7] => 0.00013101100921631
[8] => 0.00013399124145508

Chapter 21: Speeding Up PHP Applications 715

28 549669 ch21.qxd 4/4/03 9:27 AM Page 715

[9] => 0.00014710426330566
[10] => 0.00013601779937744
[mean] => 0.00019762516021729
[iterations] => 10

)

Notice that for each execution of myFunction, the benchmark object has tracked
the execution time. It has also calculated the mean (average) time needed by
myFunction, which is 0.00019762516021729 seconds (approximately 0.20 ms).

By running the target functions (slow functions) multiple times, you can deter-
mine the mean execution speed and start fine-tuning the code using the benchmark
method described.

Now let’s look at another method of benchmarking your code. Listing 21-2
shows a PHP script that uses the Benchmark/Timer.php class from PEAR’s bench-
mark classes to time execution of a function named myFunction().

Listing 21-2: bench2php

<?php

// If you have installed PEAR packages in
// a different directory than %DocumentRoot%/pear
// change the setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

$PATH = $PEAR_DIR;
ini_set(‘include_path’, ‘:’ . $PATH . ‘:’ .

ini_get(‘include_path’));

require_once ‘Benchmark/Timer.php’;

$timer = new Benchmark_Timer();

$timer->start();

$timer->setMarker(‘start_myFunction’);

for($i=0; $i<10; $i++)
{

myFunction($argument);
}

$timer->setMarker(‘end_myFunction’);
$timer->stop();
$profiling = $timer->getProfiling();

716 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 716

echo ‘<p>Time elapsed: ‘ .
$timer->timeElapsed(‘start_myFunction’,

‘end_myFunction’) .
‘</p>’;

echo ‘<pre>’;
print_r($profiling);
echo ‘</pre>’;

exit;

function myFunction($var) {

static $counter = 0;
// do something
echo $counter++ . ‘ ‘;

}

?>

First, a benchmark timer object, $timer, is created. The timer is started using the
start() method. To mark a section of code for benchmarking, the setMarker()
method of the timer is used. The myFunction() function is called in a loop to
retrieve a sample set of executions. Then an end marker is created using the
setMarker() method of the $timer object.. The profiling data is retrieved using
the getProfiling() method of the timer. The elapsed time is calculated between
the markers (i.e., for the entire duration of the loop) using the timeElapsed()
method of the $timer object. The profiling data is dumped using print_r(). Here
is a sample of typical output:

0 1 2 3 4 5 6 7 8 9
Time elapsed: 0.00094497203826904
Array
(

[0] => Array
(

[name] => Start
[time] => 1039292459.17705900
[diff] => -
[total] => 0

)

[1] => Array
(

[name] => start_myFunction
[time] => 1039292459.17758700

Chapter 21: Speeding Up PHP Applications 717

28 549669 ch21.qxd 4/4/03 9:27 AM Page 717

[diff] => 0.00052797794342041
[total] => 0.00052797794342041

)

[2] => Array
(

[name] => end_myFunction
[time] => 1039292459.17853200
[diff] => 0.00094497203826904
[total] => 0.0014729499816895

)

[3] => Array
(

[name] => Stop
[time] => 1039292459.17860700
[diff] => 7.4982643127441E-05
[total] => 0.0015479326248169

)

)

Using this type of benchmarking, you can create numerous markers in your
code, gathering profiling data for the marked code to analyze where your code is
slow. You can then refine the code by rewriting as needed. The following section
describes the most common cause of speed problems.

Avoiding bad loops
The most common PHP problem with speed comes from badly written loops. Listing
21-3 shows a PHP script that demonstrates both inefficiently written loops and effi-
ciently written loops.

Listing 21-3: loops.php

<?php

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change
// the setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

$PATH = $PEAR_DIR;

ini_set(‘include_path’, ‘:’ . $PATH . ‘:’ .
ini_get(‘include_path’));

718 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 718

require_once ‘Benchmark/Iterate.php’;

define(MAX_RUN, 100);

$data = array(1, 2, 3, 4, 5);

doBenchmark(‘v1’, $data);
doBenchmark(‘v2’, $data);
doBenchmark(‘v3’, $data);
doBenchmark(‘v4’, $data);

function doBenchmark($functionName = null, $arr = null)
{
reset($arr);

$benchmark = new Benchmark_Iterate;
$benchmark->run(MAX_RUN, $functionName, $arr);
$result = $benchmark->get();

echo ‘
’;
printf(“%s ran %d times where average exec time %.5f ms”,

$functionName,
$result[‘iterations’],
$result[‘mean’] * 1000);

}

function v1($myArray = null) {

// Do bad loop
for ($i =0; $i < sizeof($myArray); $i++)
{

echo ‘<!--’ . $myArray[$i] . ‘ --> ‘;
}

}

function v2($myArray = null) {

// Do better loop

// Get the size of array
$max = sizeof($myArray);

Continued

Chapter 21: Speeding Up PHP Applications 719

28 549669 ch21.qxd 4/4/03 9:27 AM Page 719

Listing 21-3 (Continued)

for ($i =0; $i < $max ; $i++)
{

echo ‘<!--’ . $myArray[$i] . ‘ --> ‘;
}

}

function v3($myArray = null) {

// Do much better loop

// Get the size of array
$max = sizeof($myArray);

for ($i =0; $i < $max ; $i++)
{

// Store the output in a string
$output .= ‘<!--’ . $myArray[$i] . ‘ --> ‘;

}

// Echo the output string
echo $output;

}

function v4($myArray = null) {

// Do much better loop

// Get the size of array
$max = sizeof($myArray);

$output = array();

for ($i =0; $i < $max ; $i++)
{

// Store the output in a string
array_push($output, ‘<!--’ .

$myArray[$i] .
‘ --> ‘
);

}

720 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 720

// Echo the output string
echo implode(‘’, $output);

}

?>

This script demonstrates four versions of a method (v1, v2, v3, and v4), each of
which performs the same task, but with progressive efficiency.

The script calls a method called doBenchmark(), which runs each version of the
function under benchmark conditions using the Benchmark/Iterate.php class for
MAX_RUN times. The result of each benchmark is printed using a printf() state-
ment. Following is a sample of output from the script:

v1 ran 100 times where average exec time 1.60087 ms
v2 ran 100 times where average exec time 1.05392 ms
v3 ran 100 times where average exec time 0.55139 ms
v4 ran 100 times where average exec time 0.27371 ms

Here, you can see that v1() ran the slowest. Lets look at what v1() does. This
function receives an array as an argument and loops through each element of the
array using a for loop. Notice that the loop uses the sizeof() function to deter-
mine the size of the array. The sizeof() function is called each time the loop iter-
ates. This degrades the speed of the loop substantially, as function calls are
expensive in terms of execution time. Inside the loop, only an echo() function
prints an HTML comment statement.

Now let’s look at the v2() function. This function does the same task of v1(),
but it is a bit faster (0.54695 ms), as it stores the size of the $myArray in the $max
variable outside the loop and therefore avoids the penalty of calling sizeof() for
each iteration.

Looking at the v3() version of the same function, you can see that this version
is significantly faster than v2() because it not only does what v2() does, it also
removes from the loop the iterative call to the expensive I/O function echo() by
storing the output in a variable called $output. This improves its performance
greatly, as it uses only a single echo() call to print the contents stored in $output
as the last statement of the function.

Finally, v4() does everything v3() does except that instead of storing output in
a $output string variable that is appended using the dot operator (as done in v4), it
uses a faster array_push() function to store output as a series of sequential array
elements in $output array. Finally, it appends the contents of the $output array
using the implode() function, which is passed to a single echo() function. This
appears to be the fastest of the four implementations.

Chapter 21: Speeding Up PHP Applications 721

28 549669 ch21.qxd 4/4/03 9:27 AM Page 721

How do you learn to make such improvements to your own code? The simple
answer is experimentation and lots of practice. Study PHP’s built-in functions in
great detail, as they are faster than anything you will write in PHP. Use of built-in
functions in comparable situations can improve your code speed significantly. For
example, consider this listing:

function v5($myArray = null){
echo “<!--”, implode(“ --> <!--”, $myArray), “ --> “;

}

Stress-testing your PHP applications
using ApacheBench
The Apache server comes with a tool called ApacheBench (ab), which is installed by
default in the bin directory of your Apache installation directory. By using this
nifty tool, you can stress-test your application to see how it behaves under heavy
load conditions.

Make an estimate of how many requests you want your application to be able to
service from your Web server. Write it down in a goal statement such as “I wish to
service N requests per second.”

Restart your Web server and from a system other than the Web server, run the ab
command as follows:

./ab -n number_of_total_requests \
-c number_of_simultaneous_requests \
http://your_web_server/your_php_app.php

For example:

./ab -n 1000 -c 50 http://www.domain.com/myapp.php

The ApacheBench tool will make 50 concurrent requests, and a total of 1,000
requests. Sample output is shown here:

Server Software: Apache/2.0.16
Server Hostname: localhost
Server Port: 80

Document Path: /myapp.php
Document Length: 1311 bytes

Concurrency Level: 50
Time taken for tests: 8.794 seconds
Complete requests: 1000
Failed requests: 0

722 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 722

Total transferred: 1754000 bytes
HTML transferred: 1311000 bytes
Requests per second: 113.71
Transfer rate: 199.45 kb/s received

Connection Times (ms)
min avg max

Connect: 0 0 5
Processing: 111 427 550
Total: 111 427 555

Notice that Requests per second is 113.71 for accessing the myapp.php PHP
script. Change the concurrent request count to a higher number and see how the
server handles additional concurrent load.

Tune your application as finely as possible using the techniques discussed ear-
lier. You might have to also tune Apache using MaxClients, ThreadsPerChild,
MaxThreadsPerChild, and so on, based on your MPM module choice in httpd.conf.

Visit www.apache.org for in-depth documentation on Apache, including

modules and third-party applications to improve performance.

If you make changes to the Apache configuration file (httpd.conf), make sure
you restart Apache, and apply the same benchmark tests by using ab as before.

You should see your Requests per second increase or decrease based on the num-
bers you try. As you tweak the numbers by changing the directive values, make
sure you record the values and the performance so that you can determine the best
setting for you.

Buffering Your PHP
Application Output
Once you are sure that you have optimized your application to the best of your
abilities, it is time to consider other techniques, such as output buffering.

Output buffering is very effective for scripts that use numerous I/O functions such
as echo(), print, printf(), and so on. If you use these functions often, you might find
output buffering to be a speed booster. For example, Listing 21-4 shows a script
called buffer.php that benchmarks (using the PEAR Benchmark/Timer discussed ear-
lier in the section, “ Benchmarking your code”) a function called doSomething(),
which prints the ‘x’ character in a loop, using the echo() function.

Chapter 21: Speeding Up PHP Applications 723

28 549669 ch21.qxd 4/4/03 9:27 AM Page 723

Listing 21-4: buffer.php

<?php

define(MAX, 1024 * 10);

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change the
// setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

$PATH = $PEAR_DIR;
ini_set(‘include_path’, ‘:’ . $PATH . ‘:’ .

ini_get(‘include_path’));

require_once ‘Benchmark/Timer.php’;

$timer = new Benchmark_Timer();

$kb = MAX / 1024;

// No output buffering
$timer->start();
doSomething();
$timer->stop();
printf(“Buffer: OFF Size: %d KB Time elapsed: %.3f
”,

$kb,
$timer->timeElapsed());

// Enable output buffering
ob_start();
$timer->start();
doSomething();
$timer->stop();
printf(“Buffer: ON Size: %d KB Time elapsed: %.3f
” ,

$kb,
$timer->timeElapsed());

exit;

function doSomething()
{

$output = ‘’;

724 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 724

for($i=0;$i<=MAX;$i++)
{

echo ‘x’;
}

}

?>

The first call to doSomething() in the script is made without output buffering,
whereas the second call is made after output buffering is enabled using the
ob_start() function. Sample benchmark results of the two calls to
doSomething() are shown here:

xxxxxxxxxxxxxx [shortened for brevity] xxxxxxxxxxxxxxxxxxxxx
Buffer: OFF Size: 10 KB Time elapsed: 10.939
xxxxxxxxxxxxxx [shortened for brevity] xxxxxxxxxxxxxxxxxxxxx
Buffer: ON Size: 10 KB Time elapsed: 0.071

As you can see, the unbuffered call to doSomething(), which uses echo() in a
loop, required a significant amount of time vs. the buffered call. This means that
ob_start() is an excellent choice to improve performance of this script.

Therefore, whenever it is possible for you to enable output buffering, try it and
measure the performance gain. If the gain is significant, you can use ob_start()
in your code.

Compressing Your PHP
Application Output
You can also compress your PHP-generated HTML output or image output using
GZIP compression. You must enable GZIP compression while compiling PHP. This is
done using the option --with-zlib-dir=/usr/local/lib in the source code con-
figuration step.

Not all Web browsers can handle compressed output. Therefore, this

method might not be applicable for all situations.You can take advantage of

compression when you know that the Web browsers used by your visitors

support compression. Because Microsoft Internet Explorer is a popular Web

browser that supports compression, it is often worth trying.

Chapter 21: Speeding Up PHP Applications 725

28 549669 ch21.qxd 4/4/03 9:27 AM Page 725

Listing 21-5 shows a simple script that enables output buffering using the
ob_start() function, but it also enables gzip-based compression by providing the
ob_gzhandler parameter to the ob_start() function.

Listing 21-5: compress.php

<?php

define(MAX, 100);

ob_start(“ob_gzhandler”);

$output = ‘’;

for($i=0;$i<=MAX;$i++)
{

$output .= “This is line $i
”;
}

echo $output;
?>

The following code highlights the extra HTTP headers that are sent when com-
pression is enabled:

lynx -head -dump http://www.evoknow.com/ch21/gzip/compress.php

HTTP/1.1 200 OK
Server: Apache/2.0.43 (Unix) PHP/4.1.2
Date: Sat, 07 Dec 2002 20:50:47 GMT
Connection: close
Content-Encoding: gzip
Content-Length: 270
Content-Type: text/html
Vary: Accept-Encoding
X-Powered-By: PHP/4.1.2

The same script without compression enabled sends the following headers:

lynx -head -dump http://www.evoknow.com/ch21/gzip/compress.php

HTTP/1.1 200 OK
Server: Apache/2.0.43 (Unix) PHP/4.1.2
Date: Sat, 07 Dec 2002 20:52:20 GMT
Connection: close
Content-Type: text/html
X-Powered-By: PHP/4.1.2

726 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 726

Keep in mind that GZIP is only one practical option in improving your code.

Also, the overhead in calling the ZIP function, hit on server RAM, etc., must be

carefully weighed.

Caching Your PHP Applications
Using the benchmark and compression techniques described in this chapter, you
can identify slow code and rewrite it to execute faster if possible. However, another
popular method of enhancing the end user’s experience of “speed” is to use caching
techniques. By caching the output of your PHP application or caching the genera-
tion of PHP opcode, you can achieve higher performance. The following sections
discuss these caching techniques in detail.

Caching PHP contents using the jpcache cache
The jpcache package is a lightweight page caching solution for PHP that reduces
server load as PHP-generated pages are cached on the file system or database. It
also uses compression (GZIP content-encoding) and ETag-headers, which can result
in approximately 80 percent bandwidth savings.

When a jpcache-enabled page is requested for the first time, it is run as usual
and the generated content is cached in a file or database per the jpcache configura-
tion. The cached data is transmitted for any subsequent requests for a configurable
amount of time. This means that pages that do not change often on your site can
use this caching technique to reduce server load by avoiding running the same
script for each request.

Configuring jpcache
Download the latest jpcache package from http://www.jpcache.com/. Once
downloaded, extract the package under your Web server’s document tree. Here is
how you configure jpcache for database-based caching:

Although you can configure jpcache for file-based caching, file-based

caching requires a centralized file system (using NFS or SAMBA) when multi-

ple Web servers are serving your contents in a Web server farm. Again,

remember the tradeoffs associated with various solutions. For example,

although NFS and SAMBA improve caching, their overhead also contributes

to slower system functionality.

Chapter 21: Speeding Up PHP Applications 727

28 549669 ch21.qxd 4/4/03 9:27 AM Page 727

1. Edit the jpcache.php file to change the $includedir variable to point to the
directory in which you have installed jpcache. In the following example,
$includedir points to the %DocumentRoot%/ch21/cache/jpcache/ path.

// Set the includedir to the jpcache-directory
// ORIG: $includedir = “/path/to/jpcache-files”;
$includedir = $_SERVER[‘DOCUMENT_ROOT’] .

‘/ch21/cache/jpcache/’;

2. Create a database called jpcache in your MySQL database server. If you
want to use an existing database name, skip to the next step.

3. Create a table called CACHEDATA in the jpcache database (or your exist-
ing database) using script.sql. For example:

mysql -u root -p -D jpcache < script.sql

The above command will create CACHEDATA table per script.sql in a data-
base called jpcache in localhost. If your MySQL database server is not
localhost, you can use -h hostname option. Also, if you are using an exist-
ing database replace -D jpcache with -D your_existing_database name.

4. Edit the jpcache-config.php file to include the following lines:

$JPCACHE_TYPE = “mysql”;
$JPCACHE_TIME = 900;

$JPCACHE_DB_HOST = “localhost”;
$JPCACHE_DB_DATABASE = “jpcache”;
$JPCACHE_DB_USERNAME = “sqluser”;
$JPCACHE_DB_PASSWORD = “passwd”;
$JPCACHE_DB_TABLE = “CACHEDATA”;
$JPCACHE_OPTIMIZE = 1;

Here, the cached data will be stored in a table called CACHEDATA in a
database called jpcache in the localhost. Access to the database will be
allowed using a username called sqluser and the password “passwd”.

5. Now create the following test script called test.php:

<?php

require “/path/to/jpcache/jpcache.php”;
echo time();
phpinfo();

?>

Make sure that /path/to/jpcache in the require() line points to the
appropriate directory in which jpcache.php is installed.

728 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 728

6. Now run this script via a Web browser using http://server/path/
to/jpcache/test.php. You should see a page with a timestamp on top.
Keep accessing this script by refreshing the request a few times. Notice
that the timestamp shown as the output does not change. This means that
caching is working, as the page will be cached for the duration of
$JPCACHE_TIME specified in the jpcache-config.php.

That’s all that is required to configure jpcache. Now you are ready to use it with
your existing PHP applications.

Deploying jpcache
The jpcache caching should be used only for applications that do not generate their
own headers (such as cookies) and are not user-level personalized. You should use
this caching technique for pages that generate data from a database or external
files unless you are comfortable with the lag that results from non-cache hits. To
use jpcache in your existing PHP application, do the following:

1. Edit your application to include the following lines at the very beginning
of your PHP application:

$cachetimeout=900;

require_once($_SERVER[‘DOCUMENT_ROOT’] .
‘/jpcache/jpcache.php’);

The preceding code assumes that jpcache is installed in the %DocumentRoot/
jpcache directory. If you install it somewhere else, make sure the path
reflects the change.

2. If you wish to cache the output more or less than every 900 seconds,
change the value of $cachetimeout. Setting $cachetimeout to -1 will
disable caching for the current application. Setting $cachetimeout to 0
will enable a cache that does not expire automatically.

Caching PHP contents using the PEAR cache
PEAR cache support comes with the PEAR package found at http://pear.php.net.
For more information about installing PEAR, refer to Chapter 4.

PEAR caching can store cached data in files, shared memory, or a database.
Because you are already familiar with jpcache as a database-based caching method,
here we will use a file as the cache storage. This section shows you how a simple
PHP script (shown in Listing 21-6) can be converted to use the PEAR output
caching feature.

Chapter 21: Speeding Up PHP Applications 729

28 549669 ch21.qxd 4/4/03 9:27 AM Page 729

Listing 21-6: non_cached.php

<?php

echo “This is the contents<P>”;
echo “Time is “ . date(‘M-d-Y H:i:s A’, time()) . “
”;

?>

To use the PEAR output cache for the preceding PHP script, you need to do the
following:

1. Include PEAR in the path of this script using the following:

$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

$PATH = $PEAR_DIR;

ini_set(‘include_path’, ‘:’ . $PATH . ‘:’ .
ini_get(‘include_path’));

2. Include the Output.php cache subclass from PEAR using the following:

require_once ‘Cache/Output.php’;

3. Create a cache directory variable as follows:

$cacheDir = ‘/tmp/pear_cache’;

Make sure this directory is writable by the Web server user. The caching
scheme will write cache data in subdirectories within this directory.

4. Create an Output cache object as follows:

$cache = new Cache_Output(‘file’,
array(‘cache_dir’ => $cacheDir)
);

The first argument states that we are choosing file-based caching, and the
second argument is an associative array with the cache directory path
defined as cache_dir.

5. Generate a unique cache ID for this page as follows:

$cache_id = $cache->generateID(
array(‘url’ => $REQUEST_URI,

‘post’ => $HTTP_POST_VARS,
‘cookies’ => $HTTP_COOKIE_VARS
)

);

730 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 730

Here, the generateID() method of the $cache object is called by supply-
ing an array of information (URL, HTTP POST data, and HTTP cookie) that
can uniquely identify the request.

6. Add a conditional statement to see if cached data already exists for the
created cached ID ($cache_id) and if so, retrieve the cached data and ter-
minate the script as follows:

if ($content = $cache->start($cache_id))
{

// Cache has contents, display and terminate
echo $content;
die();

}

7. Keep the content generation code after the preceding conditional state-
ment and close the cache object using the following:

echo $cache->end();

Listing 21-7 shows the new PEAR output–cached version of non_cached.php as
pear_content_cache.php.

Listing 21-7: pear_content_cache.php

<?php

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change the
// setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

$PATH = $PEAR_DIR;
ini_set(‘include_path’, ‘:’ . $PATH . ‘:’ .

ini_get(‘include_path’));

require_once ‘Cache/Output.php’;

// Set cache directory path
// This directory has to be writable
// by the Web server.
$cacheDir = ‘/tmp/pear_cache’;

$cache = new Cache_Output(‘file’,
array(‘cache_dir’ => $cacheDir)
);

Continued

Chapter 21: Speeding Up PHP Applications 731

28 549669 ch21.qxd 4/4/03 9:27 AM Page 731

Listing 21-7 (Continued)

// If user does not want to view cached version
// she has to give ?nocache=anyvalue to view fresh contents
if (empty($_REQUEST[‘nocache’]))
{
// Create a unique cache identifier based on
// the request + cookie information

$cache_id = $cache->generateID(
array(‘url’ => $REQUEST_URI,

‘post’ => $HTTP_POST_VARS,
‘cookies’ => $HTTP_COOKIE_VARS
)

);
} else {

// User wants fresh contents so set cache ID to null
$cache_id = null;

}

// See if cached contents is available for the cache ID
if ($content = $cache->start($cache_id))
{

// Cache has contents, display and terminate
echo $content;
die();

}

// Cache does not have contents
// Generate content and write cache

echo “This is the contents<P>”;
echo “Time is “ . date(‘M-d-Y H:i:s A’, time()) . “
”;

// write contents to cache file
echo $cache->end();

?>

Note that in the preceding script, when users do not want the cached version of
the page, they can specify nocache=1 in the request as a query parameter as follows:

http://server/path/to/pear_content_cache.php?nocache=1

732 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 732

This will ensure that users are served fresh contents. PEAR’s cache package can
also cache PHP function calls. Listing 21-8 shows a script called pear_func_cache.php
that enables function caching for a function named slowFunction().

Listing 21-8: pear_func_cache.php

<?php

// If you have installed PEAR packages in a different
// directory than %DocumentRoot%/pear change the
// setting below.
$PEAR_DIR = $_SERVER[‘DOCUMENT_ROOT’] . ‘/pear’ ;

$PATH = $PEAR_DIR;
ini_set(‘include_path’, ‘:’ . $PATH . ‘:’ .

ini_get(‘include_path’));

require_once ‘Cache/Function.php’;

// This directory has to be writable
// by the Web server.
$cacheDir = ‘/tmp/pear_cache/’;

$cache = new Cache_Function(‘file’,
array(‘cache_dir’ => $cacheDir)
);

$arr = array(‘apple’, ‘orange’);

$cache->call(‘slowFunction’, $arr);

echo ‘<p>’;

$arr = array(‘banana’, ‘grapes’);
slowFunction($arr);

function slowFunction($arr = null)
{

echo “Very slow function
”;
echo “Time is “ . date(‘M-d-Y H:i:s A’, time()) . ‘
’;
foreach ($arr as $fruit)
{

echo “Got $fruit
”;
}

}

?>

Chapter 21: Speeding Up PHP Applications 733

28 549669 ch21.qxd 4/4/03 9:27 AM Page 733

The Cache/Function.php class from the PEAR Cache classes is used to enable
function caching. The $cache variable is a new Cache_Function object that uses
file-based caching of function data, which is cached into the $cacheDir directory.

To cache a function call, the call() method of the Cache_Function object,
$cache, is used as follows:

$cache->call(‘slowFunction’, $arr);

Here, the slowFunction() function is called with the argument $arr, and it is
cached in a file in the $cacheDir directory. Any subsequent call to this function
using $cache->call() will return the cached function result for the given argu-
ment. Sample output of this script is shown here:

Very slow function
Time is Dec-07-2002 21:37:21 PM
Got apple
Got orange

Very slow function
Time is Dec-07-2002 21:39:23 PM
Got banana
Got grapes

The first four lines are produced by the $cache->call(‘slowFunction’,
$arr) call, which has the cached version of the function call. However, the next
four lines are generated by a direct call to the slowFunction() function using a
different argument array. Therefore, the output of the two calls differs. If you were
to make another call to showFunction() using $cache->call(‘slowFunction’,
$arr), the first set of output shown above will be returned. In other words, the
cached output is returned only when calls to the cached function are made using
the $cache->call() method. This enables you to make cached or uncached calls
from the same script as desired.

Using PHP opcode caching techniques
So far, you have learned how you can improve your code through analysis by using
benchmark techniques, and speed up your code delivery by various caching meth-
ods. However, there is another area of optimization that you can consider, which
does not involve changing your code but your PHP execution environment.

Whenever a PHP script is run, it goes through parsing and opcode generation
phases that are internal to PHP. You can use tools that optimize and even cache
opcode of your scripts so that they do not go through the same parsing and opcode
generation steps, which are the slowest.

734 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 734

Of course just reading the code off the disk also creates quite a bit of over-

head.

The following sections describe alternatives to the available opcode caching
solutions.

Alternative PHP Opcode cache
The Alternative PHP opcode Cache (APC) is open-source software that you can
download as source distribution from http://apc.communityconnect.com.

The APC cache stores parsed, PHP opcode in shared memory (using either
System V shared memory or memory-mapped files). When APC detects a request
for a cached script, it reads the previously compiled opcode instead of going
through the file load, parsing, and opcode generation process, as performed for
noncached scripts.

The APC cache is available in two implementations: shared memory (shm) and a
memory-mapped file (mmap). The shared memory implementation is more suitable,
as it does not use a file handle per cached object per Web server process.

When APC caches a script, it keeps serving the cached version for all future
requests unless the cache is manually reset using the apc_reset_cache command
or the apc_rm filename command to expire the specific cache for the given file
name. However, you can configure APC to reload a script upon modification if APC
detects apc.check_mtime =1 in the php.ini configuration file.

APC has been known to work under PHP 4.0.3 or later versions, and currently
compiles under Linux and FreeBSD. The developers claim a 50 percent to 400 per-
cent increase in performance of scripts under their test conditions or production
environment.

Note that the code is still being executed on each hit so you never get stale

pages or data.

PHPA: the PHP Accelerator
This is also a very popular, free PHP opcode cache that features a built-in code
optimizer as well. You can download PHPA from http://www.php-accelerator.
co.uk/.

Chapter 21: Speeding Up PHP Applications 735

28 549669 ch21.qxd 4/4/03 9:27 AM Page 735

The PHPA does not currently have an official license to make it free. In addi-

tion, the source code is not yet released; therefore, be aware of these facts, as

they might (or might not) become a restriction for commercial use in the

future.

PHPA is currently available for Linux, FreeBSD, OpenBSD, BSDi, and Solaris.

Zend Tools for optimization and caching opcode
As the developer of the Zend opcode engine used in PHP, Zend has an edge
over other open-source or commercial efforts in building PHP-friendly, high-
performance tools. The commercial tools available from http://www.zend.com are
often the current state-of-the-art in PHP and therefore worth a look if you have the
budget for it.

Summary
In this chapter, you learned how to benchmark, stress-test, and improve your PHP
applications for speed. You also learned how to buffer output, how to compress
output, and how to cache output for faster response time. Finally, you learned
about tools that can optimize PHP itself.

736 Part VI: Tuning and Securing PHP Applications

28 549669 ch21.qxd 4/4/03 9:27 AM Page 736

Chapter 22

Securing PHP Applications
IN THIS CHAPTER

◆ Protecting your application-related files

◆ Controlling access to your applications

◆ Using MD5-based login

◆ Using MD5 encoding in your PHP application

◆ How to securely upload files

◆ Running PHP in safe mode

THIS CHAPTER DISCUSSES A SET of security issues that you should know about when
deploying your applications in the real world. Here I will discuss how you can con-
trol access to your applications and related files, which is a big step in ensuring
security. When you write applications there are various reasons for not allowing
everyone access to your applications. This can be because of the fact that the appli-
cation is needed for internal business or for external partners or customers or any-
one. For example, a Web application that allows you to access your corporate
e-mail from the Internet should have restricted access control vs. a Web application
that allows potential customers to generate an automated quotation request or
response for your products and services. This chapter will show you how to control
access to applications that are not to be used by the masses but rather a defined set
of users or systems.

Controlling Access to
Your PHP Applications
When you deploy your application on the Web, it becomes available to everyone.
Malicious hackers will try to find holes in your application to attack your data,
your site, other sites, or all of the above. Therefore, you must take all the precau-
tions necessary to ensure that all known risks are minimized or eliminated. This
section describes how to control access to your application and related files using
various Web server configurations. It is assumed that you are using Apache or an
Apache-like Web server (such as Zeus). 737

29 549669 ch22.qxd 4/4/03 9:27 AM Page 737

Restricting access to your
PHP application-related files
When you create a large PHP application, many files might contain sensitive infor-
mation. For example, the configuration files used in many of the applications in
this book contain database connection information, paths, and so on, that are sen-
sitive. You need to protect these files from visibility on the Web. You have two ways
in which you can do so.

Keep sensitive files outside your Web document tree
This method requires that you keep your sensitive files in directories outside the
Web directory tree and access them with explicit paths. For example:

require_once ‘app_name.conf’;

can be changed to

require_once “/path/not/inside/docroot/app_name.conf”;

Make it impossible to retrieve files with certain extensions
If you are using Apache or an Apache-like Web server such as Zeus, you can
restrict access to configuration files or any other files using Web server configura-
tion directives. For example, if your Web site supports the use of .htaccess files that
contain per-directory configuration information, you can create an .htaccess file in
the top directory of your Web site as follows:

for .htaccess
<Files “*.conf”>

Order deny,allow
Deny all

</Files>

This ensures that whenever your Apache server gets a request for a file that ends
with a .conf extension, it denies access to that file. If you have access to the
primary Apache server configuration file, httpd.conf, you can create a global con-
figuration such as the following, which applies to all Web sites served by the
Apache server:

for httpd.conf
<Directory />

<Files “*.conf”>
Order deny,allow
Deny all

</Files>
</Directory>

738 Part VI: Tuning and Securing PHP Applications

29 549669 ch22.qxd 4/4/03 9:27 AM Page 738

This tells Apache that it cannot serve any files with .conf extensions from any
directories within the Web document root (pointed to by the DocumentRoot directive).

Using Web server–based authentication
Often, you will find it necessary to restrict access to your Web applications. In such
cases, you can use your Web server’s basic authentication scheme quite easily. For
example, to require user authentication for an application stored in http://yours-
erver/yourapp/, you can create or edit the following .htaccess file in the
%DocumentRoot%/yourapp directory:

AuthType Basic
AuthName “Restricted Access”
AuthUserFile /path/to/yourapp.users
Require valid-user

You can also put the preceding configuration in your httpd.conf file using a
Location container, as shown here:

<Location “/your_app/”>
AuthType Basic
AuthName “Restricted Access”
AuthUserFile /path/to/yourapp.users
Require valid-user

</Location>

Don’t forget to change your_app and /path/to/yourapp.users with the appropri-
ate directory and file names.

Once you have created this configuration, you need to use Apache’s htpasswd
utility to create users. For example, to create a user called joegunchy, you can run
the following:

htpasswd -c /path/to/yourapp.users joegunchy

If htpasswd is not in your path, you need to provide the path name. For exam-
ple, if you store htpasswd in /usr/local/apache/bin, you can run the following:

/usr/local/apache/bin/htpasswd -c /path/to/yourapp.users joegunchy

Creating a subsequent user does not require the -c option. Use this option

only for the first user. In addition, make sure that the /path/to/yourapp.users

file is accessible by the Apache Web server.

Chapter 22: Securing PHP Applications 739

29 549669 ch22.qxd 4/4/03 9:28 AM Page 739

When creating a user, you will be asked to enter a new password for the user.
Enter the desired password and try to access your application via http://yours-
erver/yourapp/. You will be promoted for a username and password. Use the
newly created username and password to log in and access your application.

If you need to know the username in your PHP application, use the
$_SERVER[‘REMOTE_USER’] value, as shown in the following example:

<?php

$thisUser = $_SERVER[‘REMOTE_USER’];

if (empty($thisUser))
{

// Your Web server authentication is
// not working.
exit;

}

echo “Hello $thisUser”;

?>

When this script is accessed from a Web server–authenticated directory, the
script will contain the username that successfully logged in. You can also use
$_SERVER[‘PHP_AUTH_USER’] in place of $_SERVER[‘REMOTE_USER’].

One of the problems with Web server authentication is that you have no way

to log out the user by force. The Web browser always resends the authenti-

cation credentials (username/password) upon each request, and therefore

the Web server keeps re-authenticating the user. If you need to allow logout,

you should use application-level authentication, as discussed in Chapters

4 and 5 of this book.

Using the MD5 message digest for login
When you use a Web-based login form to log in a user, the username and password
are transmitted as plain text. This is a major weakness if high security is desired.
Unfortunately, because PHP cannot be implemented on the client side, there is no PHP
solution that you can use to turn the plain-text data into encrypted or encoded form.

The best alternative for a high-grade Web login solution is to use a Secure
Socket Layer (SSL)-based Web server, which encrypts all communication between
the client and the server. In the absence of that, you can consider the following
solution.

740 Part VI: Tuning and Securing PHP Applications

29 549669 ch22.qxd 4/4/03 9:28 AM Page 740

The client-side scripting language JavaScript provides a solution. You can use
JavaScript to create a MD5 message digest of the password and transmit only the
digest, rather than the real password. This means that the user’s password never
travels over the network.

On the server side, you can use a PHP script to compare the user-supplied MD5
of a password with the user’s real password’s MD5 digest. If both digests match,
you have a user that knows his or her password and therefore should be given
access.

Now let’s look at this process using an example. Listing 22-1 shows a Web form
with two JavaScripts. The first script simply loads an external JavaScript MD5
library called md5.js. You can also download it from the Internet via
http://www.publicator.no/includes/script/md5.js.

Listing 22-1: md5_login.html

<html>
<head>
<script language=”JavaScript” src=”md5.js”></script>

<script language=”JavaScript”>

function processForm() {
document.loginForm.password.value =
MD5(document.loginForm.password.value);

document.loginForm.submit();
}

</script>
</head>
<body>

<center>
<form name=”loginForm” method=”post” action=”md5_login.php”>

<table border=0 cellpadding=3 cellspacing=0>
<tr>
<td> Name </td>
<td> <input type=”text” name=”username” size=”10”> </td>
</tr>

<tr>
<td> Password </td>
<td> <input type=”password” name=”password” size=”15” ></td>
</tr>

Chapter 22: Securing PHP Applications 741

29 549669 ch22.qxd 4/4/03 9:28 AM Page 741

<tr>
<td colspan=2>
<input onclick=”processForm(); return true;”

type=”button” value=”Login”>
</td>
</tr>
</table>

</form>
</center>

</body>
</html>

The second JavaScript has a single function called processForm(). This func-
tion is called when the login form’s Login button is clicked. This function creates an
MD5 digest of the user-supplied password and replaces the password value with the
MD5 digest, and then submits the data to the md5_login.php PHP script, shown in
Listing 22-2.

Listing 22-2: md5_login.php

<?php

error_reporting(E_ALL);

define(‘PASSWORD’, ‘2manysecrets’);

$user = (! empty($_REQUEST[‘username’])) ? $_REQUEST[‘username’] : null;

$givenMD5Hash = (! empty($_REQUEST[‘password’])) ? $_REQUEST[‘password’] :
null;

// If user given MD5 of password does not match
// with the md5(PASSWORD) then redirect
// user to login page again

if (strcmp($givenMD5Hash , md5(PASSWORD)))
{

header(“Location: md5_login.html”);

}

// User knows password so login successful
echo “Welcome to PHP.”;

?>

742 Part VI: Tuning and Securing PHP Applications

29 549669 ch22.qxd 4/4/03 9:28 AM Page 742

This PHP script creates an MD5 digest of the real password stored as a constant
called PASSWORD and compares it against the user-supplied MD5 digest of the pass-
word. If they do not match, the user is redirected to the md5_login.html page.
Otherwise, a welcome message is shown. Note that the password is hard-coded in
the example code for demonstration only. In real application, the password will be
stored in a database.

As the real password never travels the network, this method of login is more
secure, as guessing the original password for an MD5 digest is very difficult.

Using Web server–based authorization
If you must limit the network or IP address from which users can access your appli-
cation, you can create an .htaccess conf configuration as follows:

Order deny,allow
Deny all
Allow from 192.168.

You can also put this in your httpd.conf file by putting the preceding configura-
tion in a directory container, as shown here:

<Directory “/path/to/your_app”>
Order deny,allow
Deny all
Allow from 192.168.

</Directory>

If you want to use the Location container, you can use a relative path:

<Location “/your_app”>
Order deny,allow
Deny all
Allow from 192.168.

</Location>

In any of the preceding three cases, all access to the /your_app directory under
the Web document root is restricted to hosts with IP addresses that belong to
192.168.x.x networks. In other words, an IP address such as 192.168.0.1 or
192.168.254.1 can access the application. You can allow specific IP addresses as
well, as shown in the following example:

<Location “/your_app”>
Order deny,allow
Deny all
Allow from 192.168.1.100 130.86.1.2

</Location>

Chapter 22: Securing PHP Applications 743

29 549669 ch22.qxd 4/4/03 9:28 AM Page 743

In the preceding example, access is restricted to only the two named IP
addresses.

If you want to exclude a particular IP or network, simply use Deny from, as
shown here:

<Location “/your_app”>
Order allow,deny
Deny from 130.86.
Allow all

</Location>

Your Web application always has access to the user’s IP address as
$_SERVER[‘REMOTE_ADDR’]. However, note that a block of users can have the same
IP address if their requests are sent via a caching proxy server.

Restricting write access to directories
When your PHP applications need to write to a certain directory, be very careful
about the directory permissions. Your PHP applications typically run as the Web
server, so you must allow it to write to the directory in which you want to allow
your application to create new files or update existing ones. Never make your direc-
tories world readable. In other words, never run commands such as chmod -R 777
on a directory that is accessible via the Web or your applications.

Securely Uploading Files
PHP makes uploading files easy, but with ease comes danger. Let’s look at a simple
scenario. Listing 22-3 shows a simple file upload form that calls bad_upload.html
script to upload a file. The uploaded file is processed by a script called
bad_uploader.php.

Listing 22-3: bad_upload.html

<html>
<head><title>Upload Form Using Bad Uploader Script</title>
<body>
<form method=”POST” enctype=”multipart/form-data”
action=”bad_uploader.php”>
File: <input type=”file” name=”picfile”>
<input type=submit value=”Upload Picture”>
</form>
</body>
</html>

744 Part VI: Tuning and Securing PHP Applications

29 549669 ch22.qxd 4/4/03 9:28 AM Page 744

The bad_uploader.php, shown in Listing 22-4, copies the Web browser–uploaded
file to a directory called images. Before copying the uploaded temporary file (which
is created automatically by PHP) to the images directory, it checks whether the file
size is less than five thousands bytes, and whether the file is a GIF image or not.
When both of these conditions are met, the file is copied to the images directory.
Otherwise, it displays a message stating that the upload was unsuccessful.

Listing 22-4: bad_uploader.php

<?php

// This script will not work
// if register_globals is OFF
// This is here to make a point only

define(‘MAX_FILE_SIZE’, 5000);
define(‘FILE_TYPE’, ‘image/gif’);

echo “File name : $picfile_name
”;
echo “File size : $picfile_size
”;
echo “File type : $picfile_type
”;

if (($picfile_size < MAX_FILE_SIZE) &&
($picfile_type == FILE_TYPE))

{
copy($picfile, “images/$picfile_name”);

} else {
echo “Your file $picfile_name was not uploaded.
”;

}
?>

The Web form in Listing 22-4 has a file field called picfile. When processed by
PHP, it creates $picfile_name as the file name, $picfile_size as the size of the
file, and $picfile_type as the file’s MIME type. The script uses these variables to
perform its job. For many programmers, there is nothing wrong with the way the
preceding script works. However, consider the Web form, hacked_bad_upload_
form.html, shown in Listing 22-5.

Listing 22-5: hacked_bad_upload_form.html

<html>
<head><title>Hacker’s Upload Form Attacking Bad Uploader
Script</title>
<body>

Continued

Chapter 22: Securing PHP Applications 745

29 549669 ch22.qxd 4/4/03 9:28 AM Page 745

Listing 22-5 (Continued)

<form method=”POST” enctype=”multipart/form-data”
action=”bad_uploader.php”>
File: <input type=”file” name=”picfile”>
<input type=hidden name=”picfile_size” value=”1”>
<input type=submit value=”Upload Picture”>
</form>
</body>
</html>

A malicious hacker can easily create a Web form duplicating the
bad_upload.html form, adding additional hidden fields, such as picfile_size=1 to
populate the value for PHP’s automatic variable $picfile_size to bypass the size
requirements. This means that a hacker can upload a large file and thus take up
huge amounts of disk space using this trick.

To prevent this problem, a better version of bad_uploader.php can be written as
shown in Listing 22-6.

Listing 22-6: good_uploader.php

<?php

error_reporting(E_ALL);

define(‘MAX_FILE_SIZE’, 5000);
define(‘FILE_TYPE’, ‘image/gif’);

// Get file name from the $_FILES array
$picfile_name = (! empty($_FILES[‘picfile’][‘name’])) ?

$_FILES[‘picfile’][‘name’] : null;

// Get file type from the $_FILES array
$picfile_type = (! empty($_FILES[‘picfile’][‘type’])) ?

$_FILES[‘picfile’][‘name’] : null;

// Get file size from the $_FILES array
$picfile_size = (! empty($_FILES[‘picfile’][‘size’])) ?

$_FILES[‘picfile’][‘name’] : null;

// Get temp file from the $_FILES array
$tmp_picfile = (! empty($_FILES[‘picfile’][‘tmp_name’])) ?

$_FILES[‘picfile’][‘tmp_name’] : null;

echo “File name : $picfile_name
”;
echo “File size : $picfile_size
”;
echo “File type : $picfile_type
”;

746 Part VI: Tuning and Securing PHP Applications

29 549669 ch22.qxd 4/4/03 9:28 AM Page 746

if (($picfile_size < MAX_FILE_SIZE) &&
($picfile_type == FILE_TYPE))

{
move_uploaded_file($tmp_picfile,

“images/$picfile_name”);
} else {

echo “Your file $picfile_name was not uploaded.
”;
}

?>

The difference between good_uploader.php and bad_uploader.php is that the
good script does not rely on PHP’s automatic variables, instead using a $_FILES
superglobal associative array, which ensures that malicious users cannot extract
file-related information from the Web form.

Therefore, when dealing with uploads, make sure you use a $_FILES associative
array for file information and do not rely on automatically created variables.

Using Safe Database Access
When using user data in a database query, always be careful, as a user might sup-
ply SQL commands to engage in unwanted activities, such as creating an account
in your database or running an external program. User input validation is the key
to avoiding most security issues. For example:

$stmt = “SELECT * FROM YOUR_TBL WHERE USER_ID > $where”;
if the $where variable is created using $_REQUEST[‘where’] than a malicious user
can get information from database that should not be available to him. For example:

http://phpbook.evoknow.com/ch22/bad_sql.php?where=a;select+count(USE
R_ID)+from+YOUR_TBL;

The above request makes the $stmt become:

SELECT * FROM YOUR_TBL WHERE USER_ID > a;select count(USER_ID) from
YOUR_TBL;

As you can see the user has tricked the script to give count of data in YOUR_TBL.
Therefore you should ensure that direct user input is not used in SQL statements.
Furthermore, when writing text data to a database, use the addslashes() function
to quote data.

Chapter 22: Securing PHP Applications 747

29 549669 ch22.qxd 4/4/03 9:28 AM Page 747

Recommended php.ini Settings for
a Production Environment
When using PHP in a production environment, you should have the following set-
tings in php.ini:

register_globals off

The preceding line will disable automatic variable creation. This means that all
PHP script must use the $_REQUEST, $_GET, or $_POST superglobal associative
arrays to retrieve user-provided data via GET/POST, GET, or POST, respectively.

When working on production server you should disable PHP error messages dis-
play so that malicious hackers do not learn about your system environment from
badly written scripts.

display_errors off

The preceding line will disable the displaying of error messages onscreen. This is
very important, as PHP error messages might reveal information that should not be
shown to potential hackers. However, the following two settings will ensure that
errors are logged in a safe log file called /var/log/php.errors:

log_errors on

error_log /var/log/php.errors

You should also consider using the set_error_handler function found in PHP.
You can learn more about it at http://www.php.net/set_error_handler.

Limiting File System
Access for PHP Scripts
If you do not want to allow a PHP application to access any file on your file system,
you can control it using the open_basedir configuration option. For example, suppose
you want to prevent an Apache-run virtual host called www.myvirtualhost.com
from accessing any files beyond its document root tree using PHP. You can have a
configuration such as the following:

<VirtualHost www.myvirtualhost.com>

ServerName www.myvirtualhost.com
DocumentRoot /www/my/htdocs

748 Part VI: Tuning and Securing PHP Applications

29 549669 ch22.qxd 4/4/03 9:28 AM Page 748

<Directory />
php_admin_value open_basedir “/www/my/htdocs”

</Directory>

</VirtualHost>

The preceding configuration restricts any PHP script in www.myvirtualhost.com
from accessing any file outside the /www/my/htdocs directory.

If a symbolic link is encountered by a PHP script that leads to a file or direc-

tory outside the specified open_basedir, PHP will refuse to access it.

In addition, if you wish to restrict the PHP include path, you can define the
include path in the httpd.conf file. For example, if we want to limit the include path
for www.myvirtualhost.com to be the current directory of the script and to
/usr/local/lib/php, we can add the following line to the virtual host configuration
after the DocumentRoot directive:

php_value include_path “.:/usr/local/lib/php”

Running PHP Applications
in Safe Mode
PHP provides a mode called safe mode, which enables you to restrict how PHP
works with user scripts. Safe mode can be turned on for virtual hosts in Apache
configuration.

Here, www.myvirtualhost.com runs PHP in safe mode due to the
php_admin_flag settings that enable safe_mode. The preceding configuration also
prevents PHP from accessing any file beyond the specified document root
(/www/my/htdocs). For example:

<VirtualHost www.myvirtualhost.com>

ServerName www.myvirtualhost.com
DocumentRoot /www/my/htdocs

php_admin_flag safe_mode on

<Directory />

Chapter 22: Securing PHP Applications 749

29 549669 ch22.qxd 4/4/03 9:28 AM Page 749

php_admin_value open_basedir “/www/my/htdocs”
</Directory>

</VirtualHost>

In safe mode, you can limit sensitive configurations. For example, if you wanted
users of www.myvirtualhost.com to only be able to run external programs (via sys-
tem calls) from a directory called /www/my/safe/bin, then you can use the following:

php_admin_value safe_mode_exec_dir “/www/my/safe/bin”

You can also limit how much memory a PHP script can use:

php_admin_value memory_limit = 8388608

The preceding line of code limits any PHP script to 8 MB of RAM. Similarly, you
can limit how long a PHP script can run:

php_admin_value max_execution_time = 30

The preceding line limits all PHP scripts to 30 seconds of execution time.
You can disable security-sensitive functions such as system(), readfile(), and

so on, as follows:

php_admin_value disable_functions system:readfile

Summary
In this chapter, you learned various methods of securing your PHP environment.
You learned that using Apache configuration you can restrict access to sensitive
files containing PHP configuration. You can use Apache Web server’s built-in
authentication along with PHP to allow users access to your applications. Similarly,
you can use Apache’s authorization configuration to control which host name or IP
address can access any of your applications. You also learned that using PHP con-
figuration parameters you can control how it behaves.

750 Part VI: Tuning and Securing PHP Applications

29 549669 ch22.qxd 4/4/03 9:28 AM Page 750

Appendixes
APPENDIX A

What’s on the CD-ROM

APPENDIX B
PHP Primer

APPENDIX C
MySQL Primer

APPENDIX D
Linux Primer

Part VII

30 549669 PP07.qxd 4/4/03 9:28 AM Page 751

30 549669 PP07.qxd 4/4/03 9:28 AM Page 752

Appendix A

What’s on the CD-ROM
THIS APPENDIX CONTAINS INFORMATION about the contents of the CD that accompa-
nies this book. For the latest and greatest information, please refer to the ReadMe
file located at the root of the CD. Here is what you will find:

◆ System Requirements

◆ What’s on the CD

◆ Troubleshooting

System Requirements
Make sure that your computer meets the minimum system requirements listed in
this section. If your computer doesn’t meet most of these requirements, you may
have a problem using the contents of the CD.

◆ A PC with a Pentium processor running at 266 MHz or faster

◆ At least 32MB of total RAM; for best performance, we recommend
at least 256MB

◆ An Ethernet network interface card (NIC)

◆ A CD-ROM drive

◆ A high-speed Internet connection if you wish to serve requests
from the Internet

What’s on the CD
The following sections provide a summary of the software and other materials
you’ll find on the CD.

Author-created materials
All author-created material from the book, including code listings and samples, are
on the CD. Each chapter’s files are stored in the chXX directory, where XX is a num-
ber from 01 to 22. For example, source code and other files for Chapter 20 are
stored in the CH20 directory.

753

31 549669 AppA.qxd 4/4/03 9:28 AM Page 753

Each chapter has the following directory structure:

chXX
|
+---apps
| |
| +---class
| |
| +---templates
|
+---sql

The sql directory stores the SQL script needed to create any database tables. The
apps directory contains the applications. The apps/class director contains the class
files needed for the application. The apps/templates directory contains the HTML
templates needed for the applications in the given chapter.

In addition to chapter directories, a directory called framework exists in the CD,
which contains all the classes needed for all the application framework used in
almost all applications in the book.

Applications
The following applications are included on the CD:

Apache Web Server
The latest version of the Apache Web server source distribution

PHP
The latest version of the PHP source distribution

PHPLIB
The latest version of the PHPLIB source distribution

MySQL
The latest version of the MySQL database server binary distribution in the RPM
package

Adobe Acrobat Reader
The latest version of the Adobe Acrobat Reader used to read the Portable Document
Format (PDF) files

754 Part VII: Appendixes

31 549669 AppA.qxd 4/4/03 9:28 AM Page 754

Shareware programs are fully functional, trial versions of copyrighted programs.
If you like particular programs, register with their authors for a nominal fee and
receive licenses, enhanced versions, and technical support. Freeware programs are
copyrighted games, applications, and utilities that are free for personal use. Unlike
shareware, these programs do not require a fee or provide technical support. GNU
software is governed by its own license, which is included inside the folder of the
GNU product. See the GNU license for more details.

Trial, demo, or evaluation versions are usually limited by either time or func-
tionality (such as the capability to save projects). Some trial versions are very sen-
sitive to system date changes. If you alter your computer’s date, the programs will
“time out” and no longer be functional.

eBook version of Secure PHP Development
The complete text of this book is on the CD in Adobe’s Portable Document Format
(PDF). You can read and search through the file with the Adobe Acrobat Reader
(also included on the CD).

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD,
try the following solutions:

◆ Reference the README or INSTALL file. Please refer to the README or
INSTALL file located in each source package, which is provided by the
package developer.

If you still have trouble with the CD, please call the Wiley Customer Care tele-
phone number: (800) 762-2974. Outside the United States, call 1 (317) 572-3994.
You can also contact Wiley Customer Service by e-mail at techsupdum@wiley.com.
Wiley Publishing, Inc. provides technical support only for installation and other
general quality-control items; for technical support on the applications themselves,
consult the program’s vendor or author.

Appendix A: What’s on the CD-ROM 755

31 549669 AppA.qxd 4/4/03 9:28 AM Page 755

31 549669 AppA.qxd 4/4/03 9:28 AM Page 756

Appendix B

PHP Primer
THIS BOOK ASSUMES THAT READERS have PHP programming experience, and there-
fore does not cover the basics of PHP in any of the chapters. This appendix pro-
vides some fundamentals of PHP programming and especially object-oriented PHP
development, which is used heavily throughout the book.

Object-Oriented PHP
Numerous books and publications are available that explain the benefits of object-
oriented programming (OOP). Three of the main advantages include the following:

◆ Reusability of the existing code base

◆ Efficient organization

◆ Easy maintenance of the code base

By writing reusable objects, you can often reduce project development time.
Moreover, using existing proven code is always a good idea in the effort to reduce
bugs.

To use OOP in PHP, you define a class for your object. A skeleton of a class looks
as follows:

<?php

class CLASS_NAME {

function CLASS_NAME ()
{

// Constructor method
}

function set_method_X($param = null)
{

// Set value
}

757

32 549669 AppB.qxd 4/4/03 9:28 AM Page 757

function get_method_X()
{

// Return value

}
}

?>

For example, if you want to develop an object called computer, you can define
a class file as follows:

<?php

class Computer {

function Computer($params = null)
{

$this->_CPU = $params[‘CPU’];
$this->_ROM = $params[‘ROM’];
$this->_RAM = $params[‘RAM’];
$this->_TYPE = $params[‘TYPE’];

}

function getCPU()
{

// Return CPU
return $this->_CPU;

}

function setCPU($cpu = null)
{

// Set CPU
$this->_CPU = $cpu;

}

function getRAM()
{

// Return RAM
return $this->_RAM;

}

758 Part VII: Appendixes

32 549669 AppB.qxd 4/4/03 9:28 AM Page 758

function setRAM($ram = null)
{

// Set RAM
$this->_RAM = $ram;

}

function getType()
{

return $this->_TYPE;
}

function setType($type = null)
{

// Set Type
$this->_TYPE = $type;

}
}

?>

This simple class has a set of set and get methods that retrieve or store informa-
tion about the object. For example the getRAM() method returns the RAM value
stored in an object’s _RAM variable. Similarly, setRAM() sets the given RAM value
($ram) in an object’s _RAM variable.

One special method, Computer() (the same name as the class), is called the con-
structor. This constructor method is automatically called whenever a new Computer
object is created.

You can create another class by extending the Computer class as shown here:

<?php

require_once ‘class.Computer.php’;

class PDA extends Computer {

function printSpec($type = null)
{

echo “CPU : “ . $this->getCPU() . “
”;
echo “RAM : “ . $this->getRAM() . “
”;
echo “TYPE : “ . $this->getType() . “
”;

}
}

?>

Appendix B: PHP Primer 759

32 549669 AppB.qxd 4/4/03 9:28 AM Page 759

Here, the new class, PDA, extends Computer, since a PDA is a simple computer.
This class simply creates a new method called printSpec() to print the computer’s
specifications. Now let’s look at a simple application that uses the PDA class:

<?php

require_once ‘class.PDA.php’;

$info[‘CPU’] = ‘StrongArm 400 Mhz’;
$info[‘RAM’] = ‘512 GB’;
$info[‘TYPE’] = ‘PDA’;

$myPDA = new PDA($info);

$myPDA->printSpec();
?>

When run, this application prints the following:

CPU : StrongArm 400 Mhz
RAM : 512 GB
TYPE : PDA

This simple application demonstrates the power of reusable objects. Note that
this application required only the PDA class, as we were interested in working only
with PDA. This application creates a hash ($info) with information about the CPU,
RAM, and the TYPE of the PDA, and creates a PDA object called $myPDA using the fol-
lowing line:

$myPDA = new PDA($info);

When the PDA object is created, PHP calls the Computer() constructor automat-
ically, as the PDA class extends the Computer class and PDA does not have its own
constructor PDA() defined. This enables the $info data to be set by the Computer’s
constructor method. Another way of explaining this is as follows.

When PDA object is created, PHP does not find the object’s default constructor,
PDA(), so it calls the constructor of the object that the PDA extends. In this case,
that constructor is Computer(), and therefore the $info data is passed to the
Computer() method.

Once the PDA object is created, the application calls the printSpec() method
found in the PDA class to print the specification of the PDA.

Notice that our real application is very small. We simply created a printSpec()
method and inherited all others from the parent class (Computer).

760 Part VII: Appendixes

32 549669 AppB.qxd 4/4/03 9:28 AM Page 760

Now suppose we want to create another application that deals with PocketPCs.
Because PocketPCs are really PDAs with specific operating system (Windows CE)
requirements, we can easily inherit the PDA class and define a new class called
PocketPC as follows:

<?php

require_once ‘class.PDA.php’;

class PocketPC extends PDA {

function printSpec($type = null)
{

echo “CPU : “ . $this->getCPU() . “
”;
echo “RAM : “ . $this->getRAM() . “
”;
echo “TYPE : “ . $this->getType() . “
”;
echo “Windows CE Only System
”;

}
}

?>

In the preceding example, we have extended PDA and overridden the
printSpec() method, as we want to print the fact that PocketPCs only run the
Windows CE operating system. Therefore, an application such as the following can
use this class:

<?php

require_once ‘class.PocketPC.php’;

$info[‘CPU’] = ‘StrongArm 400 Mhz’;
$info[‘RAM’] = ‘512 GB’;
$info[‘TYPE’] = ‘PDA’;

$myGizmo = new PocketPC($info);

$myGizmo->printSpec();
?>

Appendix B: PHP Primer 761

32 549669 AppB.qxd 4/4/03 9:28 AM Page 761

This will output the following:

CPU : StrongArm 400 Mhz
RAM : 512 GB
TYPE : PDA
Windows CE Only System

The classes discussed so far clearly show the power of OOP. Notice how we over-
ride the PDA’s printSpec() method in the PocketPC class, but retain all the other
benefits of the PDA, which happens to be a Computer object.

762 Part VII: Appendixes

32 549669 AppB.qxd 4/4/03 9:28 AM Page 762

Appendix C

MySQL Primer
MYSQL IS THE MOST POPULAR open-source database in the world. Its popularity
stems from the following:

◆ MySQL is free as long as you don’t sell it to someone, sell a product that
is bundled with it, or install and maintain it at a client site. If you’re in
doubt about whether you fit within the license parameters, please see the
Web site at http://www.mysql.com/.

◆ MySQL supports many programming interfaces, including PHP, C, C++,
Java, Perl, and Python. The possibilities it offers to tailor programs to fit
your needs are virtually limitless.

◆ MySQL uses very fast methods of relating tables of information to one
another. Using a method called a one-sweep multijoin, MySQL is very effi-
cient at gathering the information you request from many different tables
at once.

◆ MySQL is widely used. Chances are good that many other people have
done something similar to what you are doing. If you have questions or
problems, you have a wide group of people to consult. Not only can you
get advice from others about what to do, you can also get valuable infor-
mation about what not to do. This prevents you from making the same
mistakes others have made.

MySQL is available all over the Internet. The best way to get MySQL is to go to
http://www.mysql.com/ and find a mirror site close to you. You can find out how
to install MySQL on a Linux platform in Appendix D.

763

33 549669 AppC.qxd 4/4/03 9:28 AM Page 763

Using MySQL from the
Command-Line
You can start the MySQL client program by typing the following:

mysql -u username -p

In this example, username is the username you are using to access the SQL
server. If a password is required, you are prompted for it. You should now see some-
thing like the following:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 143 to server version: 3.23.52
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.
mysql>

Creating a database
When you install MySQL, you have no data. In fact, you don’t even have a database
defined, other than the ones provided by MySQL itself. In this section, we will cre-
ate a database called store. The syntax for this, at the mysql> prompt is simply

create database store;

You should get a response similar to the following:

Query OK, 1 row affected (0.02 sec)

This generic response indicates that your command has executed. You can con-
firm this by issuing the following command:

show databases;

Your rights to create, change, or delete databases depends on your account

and the rights associated with it. If you have root access you can (of course)

do just about anything, including set parameters for other accounts. This

chapter assumes that you have enough access to create and change data-

bases. If you do have root access to MySQL, be sure to set/change the root

password after installing MySQL!

764 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 764

If this is the first database you create, you see the following:

+----------+
| Database |
+----------+
| mysql |
| test |
| store |
+----------+
1 row in set (0.00 sec)

Make sure you terminate each SQL query with a semicolon. Without a semi-

colon terminator, you will see another prompt line and your query will not

be executed.

There it is. You now have a database named store that contains no data. Now it
is up to you to create the tables that store the data. You need to define not only the
names of all the columns, but also the types of data they store. Begin by identify-
ing the database you’re going to use by issuing the following command:

Use store;

Then issue the following command to make the first table:

create table customers (
id INT AUTO_INCREMENT PRIMARY KEY,
name CHAR(40) NOT NULL,
address CHAR(80),
telephone CHAR(13));

Let’s examine each of these lines to see what it does, beginning with the first:

id INT AUTO_INCREMENT PRIMARY KEY,

This line is the meat of the table. In it, you are creating a column named id that
holds whole numbers (int stands for integer). Additionally, this column is the pri-
mary key. A primary key provides a convenient element to access the data in an
orderly fashion. For example, in our database the records will be stored with unique
integers as their primary key. Later, to access a record you could use a query to
specify what record(s) to return by using that key. Searching for matches with a pri-
mary key is significantly faster than other fields.

Appendix C: MySQL Primer 765

33 549669 AppC.qxd 4/4/03 9:28 AM Page 765

Following is the second line:

create table customers (

The preceding line tells the SQL server you are trying to create a table called
customers. Following is the third line:

name CHAR(40) NOT NULL,

The preceding line creates a column named name that contains 40 characters of
data per item. Additionally, it specifies that this column can never be null, or with-
out data. Following is the fourth line:

address CHAR(80),

The preceding line creates a column called address that holds 80 characters of
data per item. Following is the fifth line:

telephone CHAR(13));

The preceding line creates a column called telephone that holds 13 characters.
This is set up as a character field instead of a numeric field because you would
rarely, if ever, need to add telephone numbers or perform mathematical functions
with them. You can just treat the telephone number as you would any other char-
acter data. Moreover, this makes it easier to deal with the dashes people put in tele-
phone numbers.

Listing tables in a database
To see a list of tables in a database, you can run the following command:

show tables;

This command is run from the MySQL command-line client. Make sure you run
this command after you have run the use command to change to the database. For
example:

mysql> use store;
mysql> show tables;

766 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 766

The preceding commands display the following:

mysql> show tables;
+-----------------+
| Tables_in_store |
+-----------------+
| customers |
+-----------------+
1 row in set (0.00 sec)

Viewing table descriptions
To find out information about a table, run the following command:

desc table_name;

For example:

mysql> use store;
mysql> desc customers;

The preceding commands display the following:

+-----------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+----------+------+-----+---------+----------------+
name	char(40)				
address	char(80)	YES		NULL	
telephone	char(13)	YES		NULL	
id	int(11)		PRI	NULL	auto_increment
+-----------+----------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

Inserting data into a database
To insert data in a table, you need to know the field names and their types, and
then use the INSERT statement. Use the desc table_name command to find this
information, and then you can run the following:

insert into table_name (comma separated field list)
values(properly quoted and comma separated value list);

Appendix C: MySQL Primer 767

33 549669 AppC.qxd 4/4/03 9:28 AM Page 767

For example, to add data to the customers table in the store database, you can run
the following:

mysql> insert into customers (name,address,telephone)
values(‘Mohammed Kabir’,’2904 Wead Way, Sacramento, CA 95833’,
‘555-5555’);
Query OK, 1 row affected (0.33 sec)

Note that the values should be properly quoted if the values contain any

characters that could confuse the statement. Such characters include the

comma (“,”), a space (“ “), a quote (“””), etc. If you must use a quote character

of any type in the data, be sure to use the opposite quote to surround the

values. For example, if you use an apostrophe (which is a single-quote), sur-

round the data with a double-quote.

The preceding command inserts a row in the customers table. Notice that we do
not use the id field in the insert statement because it is set to auto_increment
and therefore is automatically inserted as the next available value. Note that you do
not have to ever explicitly deal with setting an auto_increment field, nor do you
have to worry about multiple clients causing an error — the MySQL developers have
taken care of almost any contingencies.

Querying data from a database
To find data in a table, you need to use SELECT statements, as shown here:

select field_list FROM table_name WHERE conditions;

This statement enables you to find field_list data from a table called
table_name, where the data meets the given conditions. For example:

mysql> select name from customers where id = 1;
+----------------+
| name |
+----------------+
| Mohammed Kabir |
+----------------+
1 row in set (0.01 sec)

768 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 768

In the preceding example, the record matching ID = 1 condition is returned
from the customers table. Another example is as follows:

mysql> select * from customers;
+----------------+-------------------------------------+-----------
+----+
| name | address | telephone |
id |
+----------------+-------------------------------------+-----------
+----+
| Mohammed Kabir | 2904 Wead Way, Sacramento, CA 95833 | 555-5555 |
1 |
| Sheila Kabir | 2904 Wead Way, Sacramento, CA 95833 | 555-5555 |
2 |
+----------------+-------------------------------------+-----------
+----+
2 rows in set (0.01 sec)

Here, the field_list is set to the asterisk (*), to indicate all data. Because this
statement did not use any conditions, all records were returned. (The “Sheila” data
was not explicitly entered in this chapter, but is shown to further this example.)

You can also limit the number of records returned in a query:

mysql> select * from customers limit 3;
+----------------+-------------------------------------+-----------
+----+
| name | address | telephone |
id |
+----------------+-------------------------------------+-----------
+----+
| Mohammed Kabir | 2904 Wead Way, Sacramento, CA 95833 | 555-5555 |
1 |
| Sheila Kabir | 2904 Wead Way, Sacramento, CA 95833 | 555-5555 |
2 |
| Joe Public | 6000 J St, Sacramento, CA 95822 | 555-5555 |
3 |
+----------------+-------------------------------------+-----------
+----+
3 rows in set (0.00 sec)

Appendix C: MySQL Primer 769

33 549669 AppC.qxd 4/4/03 9:28 AM Page 769

Here, only three records were returned from the query results because of the
given LIMIT condition. (Again, the extra data is implicitly added for this example.)

Limit actually takes an optional second argument, an offset for the record to
start with. For example, if you specify LIMIT 10,3 in a SELECT statement, the data
returned will start with the tenth record of the return set and return only three
records from there. This option can be used to step through data an arbitrary num-
ber of records at a time — supposing that you uniquely order the data with each
SELECT.

Updating data in a database
To update a record in a table within a database, you need to use the UPDATE state-
ment, as shown in the following example:

UPDATE table_name SET field=value list WHERE condition;

This statement will update records in a table that matches the given condition.
Only the given fields in the field=value list will be updated with new values. For
example:

mysql> update customers set telephone = ‘555-444’ where ID = 1;
Query OK, 1 row affected (0.32 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Note the use of the WHERE clause. This clause specifies how to select the records
to update and is usually a field (or two) and data to match. Here, the record #1 is
updated with a new telephone number. Forgetting to use a condition will update all
records!

Removing data from a database
To remove records from a table, you can use the DELETE statement, as shown in the
following example:

DELETE from table_name WHERE condition;

This statement will delete all rows that match the given condition, as shown
here:

mysql> delete from customers where ID > 1;
Query OK, 4 rows affected (0.01 sec)

Here, all records with an ID greater than 1 are deleted from the table. Use the
DELETE statement very carefully, as you cannot undo a delete operation. If you
don’t use a WHERE clause you risk deleting all records!

770 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 770

Using phpMyAdmin to Manage
MySQL Database
Managing MySQL databases via the command line is simple but often cumbersome
for people new to SQL syntax. There is an easier way to manage MySQL, and it
involves PHP. An open-source PHP tool called phpMyAdmin enables you to man-
age MySQL databases via the Web. This tool makes it very easy to manage a MySQL
database without knowing a great deal about SQL syntax. It can perform all of the
following database operations:

◆ Create and drop databases

◆ Create, copy, drop, and alter tables

◆ Delete, edit, and add fields

◆ Execute any SQL statement, even batch queries

◆ Manage keys on fields

◆ Load text files into tables

◆ Create and read dumps of tables

◆ Export and import CSV data

◆ Administer databases

Installing and configuring phpMyAdmin
To install and configure phpMyAdmin, do the following:

1. Download and extract the latest version of phpMyAdmin from
http://www.phpmyadmin.net to a directory of your choice, preferably
one under your Web server’s document root directory.

2. Read the installation notes in the Documentation.txt file–specific installa-
tion instructions.

3. Typically, installation and configuration simply involves editing
config.inc.php for your site-specific requirements, such as database host
name, username and password, installed directory URL, and so on. For
example:

$cfg[‘Servers’][$i][‘host’] = ‘localhost’;
$cfg[‘Servers’][$i][‘auth_type’] = ‘config’;
$cfg[‘Servers’][$i][‘user’] = ‘root’;
$cfg[‘Servers’][$i][‘password’] = ‘foobar’;

Appendix C: MySQL Primer 771

33 549669 AppC.qxd 4/4/03 9:28 AM Page 771

Configuring the preceding parameters in config.inc.php enables us to run
phpMyAdmin on a Web server that also runs MySQL (hence, host is set to
localhost) with the username/password pair set as root and foobar, respec-
tively. Of course, your actual host name, username, and password parame-
ters will be different, so you should change these accordingly.

4. Because this tool enables you to manage a database over the Web, you
should restrict access to this tool so that no one else can run it without
first being authorized in some manner. The simplest way to restrict access
to this tool is to set up your Web server to require username/password
authentication for the installed directory.

Visit www.apache.org for more information about securing a Web site

including the use of .htaccess files and configuration parameters.

Once you have configured phpMyAdmin, you can access it via the Web using
http://yourserver/path/to/phpMyAdmin. You will see a welcome screen similar
to what is shown in Figure C-1.

Figure C-1: The phpMyAdmin welcome screen.

772 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 772

Creating a database
Creating a database using phpMyAdmin is very easy. Just enter the database name
in the Create New Database field and click the Create button. For example, Figure
C-2 shows a newly created database called campaign.

Figure C-2: The newly created database campaign.

Creating a table
Creating a table in a new or existing database is quite simple as well. Simply select
the database from the database list (shown as a drop-down combo box on the left-
hand side of the screen), and enter the new table name in the appropriate text box,
along with number of fields in the table, as shown in Figure C-3.

Figure C-3: Creating a new table in a database.

Appendix C: MySQL Primer 773

33 549669 AppC.qxd 4/4/03 9:28 AM Page 773

The example shown in Figure C-3 creates a new table called subscription with
four fields. Click the Go button to start the table creation process. Now you will see
a screen similar to the one shown in Figure C-4.

Figure C-4: Specifying fields for new table in a database.

Enter the parameters for each field name — Type, Length/Values, Attributes, Null,
Default, and so on — by selecting appropriate options or entering values as needed.
Figure C-4 indicates that four fields are created: an ID field as an integer (INT), an
EMAIL field as a VARCHAR(70), a SUB_TS field as a TIMESTAMP(14), and an
HTML_OK field as CHAR(1). You can also enter comments about the table in the
appropriate text box.

Once you have configured the table fields as needed, click the Save button to
save the table. You will be shown a status screen, as shown in Figure C-5.

Note that it shows the entire CREATE TABLE statement, which you can copy and
store if you ever want to create this table using the command-line client.

In addition, clicking the Create PHP Code link will generate PHP code that is
needed to create this table. This can also be very handy for use in configuration
scripts.

774 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 774

Figure C-5: Status of the new table.

Inserting data into a database
To insert new data in a table, select the database from the drop-down menu on the
left side. Click on the table name as it appears on the left-hand side of the screen
under the database name. For example, to add a new row in the subscription table
in the campaign database, we can select campaign from the drop-down list and
then click on subscription table, which displays the screen shown in Figure C-6.

Click the Insert link below the database name. This will bring up the actual insert
form into which you can insert data. For our sample case, this form looks like the
one shown in Figure C-7.

Figure C-7 shows that we entered 1 as the ID field value, kabir@evoknow.com as
the EMAIL field value, the function NOW as the value for SUB_TS (timestamp), and
‘Y’ for the value of the HTML_OK field.

To submit the new data for this table, click the Go button. However, if you wish
to add more records, you can select the Insert another new row option so that this
form will be returned after the new data in entered. This saves some mouse clicks.

Appendix C: MySQL Primer 775

33 549669 AppC.qxd 4/4/03 9:28 AM Page 775

Figure C-6: Adding new rows to the database.

Figure C-7: Specifying data for new rows in the database.

776 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 776

Querying data from a database
To query data in a table, you can select the database and the table from the left-
hand side of the screen as discussed before. Once you have selected the table, you
can click the Browse button to view available data.

You can also click the SELECT link to define a SELECT query. For example,
Figure C-8 shows that we are querying the subscription table in the campaign data-
base for all records that have EMAIL fields LIKE %kabir%.

The LIKE directive, in its simplest form, simply does a substring match of

fields. You can use “%” for wildcards, which will match 0 or many characters.

For example, LIKE “%kabir%” would match kabir@evoknow.com,

nobody@kabir.evoknow.com, and simply kabir.

Figure C-8: Querying a database using the SELECT statement.

Define your query as needed using the conditions available. Then click the Go
button to perform the query. In our sample case, the output is shown in Figure C-9.

This output indicates that one record matched the query.

Appendix C: MySQL Primer 777

33 549669 AppC.qxd 4/4/03 9:28 AM Page 777

Figure C-9: Output of our sample query.

Updating data in a database
To update a record, simply query the database to locate the record or use the
Browse option to find the record manually in the table. Once you have identified
the record, click the Edit button to edit the data. For example, clicking the Edit but-
ton for the ouput of the last query (see Figure C-9) returns a screen similar to the
one shown in Figure C-10.

Once you are done modifying the data, click the Go button to complete the
update.

Removing data from a database
To remove a record, simply query the database to locate the record or use the
Browse option to find the record manually in the table. Once you have identified
the record, click the Delete button to delete the data. You will be alerted that you
are about to perform a delete operation; select OK to delete or Cancel to abort the
delete operation.

If you wish to empty the table completely, you can click the Empty link. You can
also remove the table using the Drop link.

Exporting data from a database
To create an export copy of your database, you can select the database from the left
menu and then click the Export link. This will show a screen similar to the one
shown in Figure C-11.

778 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 778

Figure C-10: Editing data from a previous query.

Figure C-11: Exporting data from a database.

Appendix C: MySQL Primer 779

33 549669 AppC.qxd 4/4/03 9:28 AM Page 779

Choose the tables you want to export. If you want to export the entire database,
click Select All to select all the tables. Then choose whether you want to export
both data and structure or just one of these two.

Once you have chosen the tables and what to export (data and/or structure),
select any additional options that apply. For example, to export to a file, you need
to select the Save as file option.

Once all options are selected, click the Go button to start the export. If you have
chosen Save as file, you will be asked to save a file. Save the file in your local sys-
tem. This file contains the data and/or structure of the tables you have selected.

In Figure C-11, both structure and data for three tables (ASK_TBL, CONTACT_TBL,
RESUME_TBL) are selected for export from the WEBFORMS database as a file.

780 Part VII: Appendixes

33 549669 AppC.qxd 4/4/03 9:28 AM Page 780

Appendix D

Linux Primer
LINUX IS ONE OF THE MOST POPULAR PHP platforms. This appendix describes how
you can install PHP and related tools on a Linux platform.

Most people run the Apache Web server with Linux. Because Apache works very
well with PHP and MySQL, it is the platform of choice for most sites. In this appen-
dix, we will assume that you have a Red Hat Linux 8 system.

Installing and Configuring Apache 2.0
You can install Apache 2.0 either by using an RPM binary distribution or by com-
piling it from the source distributions. This section describes how to install Apache
using both of these methods.

Installing Apache using an RPM binary
Your official Red Hat Linux distribution comes with the Apache server RPM pack-
age. You can install it using the following command:

rpm -ivh apache-version.i386.rpm

Once it is installed, you can access it from the /usr/local/apache directory.

Building a custom Apache from source
Although the official copy of Red Hat Linux comes with an RPM-packaged version
of a pre-built Apache Web server, you may still want to download the latest version
from the official Apache Web site at the following URL: http://www.apache.org/.

If you are not in the United States, it might be faster to get Apache source and
binaries from a nearby Apache mirror site. Use the URL http://www.
apache.org/dyn/closer.cgi to locate a good mirror site near you. Here we
assume that you are getting the software from the official Apache Web site. The
software (both source and binaries) can be found at http://www.apache.org/
dist/httpd/.

781

34 549669 AppD.qxd 4/4/03 9:28 AM Page 781

You will find many recent versions of Apache distributions archived using vari-
ous compression programs. For example:

Apache_2.0.43.tar.gz
Apache_2.0.43.tar.Z

These are both Apache Version 2.0.42 source distributions. They differ in size,
due to differences in compression technique. Download one of these files.
Regardless of which format you choose to download, you need the tar utility and
the gnuzip or gzip utility to decompress the files. For example, to decompress the
Apache 2.0.43.tar.gz file on a Red Hat 8.0 system, use the following command:

tar xvzf apache_2.0.43.tar.gz

Alternately, you could use the following:

gzip -d apache_2.0.43.tar.gz
tar xvf apache_2.0.43.tar

These commands decompress and extract all the files in a subdirectory while
keeping the relative path for each file intact.

Once you have extracted the source into a directory of your choice, you are
ready to configure and compile your custom copy of Apache. You can configure
Apache manually, or you can use the new Autoconf-style interface called APACI.
We prefer the APACI method because it is quicker and requires less knowledge of
Apache configuration details; in other words, you have to read fewer README and
INSTALL files to get the job done.

In the top-level directory of the source distribution, you will find a script called
configure, which is what you need for configuring Apache using APACI. You can
run this script as follows:

./configure --help

This enables you to see all the available options.
The first step in configuring Apache is to determine where you want to install it.

For example, to install Apache in a directory called /usr/local/apache, you can
run the configuration script as follows:

./configure --prefix=/usr/local/apache

782 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 782

Apache 2.0 offers three different multiprocessing modules under Linux, each of
which is described in Table D-1.

TABLE D-1 MULTIPROCESSING MODULES UNDER LINUX

MPM Description

perfork This makes Apache 2.0 behave very much like Apache 1.3.

A parent Apache server launches an initial number of child
processes. Each child process services a single request.
Therefore, the maximum number of simultaneous requests that
can be served is limited by the value of MaxClients directives.

When a single child dies due to error, only a single request is
lost.

worker This MPM enables Apache to perform better with fewer
resources than the perfork model.

In this MPM model, Apache launches a set of child processes
whereby each child runs ThreadsPerChild number of
threads.

Max Simultaneous Clients = MaxClients x
ThreadsPerChild

This is more scalable than the pre_fork model. However, when
a single thread within a child dies, any requests serviced by the
threads within that child also die along with the child. This
means that if one child dies, multiple requests are lost.

perchild In this model, Apache launches a set number of processes with a
set number of threads.

Max Simultaneous Clients =

NumServer x MaxThreadsPerChild

The number of child processes started depends on the value set
for the NumServer directive.

Each child process creates threads as specified in the
StartThreads directive.

Each child process maintains a pool of idle threads, ready to
service requests. The number of idle threads per child process is
controlled by MinSpareThreads and maxSpareThreads.

Appendix D: Linux Primer 783

34 549669 AppD.qxd 4/4/03 9:28 AM Page 783

We recommend the worker model because the perchild MPM is still under test.
You can use the worker MPM using the --with-mpm=worker option for the con-
figure script.

Compiling and installing Apache
Compiling and installing Apache is very simple once you have run the configure
script. Just run the make command from the top-level directory of your Apache
source distribution. If everything goes well, you will not see any error messages. In
such a case, you can install Apache by running the make install command. If
you get error(s) when running make, note the error message(s) and repeat the con-
figuration steps.

If you still have problems, go to the Apache Web site and read the FAQs to deter-
mine whether you need to do something else to get Apache running. In my experi-
ence, the standard Apache source distribution compiles on Red Hat without a single
hitch. Therefore, if Apache is not working at this point, double-check your steps
before you seek help from Usenet newsgroups such as comp.infosystems.www.
servers.unix and linux.redhat.

Once you have compiled and installed Apache, you can run make clean to
remove all the object files that are created during compilation.

Compiling and installing Apache support tools
When you configure Apache with the configure (or config.status) script, it
automatically installs a set of support tools. You do not need to do anything extra
to install any of the support tools. The only exception to this is the logresolve.pl
Perl script, which you need to install manually. This section describes these support
tools.

apachectl
Using this script, you can now control Apache. To learn about the command-line
options it accepts, just run it without any command-line options or use the help
option, For example, if you installed Apache in /usr/local/apache, you can run:

/usr/local/apache/bin/apachectl help

To start the server, run the script as follows:

/usr/local/apache/bin/apachectl start

To stop the server, run the script shown here:

/usr/local/apache/bin/apachectl stop

To restart the server, run the following:

/usr/local/apache/bin/apachectl restart

784 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 784

To test the server configuration files for syntax errors, you can run the
apachectl script as follows:

/usr/local/apache/bin/apachectl configtest

ab
This utility enables you to run benchmarks on your Web server. Just run the pro-
gram without any options to find out about the command-line options it takes.

apxs2
This utility helps in compiling modules for dynamic loading. It is not useful unless
you have Dynamic Module Support (DSO) enabled on your Apache server, and your
operating system supports DSO.

logresolve.pl
This Perl script is not installed automatically, but you can manually copy it to an
appropriate place from the src/support directory of your Apache source distribu-
tion. This script resolves IP addresses found in an Apache log file to their host
names. This script also spawns child processes and uses the parent process to pro-
vide caching support to speed up DNS lookups, which are often very slow.

logresolve
This utility works practically the same way as the logresolve.pl script. However,
this executable program is installed by default. To learn about the command-line
syntax, just run it with -h option.

htpasswd
This utility enables you to create username/password pairs for per-directory
authentication schemes. To see the usage syntax, run the program without any
arguments. Unlike the previously mentioned support tools, this utility is installed in
the bin directory of your Apache server installation directory.

dbmmanage
This utility enables you to manage DBM-based username/password pairs for DBM-
based authentication schemes. To see the usage syntax, run the program without
any arguments. This utility also is installed in the bin directory of your Apache
server installation directory.

htdigest
This utility enables you to create username/password pairs for MD5 digest-based
authentication schemes. To see the usage syntax, run the program without any
arguments. This utility also is installed in the bin directory of your Apache server
installation directory.

Appendix D: Linux Primer 785

34 549669 AppD.qxd 4/4/03 9:28 AM Page 785

Configuring Apache
By default, Apache reads a single configuration file called httpd.conf. Every
Apache source distribution comes with a set of sample configuration files. In the
standard Apache source distribution, you will find a directory called conf, which
contains sample configuration files with the -dist extension.

The first step you need to take before you modify this file is to create a backup
copy of the original. The httpd.conf file contains two types of information: com-
ments and server directives. Lines starting with a leading # character are treated as
comment lines; these comments have no purpose for the server software, but they
serve as a form of documentation for the server administrator. You can add as
many comments as you want; the server simply ignores all comments when it
parses the file.

Except for the comments and blank lines, the server treats all other lines as
either complete or partial directives. A directive is like a command for the server. It
tells the server to perform a certain task in a particular fashion. While editing the
httpd.conf file, you need to make certain decisions regarding how you want the
server to behave. The following sections describe what these directives mean and
how you can use them to customize your server.

Listing D-1 shows the default httpd.conf file created in the conf directory of
your Apache installation. Most of the comments have been removed, and the code
has been edited slightly for brevity.

Listing D-1: Default httpd.conf Created from httpd.conf-dist

ServerRoot “/usr/local/apache”

<IfModule !mpm_netware.c>
PidFile logs/httpd.pid
</IfModule>

Timeout 300
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 15

<IfModule prefork.c>
StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0
ServerLimit 16
</IfModule>

<IfModule worker.c>
StartServers 2

786 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 786

MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0
ServerLimit 16
</IfModule>

<IfModule perchild.c>
NumServers 5
StartThreads 5
MinSpareThreads 5
MaxSpareThreads 10
MaxThreadsPerChild 20
MaxRequestsPerChild 0
ServerLimit 16
</IfModule>

Listen 80

<IfModule !mpm_winnt.c>
<IfModule !mpm_netware.c>
User nobody
Group #-1
</IfModule>
</IfModule>

ServerAdmin you@your.address

UseCanonicalName Off

DocumentRoot “/usr/local/apache/htdocs”

<Directory />
Options FollowSymLinks
AllowOverride None

</Directory>

<Directory “/usr/local/apache/htdocs”>
Options Indexes FollowSymLinks
AllowOverride None
Order allow,deny
Allow from all

Continued

Appendix D: Linux Primer 787

34 549669 AppD.qxd 4/4/03 9:28 AM Page 787

Listing D-1 (Continued)

</Directory>

UserDir public_html
DirectoryIndex index.html index.html.var
AccessFileName .htaccess

<Files ~ “^\.ht”>
Order allow,deny
Deny from all

</Files>

TypesConfig conf/mime.types
DefaultType text/plain

<IfModule mod_mime_magic.c>
MIMEMagicFile conf/magic

</IfModule>

HostnameLookups Off
ErrorLog logs/error_log
LogLevel warn
LogFormat “%h %l %u %t \”%r\” %>s %b \”%{Referer}i\” \”%{User-Agent}i\””
combined
LogFormat “%h %l %u %t \”%r\” %>s %b” common
LogFormat “%{Referer}i -> %U” referer
LogFormat “%{User-agent}i” agent
CustomLog logs/access_log combined
ServerSignature On
Alias /icons/ “/usr/local/apache/icons/”

<Directory “/usr/local/apache/icons”>
Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

Alias /manual “/usr/local/apache/manual”

<Directory “/usr/local/apache/manual”>
Options Indexes FollowSymLinks MultiViews IncludesNoExec
AddOutputFilter Includes html
AllowOverride None

788 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 788

Order allow,deny
Allow from all

</Directory>

ScriptAlias /cgi-bin/ “/usr/local/apache/cgi-bin/”

<IfModule mod_cgid.c>
</IfModule>

<Directory “/usr/local/apache/cgi-bin”>
AllowOverride None
Options None
Order allow,deny
Allow from all

</Directory>

IndexOptions FancyIndexing VersionSort

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip
AddIconByType (TXT,/icons/text.gif) text/*
AddIconByType (IMG,/icons/image2.gif) image/*

AddIcon /icons/binary.gif .bin .exe
AddIcon /icons/binhex.gif .hqx
Many AddIcon directives are removed
to keep the listing short

DefaultIcon /icons/unknown.gif
ReadmeName README.html
HeaderName HEADER.html

IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

AddEncoding x-compress Z
AddEncoding x-gzip gz tgz

AddLanguage en .en
AddLanguage fr .fr
AddLanguage de .de
Other AddLanguage directives are removed
to keep the listing short

LanguagePriority en da nl et fr de el it ja ko no pl pt pt-br ltz ca es sv tw
ForceLanguagePriority Prefer Fallback

Continued

Appendix D: Linux Primer 789

34 549669 AppD.qxd 4/4/03 9:28 AM Page 789

Listing D-1 (Continued)

AddDefaultCharset ISO-8859-1
AddCharset ISO-8859-1 .iso8859-1 .latin1
AddCharset ISO-8859-2 .iso8859-2 .latin2 .cen
Other AddCharset removed to reduce the size
of this listing

AddType application/x-tar .tgz
AddHandler type-map var

<IfModule mod_negotiation.c>
<IfModule mod_include.c>

Alias /error/ “/usr/local/apache/error/”

<Directory “/usr/local/apache/error”>
AllowOverride None
Options IncludesNoExec
AddOutputFilter Includes html
AddHandler type-map var
Order allow,deny
Allow from all
LanguagePriority en es de fr
ForceLanguagePriority Prefer Fallback

</Directory>

ErrorDocument 400 /error/HTTP_BAD_REQUEST.html.var
ErrorDocument 401 /error/HTTP_UNAUTHORIZED.html.var
ErrorDocument 403 /error/HTTP_FORBIDDEN.html.var
ErrorDocument 404 /error/HTTP_NOT_FOUND.html.var
Other ErrorDocument directives have been removed
to keep the listing short.

</IfModule>
</IfModule>

BrowserMatch “Mozilla/2” nokeepalive
BrowserMatch “MSIE 4\.0b2;” nokeepalive downgrade-1.0 force-response-1.0
BrowserMatch “RealPlayer 4\.0” force-response-1.0
Other BrowserMatch directives have been removed
to keep the listing short.

<IfModule mod_ssl.c>
Include conf/ssl.conf

</IfModule>

790 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 790

Configuring the global environment for Apache
The directives discussed in this section create the global environment for the
Apache server. The directives are described in the order in which they appear in the
httpd.conf file.

Whenever we refer to %directive%, we are referring to the value of

the directive set in the configuration file. For example, if a directive

called ServerAdmin is set to kabir@domain.com, a reference to

%ServerAdmin% means “kabir@domain.com”. Therefore, if we ask you

to change %ServerAdmin%, you are being asked to change the e-mail

address in question.

The first directive is ServerRoot, which appears as follows:

ServerRoot “/usr/local/apache”

This directive specifies the top-level directory of the Web server. The specified
directory is not where you keep your Web contents. It is the directory where the Web
server program (httpd) and the files/directories that control Apache are on your hard
disk. It is really a directory, which normally has the following subdirectories:

{ServerRoot Directory}
|
|----bin
|----conf
|----htdocs
|
+---manual
| |----developer
| |----howto
| |----images
| |----misc
| |----mod
| |----platform
| |----programs
| |----search
| +----vhosts
|
|----icons
| |
| +---small
|

Appendix D: Linux Primer 791

34 549669 AppD.qxd 4/4/03 9:28 AM Page 791

|----logs
|----cgi-bin
+----include

/usr/local/apache is the parent directory for all server-related files. The
default value for ServerRoot is set to whatever you choose for the --prefix
option during source configuration using the configure script. By default, the
make install command executed during server installation copies all the server
binaries in %ServerRoot%/bin, server configuration files in %ServerRoot%/conf,
and so on.

You should change the value of this directive only if you have manually

moved the entire directory from the installation location to another loca-

tion. For example, if you simply run cp -r /usr/local/apache/home/
apache and want to configure the Apache server to work from the new

location, you will change this directive to ServerRoot/home/apache.

Note that in such a case, you must also change other direct references from

/usr/local/apache to /home/apache.

Also note that whenever you see a relative directory name in the configuration
file, Apache will prefix %ServerRoot% to the path to construct the actual path. You
will see an example of this in the directive in the following section.

PidFile
The PidFile directive is encapsulated within an if condition by using the
<IfModule . . .> container, as shown here:

<IfModule !mpm_netware.c>
PidFile logs/httpd.pid
</IfModule>

This tells Apache to set the PidFile to %ServerRoot%/logs/httpd.pid file only
if you have chosen a multiprocessing module (MPM) other than mpm_netware.c.

The PidFile directive sets the process ID (PID) file path. By default, it is set to
logs/httpd.pid, which translates to %ServerRoot%/logs/httpd.pid (that is,
/usr/local/apache/logs/httpd.pid). Whenever you want to find the PID of the
main Apache process that runs as root and spawns child processes, you can
run the cat %ServerRoot/logs/httpd.pid command. Don’t forget to replace
%ServerRoot% with an appropriate value.

792 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 792

If you change the %PidFile% value to point to a different location, make

sure the directory in which the httpd.pid file resides is not writable by

anyone but the root user, for security reasons

Timeout, KeepAlive, MaxKeepAliveRequests, and KeepAliveTimeout
Timeout sets the server timeout in seconds. The default should be left alone. The
next three directives KeepAlive, MaxKeepAliveRequests, and KeepAliveTimeout
are used to control the keep-alive behavior of the server.

IfModule containers
Apache will use one of three <IfModule . . .> containers depending on which
MPM you chose. For example, if you configured Apache using the --with-
mpm=worker, multi-threaded MPM (worker), the following <IfModule . . .> con-
tainer will be used:

<IfModule worker.c>
StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0
ServerLimit 16
</IfModule>

If you kept the default prefork MPM during source configuration by using the
configure script, the following <IfModule . . .> container will be used:

<IfModule prefork.c>
StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0
ServerLimit 16

</IfModule>

Similarly, the --with-mpm=perchild option forces Apache to use the last
<IfModule . . .> container.

Because we recommend the worker MPM here, the following sections describe
the directives used for this MPM.

Appendix D: Linux Primer 793

34 549669 AppD.qxd 4/4/03 9:28 AM Page 793

StartServers
StartServers tells Apache to start two child servers as it starts. You can start more
servers if you want, but Apache is pretty good at increasing the number of child
processes as needed based on load. For that reason, changing this directive is not
required.

MaxClients
In threaded (worker) MPM, this directive represents the maximum number of simul-
taneous threads that can be serving requests. In prefork MPM, it represents the
maximum number of simultaneous processes that can be serving the requests. In
worker MPM, when MaxClient is set to 150 and ThreadPerChild is set to 25, six
processes are needed to service 150 simultaneous requests. If you wish to raise this
limit, set ServerLimit accordingly. Suppose you want to service 400 simultaneous
requests per second with 25 threads per process in worker MPM; in such a case, you
need MaxClient set to 400 and ThreadPerChild set to 25, and ServerLimit =
MaxClient / ThreadPerChild = 16.

MinSpareThreads
The MinSpareThreads directive specifies the minimum number of idle threads.
These spare threads are used to service requests, and new spare threads are created
to maintain the minimum spare thread pool size. You can leave the default settings
alone.

MaxSpareThreads
The MaxSpareThreads directive specifies the maximum number of idle threads;
leave the default as is. In the default threaded mode, Apache kills child processes to
control minimum and maximum thread count.

ThreadsPerChild
This directive defines how many threads are created per child process.

MaxRequestPerChild
The final directive for the global environment is MaxRequestPerChild, which sets
the number of requests a child process can serve before getting killed. The default
value of zero makes the child process serve requests forever. We do not like to use
the default value because it enables Apache processes to slowly consume large
amounts of memory when a faulty mod_perl script, or even a faulty third-party
Apache module, leaks memory. Thus, we prefer to set this to 30.

If you do not plan to run any third-party Apache modules or mod_perl
scripts, you can keep the default or set it to a reasonable number. A setting

of 30 ensures that the child process is killed after processing 30 requests. Of

course, a new child process is created as needed.

794 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 794

Configuring the main server
The main server configuration applies to the default Web site Apache serves. This is
the site that will come up when you run Apache and use the server’s IP address or
host name on a Web browser.

LISTEN The first directive in this section is the Listen directive, which sets the
TCP port that Apache listens to for connections. The default value of 80 is the stan-
dard HTTP port. If you change this to another number, such as 8080, you can access
the server only using a URL such as http://hostname:8080/. You must specify
the port number in the URL if the server runs on a nonstandard port.

There are many reasons for running Apache on nonstandard ports, but the only
good one we can think of is that you do not have permission to run Apache on the
standard HTTP port. As a non-root user, you can run Apache only on ports higher
than 1024.

After you have decided to run Apache by using a port, you need to tell Apache
what its user and group names are.

USER AND GROUP DIRECTIVES The User and Group directives tell Apache which
user (UID) and group (GID) names to use. These two directives are very important
for security reasons. When the parent Web server process launches a child server
process to fulfill a request, it changes the child’s UID and GID according to the val-
ues set for these directives.

If the child processes are run as root user processes, a potential security hole will
be opened for attack by hackers. Enabling the capability to interact with a root user
process maximizes a potential breach of security in the system; hence, this is not
recommended. Rather, we highly recommend that you choose to run the child
server processes as a very low privileged user belonging to a very low privileged
group. In most UNIX systems, the user named nobody (usually UID = -1) and the
group named nogroup (usually GID = -1) are low-privileged. You should consult
your /etc/group and /etc/passwd files to determine these settings.

If you plan to run the parent Web server as a nonroot (regular) user, it will not
be able to change the UID and GID of child processes, because only root user
processes can change the UID or GID of other processes. Therefore, if you run your
parent server as the user named ironsheik, all child processes will have the same
privileges as ironsheik. Similarly, whatever group ID you have also will be the
group ID for the child processes.

If you plan to use the numeric format for user and/or group ID, you need to

insert a # symbol before the numeric value, which can be found in

/etc/passwd and /etc/group files.

Appendix D: Linux Primer 795

34 549669 AppD.qxd 4/4/03 9:28 AM Page 795

SERVERADMIN ServerAdmin defines the e-mail address that is shown when the
server generates an error page. Set this to your e-mail address.

SERVERNAME Now you need to set the host name for the server using the
ServerName directive. This directive is commented out by default because the
Apache install cannot guess what host name to use for your system. Therefore, if
the host name is called www.domain.com, set the ServerName directive accordingly.

Ensure, however, that the host name you enter here has proper domain

name server records that point it to your server machine.

USECANONICALNAME The next directive is UseCanonicalName, which is set to
On. It tells Apache to create all self-referencing URLs using %ServerName%:%Port%
format. Leaving it on is a good idea.

DOCUMENTROOT Like all other Web servers, Apache needs to know the path of
the top-level directory in which Web pages will be kept. This directory is typically
called the document root directory. Apache provides a directive called
DocumentRoot, which can be used to specify the path of the top-level Web directory.

This directive instructs the server to treat the supplied directory as the root direc-
tory for all documents. Consider this decision carefully. For example, if the direc-
tive is set as follows:

DocumentRoot /

Every file on the system becomes accessible by the Web server. Of course, you
can protect files by providing proper file permission settings, but setting the docu-
ment root to the physical root directory of your system is definitely a major secu-
rity risk. Instead, you should point the document root to a specific subdirectory of
your file system. If you have used the --prefix=/usr/local/apache option in
configuring the Apache source, this directive will be as follows:

DocumentRoot “/usr/local/apache/htdocs”

Note that just because your document root points to a particular directory, this
does not mean the Web server cannot access directories outside your document
tree. You can easily enable it to do so by using symbolic links (with proper file per-
mission) or by using aliases.

796 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 796

From an organization and security perspective, we don’t recommend using

a lot of symbolic links or aliases to access files and directories outside your

document tree. Nonetheless, it is sometimes necessary to keep a certain

type of information outside the document tree, even if you need to keep the

contents of such a directory accessible to the server on a regular basis. If you

have to add symbolic links to other directory locations outside the docu-

ment tree, make sure that when you back up your files, your backup pro-

gram backs up symbolic links properly.

DIRECTORY CONTAINER DIRECTIVES The next set of directives are enclosed in a
<Directory . . .> container, as shown here:

<Directory />
Options FollowSymLinks
AllowOverride None

</Directory>

The scope of the enclosed directives is limited to the named directory (with any
subdirectories); however, you may use only directives that are allowed in a direc-
tory context.

The Options and the AllowOverride directives apply to %DocumentRoot%,
which is the top-level directory of the main Web site. Because directives enclosed
within a directory container apply to any subdirectories of the named directory, the
directives apply to all directories within %DocumentRoot%.

The Options directive is set to FollowSymLinks, which tells Apache to allow itself
to traverse any symbolic link within %DocumentRoot%. Because the Options directive
is set to follow only symbolic links, no other options are available to any of the direc-
tories within %DocumentRoot%. Effectively, the Options directive is as follows:

Options FollowSymLinks -ExecCGI -Includes -Indexes -MultiViews

The main intent here is to create a very closed server. Because only symbolic link
traversal is allowed, you must explicitly enable other options as needed on a per-
directory basis. This is very good thing from a security perspective. The next direc-
tory container opens up the %DocumentRoot% directory, as shown here:

<Directory “/usr/local/apache/htdocs”>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

Appendix D: Linux Primer 797

34 549669 AppD.qxd 4/4/03 9:28 AM Page 797

If your %DocumentRoot% is different, change the named directory path. Here is
what the preceding configuration means to Apache:

◆ The named directory and its subdirectories can be indexed. If there is an
index file, it will be displayed; in the absence of an index file, the server will
create a dynamic index for the directory. The Options directive specifies this.

◆ The named directory and all its subdirectories can have symbolic links
that the server can follow (that is, use as a path) to access information.
The Options directive also specifies this.

◆ The named directory and all its subdirectories can be part of content
negotiations. The MultiViews option for the Options directive sets
this. We are not a fan of this option, but do not dislike it enough to
remove it. For example, when the given Options directive is enabled
within the %DocumentRoot% directory as shown previously, a request
for http://www.domain.com/ratecard.html can be answered by a
file called ratecard.html.bak, ratecard.bak, ratecard.old, and the
like if ratecard.html is missing. This may or may not be desirable.

◆ No options specified here can be overridden by a local access control file
(specified by the AccessFileName directive in httpd.conf; the default is
.htaccess). This is specified using the AllowOverride directive.

◆ The Allow directives are evaluated before the Deny directives. Access is
denied by default. Any client that does not match an Allow directive or
that does match a Deny directive is denied access to the server.

◆ Access is permitted for all.

The default settings should be sufficient.

If your server is going to be on the Internet, you may want to remove the

FollowSymLinks option from the Options directive line. Leaving this

option creates a potential security risk. For example, if a directory in your

Web site does not have an index page, the server displays an automated

index that shows any symbolic links you may have in that directory. This

could cause sensitive information to be displayed or may even allow anyone

to run an executable that resides in a carelessly linked directory.

USERDIR The UserDir directive tells Apache to consider %UserDir% as document
root (~username/%UserDir%) of each user Web site. This makes sense only if you
have multiple users on the system and want to allow each user to have his or her
own Web directory. The default setting is shown here:

UserDir public_html

798 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 798

This command means that if you set up your Web server’s name to be
www.yourcompany.com and you have two users (joe and jenny), their personal
Web site URLs would be as follows:

http://www.yourcompany.com/~joe Physical directory:
~joe/public_html
http://www.yourcompany.com/~jenny Physical directory:
~jenny/public_html

Note that on Red Hat Linux systems, the ~ (tilde) expands to a user’s home direc-
tory. The directory specified by the UserDir directive resides in each user’s home
directory, and Apache must have read and execute permissions to read files and
directories within the public_html directory. This can be accomplished using the
following commands on your system:

chown -R <user>.<Apache server’s group name>
~<user>/<directory assigned in UserDir>

chmod -R 2770 ~<user>/<directory assigned in UserDir>

For example, if the username is joe and Apache’s group is called httpd, and
public_html is assigned in the UserDir directive, the preceding commands will
look like this:

chown -R joe.httpd ~joe/public_html
chmod -R 2770 ~joe/public_html

The first command, chown, changes ownership of the ~joe/public_html direc-
tory (and that of all files and subdirectories within it) to joe.httpd. In other words,
it gives the user joe and the group httpd full ownership of all the files and direc-
tories in the public_html directory. The next command, chmod, sets the access
rights to 2770, meaning that only the user (joe) and the group (httpd) have full
read, write, and execute privileges in public_html and all files and subdirectories
under it. It also ensures that when a new file or subdirectory is created in the
public_html directory, the newly created file has the group ID set. This enables the
Web server to access the new file without the user’s intervention.

If you create user accounts on your system using a script (such as the

/usr/sbin/adduser script on Linux systems), you may want to incorpo-

rate the Web site creation process in this script. Just add a mkdir command

to create a default public_html directory (if that’s what you assign to the

UserDir directive) to create the Web directory. Add the chmod and chown
commands to give the Web server user permission to read and execute files

and directories under this public directory.

Appendix D: Linux Primer 799

34 549669 AppD.qxd 4/4/03 9:28 AM Page 799

DIRECTORYINDEX Next, you need to configure the DirectoryIndex directive,
which has the following syntax:

DirectoryIndex [filename1, filename2, filename3, ?]

This directive specifies which file the Apache server should consider as the
index for the directory being requested. For example, when a URL such as
www.yourcompany.com/ is requested, the Apache server determines that this is a
request to access the / (document root) directory of the Web site. If the
DocumentRoot directive is set as follows:

DocumentRoot “/www/www.yourcompany.com/public/htdocs”

the Apache server looks for a file named /www/www.yourcompany.com/
public/htdocs/index.html; if it finds the file, Apache services the request by
returning the content of the file to the requesting Web browser. If the
DirectoryIndex is assigned welcome.html instead of the default index.html,
however, the Web server will look for /www/www.yourcompany.com/public/
htdocs/welcome.html. If the file is absent, Apache returns the directory listing by
creating a dynamic HTML page.

You can specify multiple index file names in the DirectoryIndex directive:

DirectoryIndex index.html index.htm welcome.htm

This command tells the Web server that it should check for the existence of any
of the three files, and if any one file is found, it should be returned to the request-
ing Web client.

Listing many files as the index may create two problems. First, the server will

now have to check for the existence of many files per directory request; this

could make it slower than usual. Second, having multiple files as indexes

could make your site difficult to manage from an organizational point of

view. If your Web site content developers use various systems to create files,

however, it might be practical to keep both index.html and index.htm
as index files. For example, an older Windows machine is unable to create file

names with extensions longer than three characters, so a user working on

such a machine may need to manually update all of the user’s index.htm
files on the Web server. Using the recommended index file names eliminates

this hassle.

800 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 800

ACCESSFILENAME The AccessFileName directive defines the name of the per-
directory access control configuration file. The default name .htaccess has a lead-
ing period to hide the file in a normal directory listing under UNIX systems. The
only reason to change the name to something else is to increase security by obscu-
rity, which is not much of a reason. However, if you do change the file name to
something else, make sure that you change the regular expression “^\.ht” to
“^\.whatever”, where .whatever is the first view character of what you set
AccessFileName to.

FILES CONTAINER The following <Files . . .> container tells Apache to disal-
low access to any file that starts with a .ht (that is, the .htaccess or .htpasswd).
This corresponds to the default %AccessFileName%:

<Files ~ “^\.ht”>
Order allow,deny
Deny from all

</Files>

TYPESCONFIG The TypesConfig directive points to the mime configuration file
mime.types that resides in the default conf directory. You do not need to change it
unless you have relocated this file.

DEFAULTTYPE The DefaultType directive sets the Content-Type header for any
file whose MIME type cannot be determined from the file extension. For example,
if you have a file %DocumentRoot%/myfile, Apache uses the %DefaultType, which
is set to text/plain, as the content type for the file. This means that when the Web
browser requests and receives such a file in response, it will display the contents in
the same way it displays a plain-text file. If you think most of your unknown file
contents should be treated as HTML, use text/html in place of text/plain.

IFMODULE CONTAINER The next <IfModule . . .> container tells Apache to
enable the MIME magic module (mod_mime_magic) if it exists, and to use the
%MIMEMagicFile% file as the magic information (bytes patterns) needed to identify
MIME-type files. The default should be left alone unless you want to change the
path of the magic file. Here’s an example:

<IfModule mod_mime_magic.c>
MIMEMagicFile conf/magic

</IfModule>

Appendix D: Linux Primer 801

34 549669 AppD.qxd 4/4/03 9:28 AM Page 801

HOSTNAMELOOKUPS The HostnameLookups directive tells Apache to enable
DNS lookup per request if it is set to On. However, the default setting is Off, and
therefore no DNS lookup is performed to process a request, which speeds up
response time. Performing a DNS lookup to resolve an IP address to the host name
is a time-consuming step for a busy server and should be done only using the
logresolve utility. Leave the default as it is.

ERRORLOG The ErrorLog directive is very important. It points to the log file ded-
icated to recording server errors. The default value of logs/errors translates to
%ServerRoot%/logs/error_log, which should work for you, unless you want to
write a log in a different place. Generally, it is a good idea to create a log partition
for keeping your logs. It also is preferable that your log partition be on one or more
dedicated log disks. If you have such a hardware configuration, you might want to
change the directive to point to a new log path.

LOGLEVEL The LogLevel directive sets the level of logging that will be done. The
default value of warn is sufficient for getting started. The LogFormat directives dic-
tate what is logged and in what format it is logged. In most cases, you should be
able to live with the defaults.

CUSTOMLOG The CustomLog directive sets the path for the access log, which
stores your server hits. By default, it uses the common log format (CLF), which is
defined in the preceding LogFormat directive. Consider the advice about keeping
logs on their own disk and partition, and make changes to the path if necessary.

A good bit of advice for all logs, regardless of which directory you keep the

logs in, is to make sure that only the parent server process has write access in

that directory. This is a major security issue, because allowing other users or

processes to write to the log directory can potentially enable someone

unauthorized to take over your parent Web server process UID, which is nor-

mally the root account.

SERVERSIGNATURE The next directive is ServerSignature, which displays
server name and version number and is a server-generated page such as dynamic
directory index pages, error pages, and the like. If you feel uncomfortable about
displaying your server information so readily to everyone, set it to Off. We do.

ALIAS The Alias directive defines a new directory alias called /icons/ to point
to /usr/local/apache/icons/ (that is, %ServerRoot%/icons/). The icon images
stored in this directory are used to display dynamic directory listings when no
%DirectoryIndex%-specified files are found in that directory. You should leave the

802 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 802

alias alone unless you changed the path of the icons directory. The directory con-
tainer that follows the alias definition sets the permission for this icon directory.
We do not like the idea that it enables directory browsing (that is, dynamic direc-
tory indexing) by setting Options to Indexes. You should change Options
Indexes to Options -Indexes and not worry about the MultiViews option.

SCRIPTALIAS The ScriptAlias directive is used to set a widely used CGI script
alias directory /cgi-bin/ to point to /usr/local/apache/cgi-bin/ (that is,
%ServerRoot%/cgi-bin/). If you plan to use CGI scripts from the main server, keep
it; otherwise, remove this directive. Alternately, if you want to change the CGI
script directory to another location, change the physical path given in the directive
to match yours.

Never set a CGI script path to a directory within your document root — that

is, %DocumentRoot%/somepath— because keeping CGI scripts in your

document root directory opens it to various security issues. Set your CGI

script path and DocumentRoot at the same level. In other words, if you set

DocumentRoot to /a/b/c/htdocs, then set ScriptAlias to point to

/a/b/c/cgi-bin, not to /a/b/c/htdocs/cgi-bin or to /a/b/c/
htdocs/d/cgi-bin.

Next, a directory container places a restriction on the %ScriptAlias% directory
to ensure that no directory-level options are allowed. Here, the Options directive is
set to None, which means that the contents of %ScriptAlias% cannot be browsed
for security reasons and that symbolic links within the %ScriptAlias% directory
are not followed.

OTHER DIRECTIVES The rest of the directives—IndexOptions, AddIconByEncoding,
AddIconByType, AddIcon, DefaultIcon, ReadmeName, HeaderName, IndexIgnore,
AddEncoding, AddLanguage, AddCharset, BrowserMatch, are not required to get up
and running, so they are ignored for now. You may want to consider changing two
additional directives if necessary: LanguagePriority and AddDefaultCharset.

AddType
This directive allows you to add or override MIME configuration information stored
in mime.types file. For example:

AddType application/x-httpd-php .php
Here the .php extension is associated with PHP scripts.

Appendix D: Linux Primer 803

34 549669 AppD.qxd 4/4/03 9:28 AM Page 803

LanguagePriority
By default, the LanguagePriority directive sets the default language to be en
(English), which might not work for everyone in the world. You might want to
change the default language to your native language, if it is supported.

AddDefaultCharset
AddDefaultCharset should be set to the character set that best suits your local
needs. If you do not know which character set you should use, you can leave the
default alone, find out which character set you should use, and change the default
later.

Starting and stopping Apache
After you have customized httpd.conf, you are ready to run the server. For this
section, we assume that you installed Apache in /usr/local/apache. If you did
not, make sure that you replace all references to /usr/local/apache to whatever
is appropriate for your system in the following discussion.

Starting Apache
Run the /usr/local/apache/bin/apachectl start command to start the Apache
Web server. If apachectl complains about syntax errors, fix the errors in the
httpd.conf file and retry.

Check the %ErrorLog% log file (that is, /usr/local/apache/logs/error_log)
for error messages (if any). If you see errors in the log file, you need to fix them
first. Following are the most common errors:

◆ Not running the server as the root user. You must start Apache as the
root user. After Apache is started, it will spawn child processes that will
use the User and Group directives, specified UID and GID. Most people are
confused by this issue and try to start the server using the user account
specified in the User directive.

◆ Apache complains about being unable to “bind” to an address. Either
another process is already using the port that you have configured Apache
to use, or you are running httpd as a normal user but are trying to use a
port below 1024 (such as the default port 80).

◆ Missing log file paths. Make sure that both the %ErrorLog% and
%CustomLog% paths exist and are not writable by anyone but the Apache
server.

◆ Configuration typo. Anytime you change the httpd.conf configuration
file, run /usr/local/apache/apachectl configtest to verify that you
do not have a syntax error in the configuration file.

804 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 804

The quickest way to check whether the server is running is to try the follow-

ing command:

ps auxww | grep httpd

This command uses the ps utility to list all the processes in the process

queue and then pipes this output to the grep program.grep searches the

output for lines that match the keyword httpd, and then displays each

matching line. If you see one line with the word root in it, that’s your parent

Apache server process.

Note that when the server starts, it creates a number of child processes to handle
the requests. If you started Apache as the root user, the parent process continues to
run as root, while the children change to the user as instructed in the httpd.conf
file. If you are running Apache on Linux, you can create the script shown in Listing
D-2 and keep it in /etc/rc.d/init.d/ directory. This script allows you to auto-
matically start and stop Apache when you reboot the system.

Listing D-2: The httpd Script

#!/bin/sh
#
httpd This shell script starts and stops the Apache server
It takes an argument ‘start’ or ‘stop’ to receptively start and
stop the server process.
#
Notes: You might have to change the path information used
in the script to reflect your system’s configuration.
#

APACHECTL=/usr/local/apache/bin/apachectl

[-f $APACHECTL] || exit 0

See how the script was called.
case “$1” in
start)

Start daemons.
echo -n “Starting httpd: “
$APACHECTL start
touch /var/lock/subsys/httpd
echo
;;

restart)

Continued

Appendix D: Linux Primer 805

34 549669 AppD.qxd 4/4/03 9:28 AM Page 805

Listing D-2 (Continued)

Restart daemons.
echo -n “Restarting httpd: “
$APACHECTL restart

echo “done”
rm -f /var/lock/subsys/httpd
;;

stop)
Stop daemons.
echo -n “Shutting down httpd: “
$APACHECTL stop

echo “done”
rm -f /var/lock/subsys/httpd
;;

*)
echo “Usage: httpd {start|stop|restart}”
exit 1

esac
exit 0

To start Apache automatically when you boot up your Red Hat Linux system,

simply run the following command once:

ln -s /etc/rc.d/init.d/httpd /etc/rc.d/rc3.d/S99httpd

This command creates a special link called S99httpd in the /etc/rc.d/
rc3.d (run-level 3) directory that links to the /etc/rc.d/init.d/httpd
script. When your system boots up, this script will be executed with the

start argument and Apache will start automatically.

Restarting Apache
To restart the Apache server, run the /usr/local/apache/bin/apachectl
restart command. You also can use the kill command as follows:

kill -USR1 ‘cat /usr/local/apache/logs/httpd.pid’

When restarted with apachectl restart or by using the HUP signal with kill,
the parent Apache process (run as root user) kills all its children, reads the configu-
ration file, and restarts a new generation of children as needed.

806 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 806

This type of restart is sudden to the Web clients that were promised service

by the then-alive child processes. Therefore, you might want to consider

using graceful with apachectl instead of the restart option, and

WINCH instead of HUP signal with the kill command. In both cases, the par-

ent Apache process will advise its child processes to finish the current

request and then terminate so that it can reread the configuration file and

restart a new batch of children.This might take some time on a busy site.

Stopping Apache
You can automatically stop Apache when the system reboots, or manually stop it at
any time. These two methods of stopping Apache are discussed in the following
sections.

STOPPING APACHE AUTOMATICALLY To terminate Apache automatically when
the system is being rebooted, run the following command once:

ln -s /etc/rc.d/init.d/httpd /etc/rc.d/rc3.d/K99httpd

This command ensures that the httpd script is run with the stop argument when
the system shuts down.

STOPPING THE APACHE SERVER MANUALLY To stop the Apache server manu-
ally, run the /usr/local/apache/bin/apachectl stop command.

The Apache server also makes it convenient for you to find the PID of the root
Web server process. The PID is written to a file assigned to the PidFile directive.
This PID is for the parent httpd process. Do not attempt to kill the child processes
manually one by one because the parent process will re-create them as needed.
Another way to stop the Apache server is to run the following:

kill -TERM ‘cat /usr/local/apache/logs/httpd.pid’

This command runs the kill command with a -TERM signal (that is, -15) for the
process ID returned by the cat /usr/local/apache/logs/httpd.pid (that is, cat
%PidFile%) command.

Testing Apache
After you have started the Apache server, access it via a Web browser using the
appropriate host name. For example, if you are running the Web browser on the
server itself, use http://localhost/ to access the server. If you want to access the
server from a remote host, however, use the fully qualified host name of the server.

Appendix D: Linux Primer 807

34 549669 AppD.qxd 4/4/03 9:28 AM Page 807

For example, to access a server called apache.pcnltd.com, use http://apache.
pcnltd.com. If you set the Port directive to a nonstandard port (that is, to a port
other than 80), remember to include the :port in the URL. For example,
http://localhost:8080 will access the Apache server on port 8080.

Finally, you want to ensure that the log files are updated properly. To check your
log files, enter the log directory and run the following command:

tail -f path_to_access_log

The tail part of the command is a UNIX utility that enables viewing of a grow-
ing file (when the -f option is specified). Make sure that you change the
path_to_access_log to a fully qualified path name for the access log. Now use a
Web browser to access the site; if you are already at the site, simply reload the page
you currently have on the browser. You should see an entry added to the listing on
the screen. Click the reload button a few more times to ensure that the access file is
updated appropriately. If you see the updated records, your access log file is work-
ing. Press Ctrl+C to exit from the tail command session. If you do not see any new
records in the file, check the permission settings for the log files and the directory
in which they are kept. Another log to check is the error log file. Use the following
command:

tail -f path_to_error_log

This allows you to view the error log entries as they come in. Simply request
nonexistent resources (such as a file you don’t have) to view on your Web browser,
and you should see entries being added. If you can observe entries being added, the
error log file is properly configured.

If all of these tests were successful, you have successfully configured your
Apache server. Congratulations!

Installing and Configuring
MySQL Server
Many SQL servers are available for Red Hat, including Oracle, DB2, Postgres, and
MySQL. We chose to explore MySQL for a number of reasons:

◆ MySQL is free as long as you don’t sell it to someone, sell a product that
is bundled with MySQL, or install and maintain MySQL at a client site. If
you’re unsure whether you fit within the license parameters, please visit
the Web site at http://www.mysql.com/.

◆ MySQL supports many programming interfaces, including C, C++, Java,
Perl, and Python. You can tailor programs to fit your needs in nearly infi-
nite ways.

808 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 808

◆ MySQL uses very fast methods of relating tables of information to each
other. Using a method called a one-sweep multijoin, MySQL is very effi-
cient at gathering the information you request from many different tables
at once.

◆ MySQL is widely used. Chances are good that many other people have
done something similar to what you are doing. If you have questions or
problems, you can consult with a large group of people. Not only can you
get advice from others about how to solve your problems and what to do,
you can also get information about what not to do. This saves you from
making the same mistakes others have made.

Where to get MySQL
MySQL is available all over the Internet. The best way to get MySQL is to go to
http://www.mysql.com/ and find a mirror site close to you.

During your Red Hat server installation, you can choose to install MySQL.
However, if you missed that chance, you have two options: you can compile a cus-
tom copy of MySQL from the source RPM packages, or you can simply download
the binary distribution. Here we assume that you will use the binary distribution.
You want to get both the RPM package containing the MySQL server program and
the RPM package containing the client programs and libraries. You also need the
RPM package containing the include files and libraries, from http://www.mysql.
org/download.html.

Installing the MySQL RPM packages
Installing the MySQL RPM package is simple. Just run rpm -i mysql-version.
rpm, where mysql-version.rpm is the name of the RPM package containing the
MySQL server. Next, run rpm -i mysql-client-version.rpm again, substituting
the name of the RPM package you have. Do the same for the RPM package, with the
include files and library binaries.

Accessing the MySQL server
After you install the MySQL server RPM package, the server starts automatically
every time you boot your system. You will find a file called mysql in /etc/
rc.d/init.d that you can use to start and stop the MySQL server by using the fol-
lowing commands:

/etc/rc.d/init.d/mysqld start
/etc/rc.d/init.d/mysqld stop

Appendix D: Linux Primer 809

34 549669 AppD.qxd 4/4/03 9:28 AM Page 809

The RPM installation automatically starts the server for you. To ensure that the
MySQL server is running, you can ping it by using the following command:

/usr/bin/mysqladmin ping

You should get a response such as mysqld is alive when the server is up and run-
ning. If you don’t get such a response, use the /etc/rc.d/init.d/mysql start
command to start the server.

After the server starts, you need to run the following command to create some
required tables:

/usr/bin/mysql_install_db

By default, the password for the server’s administrative account (root) is not set,
so use the following command to set the password:

/usr/bin/mysqladmin -u root password newpassword

Now you are ready to run the MySQL client. You can start the MySQL client pro-
gram by typing the following:

mysql -u username -p

In this example, username is the username you are using to access the SQL
server. If a password is required, you are prompted for it. You should now see some-
thing like the following:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 3.22.15
Type ‘help’ for help.
mysql>

You are now ready to start laying the framework of your database.

Installing and Configuring PHP
for Apache 2.0
The current version of PHP is 4.x. You can download PHP source or binary distrib-
utions from www.php.net. This section assumes that you have downloaded the lat-
est source distribution of PHP, php-4.3.1tar.gz.

810 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 810

After downloading the source distribution, extract the source in a directory by
using the tar xvzf php-4.3.1tar.gz command. We recommend that you install
it in the same directory as you installed the Apache source. For example, if you
installed the Apache source in the /usr/local/src/httpd-2.0.16 directory, then
extract PHP into the /usr/local/src directory. A new subdirectory, called php-
4.2.3, will be created.

At this point, you have to decide how you plan to run PHP. PHP can be run as
an Apache module (embedded in the server itself or as a DSO module) or as a CGI
solution. The CGI solution means that you will not have any performance advan-
tage over regular CGI scripts with PHP scripts because a PHP interpreter will be
loaded each time to process a CGI-mode PHP script.

Building PHP as a CGI solution
Like Perl, PHP can be used in standalone scripts as well as embedded in Web pages.
To build the PHP interpreter for CGI-mode operations, do the following:

1. As root, change to the PHP source distribution directory and run the
following:

./configure --enable-discard-path --with-mysql

2. Now run make && make install to compile and install the PHP inter-
preter on your system.

Building PHP as an Apache module
This is the preferred way of using PHP with Apache. You can either store the PHP
module within the Apache binary or install it as a DSO module for Apache. An
advantage of a DSO module is that it can be unloaded by just commenting out a
configuration line in httpd.conf, thus saving some memory. Here we will show
you how to create PHP as a DSO module for Apache.

You must have DSO support enabled in Apache before you can use PHP as a DSO
module. To recompile Apache with DSO support, do the following:

1. From the Apache source distribution directory, run the following com-
mand as root:

./configure --prefix=/usr/local/apache --enable-so

You can also add other options as necessary.

2. Compile and install Apache using the make && make install command.

Appendix D: Linux Primer 811

34 549669 AppD.qxd 4/4/03 9:28 AM Page 811

After you have a DSO support–enabled Apache server, perform the following
steps to create a DSO module for PHP:

1. From the PHP source distribution directory, run the following command
as root:

./configure --with-apxs2=/usr/local/apache/bin/apxs \
--enable-track-vars \
--with-zlib \
--with-mysql=/usr

Here, the --with-mysql option is set to /usr because MySQL RPM pack-
ages install the include files in the /usr/include/mysql directory. If your
system has MySQL includes in a different location, you should use a dif-
ferent directory name. You can find out where MySQL includes are kept
by using the locate mysql.h command, which is available on most
UNIX systems with the locate database feature.

2. Run make && make install to compile and install the DSO version of
the PHP module for Apache.

3. Run the /usr/local/apache/bin/apachectl restart command to
restart (or start) Apache.

Configuring Apache for PHP
After you have installed the mod_php module for Apache and configured php.ini
as discussed earlier, you are ready to configure Apache for PHP as follows:

1. Add the following line to the httpd.conf file:

AddType application/x-httpd-php .php

This tells Apache that any file with a .php extension must be treated as
an application/x-httpd-php application and processed by the mod_php
module.

There is no reason to use a different extension for PHP scripts. For example,

you can set the preceding AddType directive to AddType application/x-

httpd-php .html and have all your HTML pages treated as PHP script. We

don’t recommend using the .html extension because chances are good that

many of your HTML pages are not PHP scripts, and you simply do not want

to slow down your Web server by having it parse each page for PHP scripts.

2. Save the httpd.conf file and restart the Apache Web server as usual.

812 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 812

Now you are ready to create PHP scripts for your Web site. You can create PHP
scripts and store them anywhere in your Web site’s document tree and Apache will
automatically process them as PHP scripts.

Configuring PHP by using php.ini
The PHP configuration file is called php.ini, and it is stored in the /usr/
local/lib directory by default unless you specified a different path during PHP
source configuration using the configure utility. When a PHP module is loaded, it
reads the php.ini file. The module looks for php.ini in the current working direc-
tory, the path designated by the environmental variable PHPRC, and in /usr/
local/lib.

If you use PHP as a CGI solution, the php.ini file is read every time a PHP

CGI is run. Conversely, when PHP is loaded as an Apache module, it is read

once. You must restart the Apache server by using the /usr/local/
apache/bin/apachectl restart command to reload any changes that

you make in the php.ini file.

PHP directives in httpd.conf
With Version PHP 4, only four mod_php-specific directives, as outlined in the fol-
lowing sections, are allowed in httpd.conf. All other PHP directives must be in the
php.ini file.

php_admin_flag
The php_flag directive enables you to set a Boolean value (On or Off) for a config-
uration parameter. This directive cannot appear in directory containers or per-
directory .htaccess files.

Syntax: php_admin_flag name On | Off

Context: Server config, virtual host

php_admin_value
The php_admin_value directive enables you to set a value for a configuration
parameter. This directive cannot appear in directory containers or per-directory
.htaccess files.

Syntax: php_admin_value name value

Context: Server config, virtual host

Appendix D: Linux Primer 813

34 549669 AppD.qxd 4/4/03 9:28 AM Page 813

php_flag
The php_flag directive enables you to set a Boolean value (On or Off) for a config-
uration parameter.

Syntax: php_flag name On | Off

Context: Server config, virtual host, directory, per-directory (.htaccess)

For example:
php_flag display_errors On

php_value
The php_value directive enables you to set a value for a configuration parameter.

Syntax: php_value name value

Context: Server config, virtual host, directory, per-directory (.htaccess)

For example:
php_value error_reporting 15

PHP directives in php.ini
The php.ini file has a simple directive = value structure syntax. Lines consisting of
leading semicolons or lines with only whitespace are ignored. Section names are
enclosed in brackets. You can learn about all the directives that go in php.ini at
www.php.net/manual/en/configuration.php. The following sections discuss the
most useful directives.

auto_prepend_file
The auto_prepend_file directive enables you to set a header document with each
PHP-parsed page.
Syntax: auto_prepend_file filename

The following example preload.php page will be loaded before each PHP page
is processed (this page is a good place to establish database connections if all the
pages in the site use the same database connection.):

auto_prepend_file preload.php

default_charset
The default_charset directive sets the default character set.
Syntax: default_charset char_set

The following example sets the default character set to 8-bit UTF:
default_charset = “UTF-8”

814 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 814

disable_functions
The disable_functions directive enables you to disable one or more functions for
security reasons.
Syntax: disable_functions function_name [function_name]

You can specify a comma-delimited list of PHP functions as follows:
disable_functions = fopen, fwrite, popen

In the preceding example, the functions responsible for opening, writing file or
pipes are disabled.

This directive is not affected by the safe_mode directive.

display_errors
The display_errors directive enables or disables printing of error message
onscreen. This is recommended only for use on development systems and not for use
on production servers. For production systems, you should use log_errors along
with error_log directives to log error messages to files or to a syslog server so that
malicious users cannot break your applications to glean information about them.
Syntax: display_errors On | Off

enable_dl
The enable_dl directive enables or disables the capability to dynamically load a
PHP extension.

Syntax: enable_dl On | Off

Default setting: enable_dl On

error_append_string
The error_append_string directive sets the string that is appended to the error
message. See the error_prepend_string directive above.
Syntax: error_append_string string

error_log
The error_log directive sets the PHP error log path. You can specify a fully quali-
fied pathname of the log file, or you can specify the keyword syslog on Unix sys-
tems to log using the syslog facility. On Windows systems, setting this directive to
syslog writes log entries in the Windows Event log.
Syntax: error_log fqpn

Appendix D: Linux Primer 815

34 549669 AppD.qxd 4/4/03 9:28 AM Page 815

error_prepend_string
The error_prepend_string directive sets the string that is prepended to an error
message. This directive is used with the error_append_string.
Syntax: error_prepend_string string

If you do not log errors, error messages are shown onscreen if display_errors is
turned on. For example, by using the following two directives, you can print error
messages in red:

error_prepend_string = “”
error_append_string = “”

error_reporting
The error_reporting directive enables you to specify a bit field to specify an error
reporting level. The bit field can be constructed using the predefined constants
shown in Table D-2.
Syntax: error_reporting [bit field] [predefined_ constant]

TABLE D-2 CONSTANTS FOR THE ERROR_REPORTING DIRECTIVE

Constant Meaning

E_ALL Displays all errors, warnings, and notices

E_ERROR Displays only fatal run-time errors

E_WARNING Displays run-time warnings

E_PARSE Displays parse errors

E_NOTICE Displays notices of likely problems in code

E_CORE_ERROR Displays fatal errors that occur during PHP’s initial startup

E_CORE_WARNING Displays warnings that occur during PHP’s initial startup

E_COMPILE_ERROR Displays fatal compile-time errors

E_COMPILE_WARNING Displays compile-time warnings (nonfatal errors)

E_USER_ERROR User-generated error message

E_USER_WARNING User-generated warning message

E_USER_NOTICE User-generated notice message

816 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 816

You can use bit field operators such as ~ (inverts), & (bitwise meaning “AND”),
and | (bitwise meaning “OR”) to create a custom error-reporting level. For example:

Error_reporting = E_ALL & ~E_WARNING & ~E_NOTICE

This tells the PHP engine to display all errors except warnings and notices.
Displaying error messages on a production server is not recommended. You should
display errors only on your development system or during the development phase
of your production server. On production servers, use log_errors and error_log
directives to write logs to files or to a syslog facility.

extension
The extension directive enables you to load a dynamic extension module for PHP
itself.
Syntax: extension module_name

For example, the following directive loads the graphics library GD extension for
PHP for Windows via the extension directive. The PHP engine loads such dynamic
modules at server startup.

extension=php_gd.dll

Similarly, the following directive loads the MySQL DSO module for Apache on
the Unix platform with DSO support:

extension=mysql.so

You can repeat extension as many times as needed to load different modules.

extension_dir
The extension_dir directive defines the directory in which dynamically loadable
PHP modules are stored. The default value is appropriate for most PHP installations.

Syntax: extension_dir directory

Default setting: extension_dir ./

implicit_flush
The implicit_flush directive enables or disables implicit flushing of script output
as it uses print, echo, and HTML blocks for output. When turned on, this directive
will issue the flush() call after every print(), echo, or HTML block output. This
is extremely useful for debugging purposes, but a major performance drain on the
production environment. It is only recommended for development systems.

Syntax: implicit_flush On | Off

Default setting: implicit_flush Off

Appendix D: Linux Primer 817

34 549669 AppD.qxd 4/4/03 9:28 AM Page 817

include_path
The include_path directive sets the path for include() and require() functions.
You can list multiple directories.

Unix Syntax: include_path path[:path]

Windows Syntax: include_path path[;path]

For example, the following specifies that PHP should first look for include files
in the /usr/local/lib/php directory and then in the current directory:

include_path = /usr/local/lib/php:.

On Windows, this directive is set as follows:

include_path = “c:\php;.”

log_errors
The log_errors directive enables or disables logging of PHP errors. You must use
the error_log directive to specify a log path or a syslog file.
Syntax: log_errors On | Off

magic_quotes_gpc
The magic_quotes_gpc directive enables or disables escaping of quotes (single
quotes, double quotes, null, and backslash characters) for GET, POST, and cookie data.

Syntax: magic_quotes_gpc On | Off

Default setting: magic_quotes_gpc On

magic_quotes_runtime
The magic_quotes_runtime directive enables or disables automatic quoting of
internally generated text. In other words, if you retrieve a record from a database
that has the <?php anything goes here ?> type of tag embedded in it, the con-
tents within the tags (which is part of the data) will be escaped (i.e., not processed)
and not treated as PHP code.

Syntax: magic_quotes_runtime On | Off

Default setting: magic_quotes_runtime = Off

max_execution_time
The max_execution_time directive sets the maximum time that a script can run to
produce output. After a script exceeds the specified amount of seconds, PHP times

818 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 818

out the script. Unless you plan to run PHP scripts that take a lot of time, the default
value should be acceptable for most situations.

Syntax: max_execution_time seconds

Default setting: max_execution_time 30

memory_limit
The memory_limit directive sets the maximum RAM a PHP script can consume.
The default, 8MB, should be more than adequate for small-to-modest PHP scripts.
You can specify memory in bytes as well.

Syntax: memory_limit bytes [nM]

Default setting: memory_limit 8M

For example, the following are equivalent:

memory_limit 8M
memory_limit 8388608

output_buffering
The output_buffering directive allows you to enable or disable output buffering.
When it is set to On, you can print HTTP headers anywhere in a PHP script. Being able
to output a header in the middle of a script even after printing other contents means
that a script can display an error page even if it was partially successful earlier.

Syntax: output_buffering On | Off

Default setting: output_buffering On

You can also use the built-in ob_start() and ob_end_flush() directives to
start and end flushing of the contents directly, as shown in the following example:

<?php

ob_start(); // Buffer all output

echo “Buffered contents \n”;

ob_end_flush(); // Page rendered, flush the output buffer.

?>

Here the output is buffered.

Appendix D: Linux Primer 819

34 549669 AppD.qxd 4/4/03 9:28 AM Page 819

safe_mode
The safe_mode directive sets the safe mode for PHP when it is used as a CGI solu-
tion. Do not use this mode when using PHP as an Apache module. When set to On,
this directive ensures that PHP scripts run by the PHP interpreter in CGI mode are
not allowed any access beyond the document root directory of the Web site.

Syntax: safe_mode On | Off

Default setting: safe_mode Off

safe_mode_allowed_env_vars
The safe_mode_allowed_env_vars directive enables you to set a prefix for all the
environment variables that a user can change by using the putenv() function. The
default value enables users to change any environment variable that starts with the
PHP_ prefix.

Syntax: safe_mode_allowed_env_vars prefix

Default setting: safe_mode_allowed_env_vars PHP_

safe_mode_protected_env_vars
The safe_mode_protected_env_vars directive enables you to set a comma-delim-
ited list of environment variables that cannot be changed by any PHP script that
uses the putenv() function.

Syntax: safe_mode_protected_env_vars environment_variable [environ-
ment_variable ...]

Default setting: safe_mode_protected_env_vars = LD_LIBRARY_PATH

If you wish to protect all the environment variables that start with the HTTP_
prefix, you can use the following:

safe_mode_protected_env_vars = HTTP_

track_errors
The track_errors directive enables or disables the storing of error message in a
PHP variable called $php_errormsg.
Syntax: track_errors On | Off

upload_max_filesize
The upload_max_filesize directive sets the maximum size of a file that can be
uploaded via PHP. The default limit is 2MB (2M). Alternatively, you can specify just
the kilobyte number.

Syntax: upload_max_filesize kilobytes

Default setting: upload_max_filesize 2M

820 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 820

For example, the following are equivalent:

upload_max_filesize = 2M
upload_max_filesize = 2097152

upload_tmp_dir
The load_tmp_dir directive defines the temporary directory location for files
uploaded via PHP. It is customary to set this to /tmp on UNIX systems; on Windows
systems, this is typically set to /temp or left alone, in which case, PHP uses the sys-
tem default.

Syntax: load_tmp_dir directory

Common File/Directory Commands
This section describes a few commonly used Linux file and directory commands.

chmod
Syntax:

chmod [-R] permission-mode file or directory

Use this command to change the permission mode of a file or directory. The per-
mission mode is specified as a three- or four-digit octal number. For example:

chmod 755 myscript.pl

The preceding command changes the permission of myscript.pl script to
755 (rwxr-xr-x), which allows the file owner to read, write, and execute, and
allows only read and execute privileges for everyone else. Here is another example:

chmod -R 744 public_html

The preceding command changes the permissions of the public_html directory
and all its contents (files and subdirectories) to 744 (rwxr-r-), which is a typical
permission setting for the personal Web directories you access using
http://server/~username URLs under Apache Server. The -R option tells chmod
to recursively change permissions for all files and directories under the named
directory.

Appendix D: Linux Primer 821

34 549669 AppD.qxd 4/4/03 9:28 AM Page 821

chown
Syntax:

chown [-fhR] Owner [:Group] { File . . . | Directory. . . }

The chown command changes the owner of a file or directory. The value of the
Owner parameter can be a user ID or a login name in the /etc/passwd file.
Optionally, you also can specify a group. The value of the Group parameter can be
a group ID or a group name in the /etc/group file.

Only the root user can change the owner of a file. You can change the group of
a file only if you are a root user or you own the file. If you own the file but are not
a root user, you can change the group only to a group of which you are a member.
Table D-3 describes the chown options.

TABLE D-3 CHOWN OPTIONS

Option Description

-f Suppresses all error messages except usage messages.

-h Changes the ownership of an encountered symbolic link but not that of
the file or directory to which the symbolic link points.

-R Descends directories recursively, changing the ownership for each file.
When a symbolic link is encountered and the link points to a directory,
the ownership of that directory is changed, but the directory is not
further traversed.

The following example changes the owner of the file to another user:

chown bert hisfile.txt

cp
Syntax:

cp [-r] source destination

Use the cp command to make an exact copy of a file. The cp command requires
at least two arguments. The first argument is the file you want to copy, and the sec-
ond argument is the location or file name of the new file. If the second argument is

822 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 822

an existing directory, cp copies the source file into the directory. The -r parameter
recursively copies a directory.

cp main.c main.c.bak

The preceding example copies the existing file main.c and creates a new file
called main.c.bak in the same directory. These two files are identical, bit for bit.

grep
Syntax:

grep [-viw] pattern file(s)

The grep command enables you to search for one or more files for particular
character patterns. Every line of each file that contains the pattern is displayed at
the terminal. The grep command is useful when you have numerous files and you
want to find out which ones contain certain words or phrases.

Using the -v option, you can display the inverse of a pattern. Perhaps you want
to select the lines in data.txt that do not contain the word the:

grep -vw ‘the’ data.txt

If you do not specify the -w option, any word containing the matches, such as
toge[the]r. The -w option specifies that the pattern must be a whole word. Finally,
the -i option ignores the difference between uppercase and lowercase letters when
searching for the pattern.

Much of the flexibility of grep comes from the fact that you can specify not
only exact characters but also a more general search pattern. To do this, you use
what are described as regular expressions.

find
Syntax:

find [path] [-type fdl] [-name pattern] [-atime [+-]number of days] [-exec
command {} \;] [-empty]

The find command finds files and directories, as shown in the following example:

find . -type d

The find command returns all subdirectory names under the current directory.
The -type option is typically set to d (for directory), f (for file), or l (for links):

find . -type f -name “*.txt”

Appendix D: Linux Primer 823

34 549669 AppD.qxd 4/4/03 9:28 AM Page 823

The preceding command finds all text files (ending with a .txt extension) in the
current directory, including all its subdirectories.

find . -type f -name “*.txt” -exec grep -l “magic” {} \;

The preceding command searches all text files (ending with the .txt extension)
in the current directory, including all its subdirectories for the keyword magic, and
returns their names (because -l is used with grep):

find . -name ?*.gif? -atime -1 -exec ls -l {} \;

The preceding command finds all GIF files that have been accessed in the past 24
hours (one day) and displays their details using the ls -l command.

find . -type f -empty

The preceding command displays all empty files in the current directory hierarchy.

head
Syntax:

head [-count | -n number] filename

This command displays the first few lines of a file. By default, it displays the first
10 lines of a file. However, you can use the preceding options to specify a different
number of lines, as follows:

head -2 doc.txt
Outline of future projects
Last modified: 02/02/99

The preceding example illustrates how to view the first two lines of the text file
doc.txt.

ln
Syntax:

ln [-s] sourcefile target

ln creates two types of links: hard and soft. Think of a link as two names for the
same file. Once you create a link, you cannot distinguish it from the original file.

824 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 824

You cannot remove a file that has hard links from the hard disk until you remove
all links. You create hard links without the -s option:

ln ./www ./public_html

A hard link does have limitations, however. A hard link cannot link to another
directory, and a hard link cannot link to a file on another file system. Using the -s
option, you can create a soft link, which eliminates these restrictions:

ln -s /dev/fs02/jack/www /dev/fs01/foo/public_html

Here you create a soft link between the directory www on file system 2 and a
newly created file public_html on file system 1.

locate
Syntax:

locate keyword

The locate command finds the path of a particular file or command if updated
script was run at an earlier time using cron job or manually. locate finds an exact
or substring match. For example:

locate foo
/usr/lib/texmf/tex/latex/misc/footnpag.sty
/usr/share/automake/footer.am
/usr/share/games/fortunes/food
/usr/share/games/fortunes/food.dat
/usr/share/gimp/patterns/moonfoot.pat

The output that locate produces contains the keyword foo in the absolute path
or does not have any output.

ls
Syntax:

ls [-1aRl] file or directory

The ls command allows you to list files (and subdirectories) in a directory. It is
one of the most popular programs. When you use it with the -1 option, it displays
only the file and directory names in the current directory. When you use the -l

Appendix D: Linux Primer 825

34 549669 AppD.qxd 4/4/03 9:28 AM Page 825

option, a long listing containing file/directory permission information, size, modi-
fication date, and so on, are displayed. The -a option allows you to view all files
and directories (including the ones that have a leading period in their names)
within the current directory. The -R option allows the command to recursively dis-
play contents of the subdirectories (if any).

mkdir
Syntax:

mkdir directory . . .

To make a directory, use the mkdir command. You have only two restrictions
when choosing a directory name: (1) File names can be up to 255 characters long,
and (2) directory names can contain any character except the slash (/). For example,

mkdir dir1 dir2 dir3

The preceding example creates three subdirectories in the current directory.

mv
Syntax:

mv [-if] sourcefile targetfile

Use the mv command to move or rename directories and files. The command per-
forms a move or rename depending on whether the targetfile is an existing
directory. To illustrate, suppose you would like to give a directory called foo the
new name of foobar:

mv foo foobar

Because foobar does not already exist as a directory, foo becomes foobar. If
you issue the following command:

mv doc.txt foobar

and foobar is an existing directory, you perform a move. The file doc.txt now
resides in the directory foobar.

The -f option removes existing destination files and never prompts the user. The
-i option prompts the user whether to overwrite each destination file that exists. If
the response does not begin with y or Y, the file is skipped.

826 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 826

pwd
Syntax:

pwd

This command prints the current working directory. The directories displayed are
the absolute path. None of the directories displayed are hard or soft symbolic links.

pwd
/home/usr/charmaine

rm
Syntax:

rm [-rif] directory/file

To remove a file or directory, use the rm command, as shown in the following
examples:

rm doc.txt
rm ~/doc.txt
rm /tmp/foobar.txt

To remove multiple files with rm, you can use wildcards or type each file indi-
vidually. For example,

rm doc1.txt doc2.txt doc3.txt

is equivalent to

rm doc[1-3].txt

rm is a powerful command that can cause chaos if you use it incorrectly. For
instance, suppose that you have been working on your thesis for the last six
months. You decide to rm all of your docs, thinking you are in another directory.
After finding out that a backup file does not exist (and you are no longer in denial),
you wonder whether there was any way you could have prevented this.

The rm command has the -i option, which allows rm to be interactive. This tells
rm to ask your permission before removing each file:

rm -i *.doc
rm: remove thesis.doc (yes/no)? n

Appendix D: Linux Primer 827

34 549669 AppD.qxd 4/4/03 9:28 AM Page 827

The -i option gives you a parachute. It’s up to you to either pull the cord
(answer no) or suffer the consequences (answer yes). The -f option is completely
the opposite. The -f (force) option tells rm to remove all the files you specify,
regardless of the file permissions. Use the -f option only when you are 100 percent
sure that you are removing the correct file(s).

To remove a directory and all files and subdirectories within it, use the -r
option. rm -r will remove an entire subtree, as shown here:

rm -r documents

If you are not sure what you are doing, combine the -r option with the -i
option:

rm -ri documents

The preceding example asks for your permission before it removes every file and
directory.

sort
Syntax:

sort [-rndu] [-o outfile] [infile/sortedfile]

The obvious task this command performs is to sort. However, sort also merges
files. The sort command reads files that contain previously sorted data and merges
them into one large, sorted file.

The simplest way to use sort is to sort a single file and display the results on
your screen. As an example, suppose that a.txt contains the following:

b
c
a
d

To sort a.txt and display the results to the screen, use the following:

sort a.txt
a
b
c
d

828 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 828

To save the sorted results, use the -o option: sort -o sorted.txt a.txt saves
the sorted a.txt file in sorted.txt. To use sort to merge existing sorted files and
to save the output in sorted.txt, use

sort -o sorted.txt a.txt b.txt c.txt

The -r option for this command reverses the sort order. Therefore, a file that
contains the letters of the alphabet on a line is sorted from z to a if you use the -r
option.

The -d option sorts files based on dictionary order. The sort command consid-
ers only letters, numerals, and spaces, ignoring other characters.

The -u option looks for identical lines and suppresses all but one. Therefore,
sort produces only unique lines.

stat
Syntax:

stat file

This program displays various statistics on a file or directory, as shown in the
following example:

stat foo.txt

This command displays the following output:

File: ‘foo.txt’
Size: 4447232 Filetype: Regular File
Mode: (0644/-rw-r--r--) Uid: (0/root) Gid: (0/root)

Device: 3,0 Inode: 16332 Links: 1
Access: Fri Aug 2 21:39:43 2002(00000.02:32:30)
Modify: Fri Aug 2 22:14:26 2002(00000.01:57:47)
Change: Fri Aug 2 22:14:26 2002(00000.01:57:47

You can see the following displayed: file access; modification; change date;
size; owner and group information; permission mode; and so on.

strings
Syntax:

strings filename

The strings command prints character sequences at least four characters long.
You use this utility mainly to describe the contents of nontext files.

Appendix D: Linux Primer 829

34 549669 AppD.qxd 4/4/03 9:28 AM Page 829

tail
Syntax:

tail [-count | -fr] filename

The tail command displays the end of a file. By default, tail displays the last
10 lines of a file. To display the last 50 lines of the file doc.txt, you issue the
following command:

tail -50 doc.txt

The -r option displays the output in reverse order. By default, -r displays all
lines in the file, not just 10 lines. For instance, use the following to display the
entire contents of the file doc.txt in reverse order:

tail -r doc.txt

To display the last 10 lines of the file doc.txt in reverse order, use this:

tail -10 -r doc.txt

Finally, the -f option is useful when you are monitoring a file. With this option,
tail waits for new data to be written to the file by some other program. As new
data is added to the file by some other program, tail displays the data on the
screen. To stop tail from monitoring a file, press Ctrl+C (the intr key) because the
tail command does not stop on its own.

touch
Syntax:

touch file or directory

This command updates the timestamp of a file or directory. If the named file
does not exist, this command creates it as an empty file.

uniq
Syntax:

uniq [-c] filename

The uniq command compares adjacent lines and displays only one unique line.
When used with the -c option, uniq counts the number of occurrences. For exam-
ple, a file with the following contents:

830 Part VII: Appendixes

34 549669 AppD.qxd 4/4/03 9:28 AM Page 830

a
a
a
b
a

produces the following result when you use it with uniq:

uniq test.txt
a
b
a

Notice that you remove the adjacent letter as, but not all as in the file. This is an
important detail to remember when using uniq. If you would like to find all the
unique lines in a file called test.txt, you can run the following command:

sort test.txt | uniq

This command sorts the test.txt file and puts all similar lines next to each
other, allowing uniq to display only unique lines. For example, to quickly deter-
mine how many unique visitors come to your Web site, you can run the following
command:

awk ‘{print $1}’ access.log | sort | uniq

This displays the unique IP addresses in a CLF log file, which is what the Apache
Web server uses.

Appendix D: Linux Primer 831

34 549669 AppD.qxd 4/4/03 9:28 AM Page 831

34 549669 AppD.qxd 4/4/03 9:28 AM Page 832

Symbols & Numerics
$ACCOUNT_TYPE associative array, 614
$ALERT associative array, 596
$ALERT_CONDITIONS array, 596
$APACHE_INFO associative array, 614
$DEFAULT_LANGUAGE variable, 84
$errCode array, 112
$fieldList array, 50
$fields array, 53
$fields associative array, 50
$fieldType associative array, 112
_getUniqueWords() method, 415
_getWords() method, 414
_indexOfSection() method, 407–408
_loadFile() method, 415
$MAIL_CONTROL_FILE array, 597
$MAIL_FREQUENCY array, 597
$MAIL_TEMPLATE array, 597
$params associative array, 46–47
$params variable, 49
$PS_BIN array, 597
$PS_OPT array, 597
_removeExcludedWords() method, 414
$result object, 51
$retArray array, 44
$SYSTEM_INFO associative array, 614
$TEMPLATE_DIR constant, 614
$thisApp object, 116–117
$valueList array, 50
$values array, 49–50

A
ab utility, Apache 2.0, 785
access controls

Apache virtual host, 610
authentication, 24
databases, 747
directory restrictions, 744
intranet document publisher, 248
passwords, 24
PHP applications, 4, 24

sensitive information, 738–739
Web server configuration directives,

738
access logs, intranet home application,

242–244
access reporter application, intranet

system, 230–233
AccessControl class, 444–446
AccessControl() constructor method,

444
AccessControl() method, 444
AccessFileName directive, 801
$ACCOUNT_TYPE associative array, 614
ACL class, 665–666
ACL() constructor method, 665
ACL() method, 665
ActivityAnalyzer class, 213–217
ADD() method, 484
addAccessIPs() method, 446
addCampaign() method, 521, 540–541
addCategory() method

Category class, 253, 299
category manager application, 375–376
contact category manager application,

314
document publisher application, 270
IrmCategory class, 364

addContact() method, 304, 319–320
addContents() function, 636
addDatabaseFieldMap() method, 532
AddDefaultCharset directive, 804
addDeniedIPs() method, 446
addDoc() method, 256, 270
addDriver() method

category manager application, 375
document publisher application, 270
list manager application, 529–530
message manager application, 536
resource manager application, 380
survey form manager, 488
survey list manager, 487
user administration application, 169 833

Index

549669 Index.qxd 4/4/03 2:42 PM Page 833

addEvent() method, 340–341, 352
ADDEXECUTIONRECORD() method, 480
addForm() method, 437, 488–489
addKeywords() method, 366
ADDLABEL() method, 483
addLabels() method, 489
addList() method, 487–488, 531–532
addMapping() method, 517
addMessage() method, 210, 228, 443, 538
addModifyDriver() method, 452, 455
addModifyForm() method, 453–454
addModifyMessage() method, 456
addNewEcampaignList() method, 517
addNewEcampaignMessage() method,

520
ADDNEWSURVEYFORM() method, 483
ADDNEWSURVEYLIST() method, 481–482
addRecord() method, 492
addResource() method, 365, 382
addResponse() method, 260
addSite() function, 636
addslashes() function, 50, 747
addSubmissionData() method, 438–439
ADDSUBMITRECORD() method, 484
addSubscriptionData() method,

439–440
AddSurvey() method, 480
addToBounced() method, 518
AddType directive, 803
addURL() method, 519, 534
addURLDriver() method, 532
addUser() method, 169
addViewer() method, 211, 341
addVote() method, 700, 704
addZone() function, 647, 653–654
admin access reporter application, intranet

system, 233–235
administrative users, central user

management system, 157
Adobe Acrobat Reader, CD, 754
ages, validation, 36
$ALERT associative array, 596
alert conditions, CPU load monitor,

596–597

alert() function, 84
alert() method, 145
$ALERT_CONDITIONS array, 596
Alias directive, 802–803
Allow directive, 798
AllowOverride directive, 797
Alternative PHP Opcode Cache (APC), PHP

applications, 735
analyzeDailyActivity() method, 215
announcements, intranet document

publisher, 248
Apache 2.0

ab utility, 785
apachectl script, 784–785
apxs2 utility, 785
building from source, 781–784
child servers, 794
compiling, 784
configuration script, 786–790
container directives, 793
dbmmanage utility, 785
directory container directives, 797–798
files container directives, 801
global environment configuration,

791–794
htdigest utility, 785
htpasswd utility, 785
httpd.conf directives, 813–814
logresolve utility, 785
logresolve.pl script, 785
main server configuration directives,

795–804
multiprocessing modules, 783–784
PHP installation/configuration,

810–821
php.ini file, 813, 814–821
RPM binary installation, 781
starting/stopping, 804–807
startup errors, 804
support tools, 784–785
testing, 807–808
thread limits, 794
timeout directives, 793

834 Index

549669 Index.qxd 4/4/03 2:42 PM Page 834

Apache virtual host
access controls, 610
configuration script, 611–612
configuration tasks, 609–611
contents configuration, 617–618
DNS address record, 609
e-mail template, 618–619
installation, 636–637
makesite tool, 610–611, 619–636
output, 640
permission settings, 609
standard account configuration,

615–616
testing, 638–640
user accounts, 610
work flow process, 607–608

Apache Web Server, CD, 754
ApacheBench tool, 722–723
apachect1 script, Apache 2.0, 784–785
$APACHE_INFO associative array, 614
APC (Alternative PHP Opcode Cache), PHP

applications, 735
apiVersion() method, 81
appendHashes() method, 538
appendNamedConfFile() function, 654
applications

access controls, 737–744
access restrictions, 738–739
Alternative PHP Opcode Cache (APC),

735
ApacheBench tool, 722–723
benchmarking, 714–723
built-in access controls, 4, 24
caching, 727–736
CD, 754–755
central login, 127–138
central logout, 138–145
customizable messages, 4, 14–21
CVS (Concurrent Version System),

61–62
debugging, 85–91
default language configuration, 21
dialog/status messages, 21

directory access restrictions, 744
error testing, 61
external configuration file, 4, 11–14
external HTML templates, 4, 5–11
file upload security, 744–747
intranet framework, 67–71
jpcache cache, 727–729
object-oriented code base, 3–4, 5
output buffering, 723–725
output compression, 725–726
PEAR cache, 729–734
PHP opcode caching, 734–736
PHPA (PHP Accelerator), 735–736
portable directory structure, 4, 22–23
relational databases, 4, 21
safe mode, 749–750
sensitive information concealment,

38–39
template-based presentation layer, 68
user administration, 168–190
version number display, 81
Web server-based authentication,

739–744
Zend tools, 736

application-specific authorization, intranet
requirement, 67

apxs2 utility, Apache 2.0, 785
arg.php script, 564
arguments

command-line interpreter, 563–568
function (method) list order, 45–47
key=value pairs, 46–47

array() function, 45
arrays

$ALERT_CONDITIONS, 596
$errCode, 112
$fieldList, 50
$fields, 53
initializing, 45
$MAIL_CONTROL_FILE, 597
$MAIL_FREQUENCY, 597
$MAIL_TEMPLATE, 597

continued

Index 835Index 835

549669 Index.qxd 4/4/03 2:42 PM Page 835

arrays continued
multidimensional associative, 20–21
$PS_BIN, 597
$PS_OPT, 597
$retArray, 44
return value defining, 43–45
$valueList, 50
$values, 49–50

askForConfirmation() method, 547
askform.conf script, 688–690
ask.php script, 562–563
associative arrays

$ACCOUNT_TYPE, 614
$ALERT, 596
$APACHE_INFO, 614
argument list order, 46–47
debugging, 89
$fields, 50
$fieldType, 112
key=value pairs, 46–47
$params, 46–47
$SYSTEM_INFO, 614

authenticate() function, 126, 133
authentication

access control method, 24
information shielding, 60
intranet requirement, 66–67
intranet system, 203
login application, 131–133
Web server-based, 739–744

Authentication() function, 126
authorization

access control method, 24
intranet requirement, 67

authorize() function, 116, 119
authorize() method

access reporter application, 231
admin access reporter application, 233
calendar manager application, 349–350
campaign execution application, 543
campaign manager application, 540
campaign reporting manager

application, 548
category manager application, 379

daily logbook manager application,
236

document details application, 280
document index display application,

278
document publisher application, 277
document view list application, 282
e-campaign user interface application,

528
help application, 421
indexing application, 420
list manager application, 530
message manager application, 537
MOTD manager application, 229
resource manager application, 385
resource tracking application, 386
search manager application, 391
survey execution manager, 491
survey form manager, 488
survey list manager, 487
survey manager, 486
survey report manager, 493
tell-a-friend form manager application,

452
tell-a-friend message manager

application, 455
tell-a-friend subscriber application,

458–459
URL manager application, 532
user preference application, 237
user tip application, 237
Web forms submission manager

application, 681
author’s material, CD, 753–754
auth.sql script, 146–147
auto_prepend_file directive, 814
autovars_free.php script, 33–35

B
bad_autovars.php script, 30–31
bad_screen.html script, 56
bad_uploader.php script, 745
bad_upload.html script, 744
bad_whois.php script, 26–28

836 Index

549669 Index.qxd 4/4/03 2:42 PM Page 836

bang line, command-line interpreter, 561
banner_printed variable, 87–88
banners, printing, 87–88
bench1.php script, 714–716
bench2.php script, 716–718
benchmarking

ApacheBench tool, 722–723
bad loop avoidance, 718–722
code, 714–718
PHP applications, 714–723

better_whois.php script, 28–29
BIND domain manager, makezone utility,

641–658
blocks

nesting, 10–11
template defining, 9–11

buffer_debugging() method, 117
buffering, PHP application output,

723–725
buffers

content printing, 89–90
debug messages, 89–90

buffer_str variable, 87
built-in access controls, PHP applications,

4, 24
business-logic, intranet requirement, 69

C
cache

APC (Alternative PHP Opcode Cache),
735

jpcache, 727–729
opcode techniques, 734–736
PEAR, 729–734
PHP applications, 727–736
PHPA (PHP Accelerator), 735–736
Zend tools, 736

calc.php script, 14–17
calc2.errors script, 20–21
calc2.php script, 18–20
calendar event manager application,

intranet calendar manager, 350–352
calendar manager application, intranet

calendar manager, 348–349

calendar manager database, tables,
336–337

Campaign class, 521
campaign execution application,

e-campaign system, 541–543
campaign manager application,

e-campaign system, 538–541
campaign manager application,

e-mail survey system, 476
campaign reporting application,

e-campaign system, 547–549
campaign reports, e-campaign system, 554
Category class, 251–255, 298–301
Category() constructor method, 251
category manager application, Internet

Resource Manager system, 374–379
Category() method, 251, 298
CATEGORY table, IRM database, 360
category-based document organization,

intranet document publisher,
247–248

CD
applications, 754–755
author’s material, 753–754
chapter files, 753
eBook version Secure PHP

development, 755
intranet application installation,

238–240
system requirements, 753
troubleshooting, 755

central authentication, intranet
requirement, 66–67

central authentication database
access testing, 146
user table fields, 147
variables, 146

central authentication system
application flow diagrams, 121–124
database, 146–147
login application, 127–137
logout application, 138–145
Web server farm logins, 149–155

central contact database, intranet contact
manager, 293–296

Index 837

549669 Index.qxd 4/4/03 2:42 PM Page 837

central contact-manager application,
intranet system, 204

central event-calendar application,
intranet system, 204

central login interface, forgotten-password
link, 201

central user authentication, intranet
system, 203

central user management system
admin user support, 157
forgotten-password request form, 168
forgotten-password recovery app,

194–202
form status display, 168
menu display, 168
password modifying, 168
password recovery support, 158
password reset, 168
password reset request e-mail, 168
root user support, 157
user add/modify form, 168
user administration application,

168–190
User class, 158–167
user interface templates, 168
user password application, 190–194
user password support, 158

chapter files, CD, 753
char variable, 49
checkInput() method, 169
checkPassword() method, 190, 197
checkRequiredFields() function, 112
child servers, Apache 2.0 directives, 794
chmod command, 821
chown command, 822
class.Authentication.php script,

124–126
class.DBI.php script, 70–74
class.Debugger.php script, 85–87
class.Errorhandler.php script, 81–83
classes

abstract PHP application, 91–108
AccessControl, 444–446
ACL, 665–666

ActivityAnalyzer, 213–217
authentication, 124–126
Campaign, 521
Category, 251–255, 298
class.PHPApplication.php, 70
Contact, 302–307
DataCleanup, 666–667
DataValidator, 667–669
Doc, 255–258
e-campaign system, 516–523
e-mail survey system, 479–484
error handler, 81–84
Event, 337–343
Form, 436–441
FormData, 672–674
FormSubmission, 669–672
Internet Resource Manager system,

362–368
intranet contact manager, 297–307
intranet document publisher, 250–259
IntranetUser, 217–218
IrmResource, 364–368
List, 516–518
loading, 115
Message, 207–213, 368, 442–444,

519–520
naming conventions, 41–43
online help system, 404–415
Report, 522–523
Survey, 479–480
SurveyForm, 482–483
SurveyList, 480–482
SurveyReport, 484
SurveyResponse, 483–484
tell-a-friend system, 435–446
Template, 9
Unsubscription Track, 522
URL, 518–519
URL Track, 521–522
User, 158–167
validation, 36
Validator, 36
Vote, 699–701
Web forms manager, 664–674

838 Index

549669 Index.qxd 4/4/03 2:42 PM Page 838

class.PHPApplication.php class, 70
class.PHPApplication.php method,

108–111
class.PHPApplication.php script,

91–108
class.sampleApp.php script, 116,

118–119
class.User.php script, 161–167
cleanup, versus validation, 35
cleanupData() method, 671
cleanup_lower() method, 667
cleanup_ltrim() method, 667
cleanup_none() method, 666
cleanup_rtrim() method, 667
cleanup_trim() method, 667
cleanup_ucwords() method, 666
cmd_options.php script, 564–566
colors, debug information display, 87
combo lists, user interface, 55–58
command-line interpreter

arguments, 563–568
bang line, 561
output display, 560–561
path, 560
standard input reading, 562–563

command-line PHP utilities
command-line interpreter, 560–568
CPU load monitor, 595–605
geo location finder tool, 583–587
hard disk usage monitor, 587–595
reminder tool, 569–583

commands
chmod, 821
chown, 822
cp, 822–823
find, 823–824
grep, 823
head, 824
Linux file/directory, 821–831
ln, 824–825
locate, 825
ls, 825–826
mkdir, 826
mv, 826

passwd, 28–29
pwd, 827
rm, 827–828
sort, 828–829
stat, 829
strings, 829
tail, 830
touch, 830
uniq, 830–831

comma-separated value (CSV) files, e-mail
survey system, 474

comments, design/implementation
documents, 59

compiling
Apache 2.0, 784
Apache support tools, 784–785

compression, PHP application output,
725–726

compress.php script, 726
computeCheckSum() method, 545,

546–547
Concurrent Version System (CVS),

application development, 61–62
configuring, phpMyAdmin, 771–772
confirmMessage() method, 227
connect() method, 76
connections, database, 76
Console_Getopt::getopt() function,

567, 635
constants

DEBUG, 39
DEFAULT_ACCOUNT_TYPE, 614
DEFAULT_SYMLINK_USER_TO_WEBSITE,

614
DEFAULT_TEMPLATE, 642–643
error_reporting directive, 816
global, 13–14
LANGUAGE, 20–21
NAMED_CONF, 642
$TEMPLATE_DIR, 614
USER_REMINDER_DIR, 570
ZONE_DIR, 642
ZONE_TEMPLATE_DIR, 642

Index 839

549669 Index.qxd 4/4/03 2:42 PM Page 839

constructor methods
AccessControl(), 444
ACL(), 665
Category(), 251
DataCleanup(), 666
DataValidator(), 667
Doc(), 255–256
EcampaignList(), 516
EcampaignMessage(), 519–520
EcampaignReport(), 522
EcampaignTrack(), 522
EcampaignUnsub(), 522
EcampaignURL(), 518–519
Form(), 436
FormData(), 672
FormSubmission(), 669
Help(), 405
IrmCategory() class, 362–363
IrmResource(), 364–365
Message(), 442
Response(), 259
SURVEY(), 479
SURVEYFORM(), 482
SURVEYLIST(), 481
SURVEYREPORT(), 484
SURVEYRESPONSE(), 483
User(), 158
Vote(), 699

contact category manager application,
intranet contact manager, 313–317

Contact class, 302–307
contact manager application, intranet

contact manager, 317–323
Contact() method, 302
contents

Apache virtual host configuration,
617–618

caching, 727–734
jpcache, 727–729

convert() method, 236
cp command, 822–823
CPU load monitor

alert conditions, 596–597
configuration file, 596–597

e-mail template, 604
functions, 603–604
installation, 605

createCampaign() method, 539
createSurveyDriver() method, 485
createSymLink() function, 636
cron daemon, Linux/UNIX systems, 569
crypt() function, 169
CSV (comma-separated value) files, e-mail

survey system, 474
CSV data exporter application, Web forms

manager, 682–683
customizable messages, PHP applications,

4, 14–21
CustomLog directive, 802
CVS (Concurrent Version System),

application development, 61–62

D
daemons, cron, 569
daily logbook manager application,

intranet system, 236
data

exporting from database,
phpMyAdmin, 778–780

inserting into database, phpMyAdmin,
775–776

querying from database, MySQL,
768–770

querying from database, phpMyAdmin,
777–778

removing from database, MySQL, 770
removing from database,

phpMyAdmin, 778
updating in database, MySQL, 770
uploading in database, phpMyAdmin,

778
data entry error dialog box, Web forms

manager, 691
data fields, e-campaign system, 515–516
data input, combo lists, 55–58
database abstraction, class.DBI.php

script, 70–74

840 Index

549669 Index.qxd 4/4/03 2:42 PM Page 840

databases. See also relational databases
access controls, 747
adding values, MySQL, 768
central authentication, 146–147
central user, 157
central user management system, 157
connecting/disconnecting, 76
e-campaign system, 511–516
e-mail survey system, 477–478
error condition return, 51
exporting data, phpMyAdmin, 778–780
hard-coded quotation, 49
inserting data, MySQL, 767–768
inserting data, phpMyAdmin, 775–776
intranet calendar manager, 336–337
intranet contact manager, 293–296
intranet document publisher, 248–250
intranet system, 204–206
IRM (Internet Resource Manager),

359–361
listing tables, MySQL, 766–767
MySQL, 764–770
no data/missing data handling, 48
phpMyAdmin, 773–780
queries, 76–77
querying data, MySQL, 768–770
querying data, phpMyAdmin, 777–778
quote fields, 49–50
relational, 4, 21, 69–70
removing data, MySQL, 770
removing data, phpMyAdmin, 778
sensitive information storage, 39
shared, 67
SQL action statement handling, 49–53
SQL SELECT statement conventions,

47–48
Tell-a-Friend, 431, 433–435
updating, 52–53
updating data, MySQL, 770
uploading data, phpMyAdmin, 778
VOTE, 698
WEBFORMS, 662–664

DataCleanup class, 666–667
DataCleanup() constructor method, 666

DataValidator class, 667–669
DataValidator() constructor method,

667
DBI() function, 74
DBI objects, version number return, 81
dbmmanage utility, Apache 2.0, 785
DEBUG constant, 39
debug messages, buffering, 89–90
debug_array() function, 89
Debugger() function, 87–88
debuggers, class.Debugger.php, 70
debugging

associative arrays, 89
enabling/disabling, 39
information display color, 87
information storage, 87
intranet requirement, 85–91

debugging information, sensitive
information concealment, 39

DEFAULT_ACCOUNT_TYPE constant, 614
default_charset directive, 814
$DEFAULT_LANGUAGE variable, 84
DEFAULT_SYMLINK_USER_TO_WEBSITE

constant, 614
DEFAULT_TEMPLATE constant, 642–643
DefaultType directive, 801
delCampaign() method, 540
delete() method, 383–384
deleteAccessIP() method, 446
deleteCampaign() method, 521
deleteCategory() method, 276–277,

314, 364, 376–377
deleteContact() method, 305, 319
deleteDeniedIP() method, 446
deleteDoc() method, 276
deleteDriver() method, 269
deleteEvent() method, 351
DELETEEXECUTIONRECORDS() method,

480
deleteForm() method, 438, 454, 483
deleteKeywords() method, 366
deleteList() method, 517
DELETELISTS() method, 482

Index 841

549669 Index.qxd 4/4/03 2:42 PM Page 841

deleteMessage() method, 226, 444, 456,
520, 537

deleteResource() method, 368
deleteResponse() method, 277
DELETERESPONSESBYEXECID() method,

480
DELETESURVEY() method, 480
deleteURL() method, 519
deleteUser() method, 169, 170
deleteViewers() method, 212
delForm() method, 489
delList() method, 487, 531
delSurvey() method, 486
delURL() method, 534
demo software versions, 755
Deny directive, 798
design documentation, commenting, 59
dialog/status messages, applications, 21
directives

AccessFileName, 801
AddDefaultCharset, 804
AddType, 803
Alias, 802–803
Allow, 798
AllowOverride, 797
auto_prepend_file, 814
CustomLog, 802
default_charset, 814
DefaultType, 801
Deny, 798
directory container, 797–798
DirectoryIndex, 800
disable_functions, 815
display_errors, 815
DocumentRoot, 796
enable_dl, 815
error_append_string, 815
ErrorLog, 802
error_log, 815
error_prepend_string, 816
error_reporting, 816–817
extension, 817
extension_dir, 817
files container, 801

Group, 795
HostnameLookups, 802
httpd.conf file, 813–814
IfModule, 793, 801
implicit_flush, 817
include_path, 818
KeepAlive, 793
KeepAliveTimeout, 793
LanguagePriority, 804
Listen, 795
log_errors, 818
LogLevel, 802
magic_quotes_gpc, 818
magic_quotes_runtime, 818
MaxClients, 794
max_execution_time, 818–819
MaxKeepAliveRequests, 793
MaxRequestPerChild, 794
MaxSpareThreads, 794
memory_limit, 819
MinSpareThreads, 794
Options, 797–798
output_buffering, 819
php_admin_flag, 813
php_admin_value, 813
php_flag, 814
php.ini file, 814–821
php_value, 814
PidFile, 792
safe_mode, 820
safe_mode_allowed_env_vars, 820
safe_mode_protected_env_vars,

820
ScriptAlias, 803
ServerAdmin, 796
Servername, 796
ServerRoot, 791–792
ServerSignature, 802
StartServers, 794
ThreadsPerChild, 794
Timeout, 793
track_errors, 820
TypesConfig, 801
upload_max_filesize, 820–821

842 Index

549669 Index.qxd 4/4/03 2:42 PM Page 842

upload_tmp_dir, 821
UseCanonicalName, 796
User, 795
UserDir, 798–799

directories, portability, 4, 22–23
directory container directives, Apache 2.0,

797–798
DirectoryIndex directive, 800
disable_functions directive, 815
disconnect() function, 76
displayAddCategoryMenu() method,

377
displayAddFormMenu() method, 488
displayAddListMenu() method,

487, 530
displayAddMessageMenu() method, 537
displayAddModCategoryMenu()

method, 275–276
displayAddModDocMenu() method,

274–275
displayAddModifyMenu() method, 315,

320, 453, 455
displayAddURLMenu() method, 534
displayCalendar() method, 349
displayCalendarEventMngrHome()

method, 350–351
displayCampaignMenu() method, 540
displayContactMngrHome() method,

319
displayDeleteOptions() method, 315
displayDescription() method, 384
displayDocDetail() method, 280–281
displayDocHome() method, 278–279
displayDocVisitList() method,

282–283
display_errors directive, 815
displayHome() method, 223–224
displayMailMenu() method, 321
displayMenu() method, 238, 486, 528
displayModifyCategoryMenu()

method, 377
displayModifyURLMenu() method, 534
displayModListMenu() method, 530

displayModMessageMenu() method, 537
displayMsgAddModMenu() method, 229
displayMsgMngrMenu() method,

228–229
displayOutput() method, 422–423
displayReorderMenu() method, 272
displayReport() method, 232, 234
displayResponseForm() method, 282
displaySearchMenu() method, 321
displaySearchResult() method,

321, 388
displaySearResultNextandPrevious()

method, 389
displayTAFMenu() method, 451
displayVoteResult() method, 704–705
displayWithTheme() method, 384–385
DNS addresses, Apache virtual host, 609
Doc class, 255–258
Doc() constructor method, 255–256
Doc() method, 255–256
document details application, intranet

document publisher, 280–281
document index display application,

intranet document publisher,
278–279

document publisher application, intranet
document publisher, 268–277

document publisher database, tables,
248–250

document response application, intranet
document publisher, 281–282

document view list application, intranet
document publisher, 282–283

documentation, design/implementation, 59
document-publishing application, intranet

system, 204
DocumentRoot directive, 796
doMail() function, 581–582
domains, e-mail address adding, 169
doPreview() method, 538
doRemind() function, 581
doSearch() method, 423
doSomething() function, 116, 118

Index 843

549669 Index.qxd 4/4/03 2:42 PM Page 843

E
each() function, 44–45
e-campaign system

Campaign class, 521
campaign creating/executing, 553–554
campaign execution application,

541–543
campaign manager application,

538–541
campaign reporting application,

547–549
campaign reports, 554
checksum algorithm modifications, 555
classes, 516–523
configuration files, 523–526
data fields, 515–516
database list management, 507–508
database requirements, 511–516
duplication elimination, 508
ecampaign.errors file, 526
ecampaign.messages file, 526
entity relationships, 511
error messages, 526
execution simplicity, 508
HTML templates, 526–527
List class, 516–518
list manager application, 528–532
lists creating, 549–550
Message class, 519–520
message manager application, 508,

535–538
messages, 519–520, 526, 552–553
personalization tag fields, 510
personalized messages, 508
Report class, 522–523
report generation, 509
resource files, 523–526
security concerns, 555
target URL creating, 550–552
testing, 549–554
unsubscription filtering, 508
Unsubscription Track class, 522

unsubscription tracking application,
508–509, 545–547

URL class, 518–519
URL manager application, 532–534
URL Track class, 521–522
URL tracking/redirection application,

544–545
user interface application, 528
user types, 509–510

EcampaignCampaign() method, 521
EcampaignList() constructor method,

516
EcampaignMessage() constructor

method, 519–520
EcampaignReport() constructor method,

522
ecampaign.sql script, 511–515
EcampaignTrack() constructor method,

522
EcampaignUnsub() constructor method,

522
EcampaignUnsub() method, 522
EcampaignURL() constructor method,

518–519
e-mail

intranet contact manager, 330
password reset requests, 168

e-mail addresses
domain adding, 169
login application authentication,

132–133
validation functions, 35

e-mail interface, intranet contact manager,
294

email() method, 198
e-mail survey system

Campaign Manager application, 476
central survey configuration file,

493–497
classes, 479–484
CSV (comma-separated value) file

support, 474

844 Index

549669 Index.qxd 4/4/03 2:42 PM Page 844

database tables, 477–478
duplicate entry protection, 474
error messages, 498–499
Execution Manager application, 476
Form Manager application, 476
HTML templates, 497–498
List Manager application, 476
messages, 498
personalized survey form, 474
question labels adding, 503–504
questions unlimited, 474
Report Manager application, 476
reports, 474
Response Manager application, 476
security issues, 506
survey administrator tasks, 475–476
Survey class, 479–480
survey execution manager application,

489–491
survey form adding, 502–503
survey form manager application,

488–489
survey forms, 499–500
survey list adding, 501–502
survey list manager application,

486–488
survey manager application, 485–486
Survey Manager menu, 501
survey report display, 505
survey response manager, 491–492
survey status display, 504–505
SurveyForm class, 482–483
SurveyList class, 480–482
SurveyReport class, 484
SurveyResponse class, 483–484
target lists, 474
testing, 500–505

e-mail template
Apache virtual host, 618–619
CPU load monitor, 604

enable_dl directive, 815
encryption, passwords, 169
$errCode array, 112

error code, loading, 84
error conditions, database return, 51
error handler class, intranet requirement,

81–84
error handlers,

class.ErrorHandler.php, 70
error messages. See also messages

customizable, 4, 14–21
e-campaign system, 526
e-mail survey system, 498–499
internationalizable support, 81–84
internationalizing, 116
Internet Resource Manager system, 373
intranet calendar manager, 347
intranet contact manager, 312
intranet document publisher, 267
intranet requirement, 81–84
language version selections, 20–21
login application, 136
logout application, 145
multidimensional associative arrays,

20–21
online help system, 417
retrieving, 84
tell-a-friend system, 449
user administration application,

186–187
vote application, 703
Web forms manager, 678, 688

error_append_string directive, 815
ErrorHandler() function, 84
ErrorLog directive, 802
error_log directive, 815
error_log() function, 61
error_prepend_string directive, 816
error_reporting directive, 816–817
error_reporting directive constant, 816
error_reporting (E_ALL) function, 61
escapeshellcmd() function, 29
evaluation software versions, 755
Event class, 337–343
Event class method, 337–343
Event() method, 338–339

Index 845

549669 Index.qxd 4/4/03 2:42 PM Page 845

events, intranet calendar manager,
335–336, 354–357

executeCampaign() method, 542–543
executeSurvey() method, 490–491
Execution Manager application, e-mail

survey system, 476
existlnList() method, 364
extension directive, 817
extension_dir directive, 817
external configuration file script, 13–14
external configuration files, PHP

applications, 4, 11–14
external HTML templates, PHP

applications, 4, 5–11
external programs, user-input risks, 26–29
external user interface script, 6–9

F
fetchRow() method, 48, 79
$fieldList array, 50
fields

central authentication database, 147
data type definition, 112
e-campaign system personalization tag,

510
hidden, 39
INSERT statement naming

conventions, 51–52
quote, 49–50

$fields array, 53
$fields associative array, 50
$fieldType associative array, 112
file systems, access script security,

748–749
files

CSV (comma-separated value), 474
external configuration, 4, 11–14
framework.tar.gz, 113
home.conf, 219–222
HTML interface templates, 222–223
intranet document publisher

configuration, 261–267

php.inf, 813, 814–821
upload security, 744–747

files container directives, Apache 2.0, 801
find command, 823–824
flags, global, 39
flush_buffer() function, 89
forgotten-password request form, central

user management system, 168
forgotten-password recovery application

checksum calculation, 197
flow diagram, 195–196
global form variables, 197
methods, 197–199
one-way hash passwords, 194
password reset, 197–198
recovery process, 194–195
testing, 201–202
user e-mail message, 198

Form class, 436–431
Form() constructor method, 436
form management application, tell-a-

friend system, 432
form manager application

e-mail survey system, 476
tell-a-friend system, 452–454

form processor application, tell-a-friend
system, 432, 457–458

FormData class, 672–674
FormData() constructor method, 672
forms

e-mail survey system, 499–500
forgotten password request, 168
status display, 168
tell-a-friend system, 465–468
user add/modify, 168
vote application, 706–709
Web, 247

FormSubmission class, 669–672
FormSubmission() constructor method,

669
FORM_TABLE table, Web forms manager,

685–686

846 Index

549669 Index.qxd 4/4/03 2:42 PM Page 846

freeware programs, description, 755
functions. See also methods

addContents(), 636
addSite(), 636
addslashes(), 50, 747
addZone(), 647, 653–654
alert(), 84
appendNamedConfFile(), 654
argument list order, 45–47
array(), 45
array returns, 43–45
authenticate(), 126, 133
Authentication(), 126
authorize(), 116, 119
checkRequiredFields(), 112
command-line interpreter, 563,

566–567
Console_Getopt::getopt(),

567, 635
createSymLink(), 636
crypt(), 169
CUP load monitor, 603–604
DBI(), 74
debug_array(), 89
Debugger(), 87–88
disconnect(), 76
doMail(), 581–582
doRemind(), 581
doSomething(), 116, 118
each(), 44–45
e-mail address validation, 35
ErrorHandler(), 84
error_log(), 61
error_reporting(E_ALL), 61
escapeshellcmd(), 29
flush_buffer(), 89
getCommandLineOptions(),

566–567, 635
getData(), 44–45
getDiskInfo(), 594
get_error_message(), 84
getFQPNNamedMasterZone

Template(), 654

getFQPNZoneFile(), 654
getFQPNZoneTemplate(), 655
getRemindersForToday(), 582
getSTDIN(), 563
getUsers(), 582
getZoneConfiguration(), 645–646
groupExists(), 636
hard disk usage monitor, 594
is_coupon(), 31
is_customer(), 31
isOKtoSendMail(), 603–604
isset(), 568
isValidAge(), 36
load_error_code(), 84
makeVirtualHost(), 615
naming conventions, 41–43
preg_grep(), 36
preg_match(), 36
preg_match_all(), 36
preg_quote(), 36
preg_replace(), 36
print_banner(), 88
prompt(), 563
query(), 76
quote(), 79
regular expression, 36
reminder tool, 581–582
require_once(), 13, 115
reset_buffer(), 89
restartApache(), 636
run(), 116, 118
sendAlert(), 594, 604
sendMail(), 636
sess_close(), 150, 153
sess_destroy(), 150, 153
sess_gc(), 150, 153
session_open(), 150, 153
session_set_save_handler(), 150
sess_read(), 150, 153
sess_write(), 150
set_buffer(), 89

continued

Index 847

549669 Index.qxd 4/4/03 2:42 PM Page 847

functions continued
slowFunction(), 734
syntax(), 647, 655
terminate(), 76
testNewSite(), 636
user administration application,

170–171
userExists(), 636
write(), 89
writeControlFile(), 604
writeLog(), 582
writeZoneFile(), 654
ZIP code validation, 35
zoneExists(), 655
zoneInNamedConf(), 654

G
generateCategoryNavigator()

method, 274
generateDailyReport() method, 231,

233–234
generateMonthlyReport() method,

232, 234
generateOriginReport() method,

460–461
generateWeeklyReport() method,

232, 234
geo location finder tool

command-line PHP utility, 583–587
Internet Geographic Database, 584

geolocator.php script, 584–585
getAccessIPs() method, 445
getAllDocsByCatID() method, 257
getAllForms() method, 437
getAllMessages() method,

210, 229, 443
getApp() method, 405
getAppInfo() method, 421
getAvailableCampaigns() method, 521
GETAVAILABLEFORMS() method, 483
getAvailableLists() method, 482, 517
getAvailableMessages() method, 520

GETAVAILABLESURVEYS() method, 480
getBaseURL() method, 413
getBounceResponse() method, 522
getCampaignInfo() method, 521
getCategories() method, 252
getCategoryIDbyName() method,

252, 299
getCategoryList() method, 363
getCategoryName() method, 363
getCheckSum() method, 197
getClientDBURL() method, 518
getCommand() method, 421
getCommandLineOptions() function,

566–567, 635
getContactInfo() method, 218
getContactsByCatID method, 305
getDailyActivityInfo() method, 214
getDailyEndTS() method, 214
getDailyLog() method, 215–216
getDailyStartTS() method, 214
getData() function, 44–45
getDataAfterRecordID() method, 673
getDefaultSectionTemplate()

method, 413
getDeniedIPs() method, 445–446
getDiskInfo() function, 594
getDocsByCatID() method, 257
getEcampaignHeaderInfo() method,

520
getEcampaignListInfo() method, 517
getEcampaignMessageInfo() method,

520
getError() method, 79
get_error_message() function, 84
getErrorMessage() method, 669–670
getErrors() method, 669
getEvents() method, 339
GETEXECUTIONRECORDLIST() method,

480
getFormData() method, 673
GETFORMID() method, 480
getFormInfo() method, 436–437, 483

848 Index

549669 Index.qxd 4/4/03 2:42 PM Page 848

getFQPNNamedMasterZoneTemplate()
function, 654

getFQPNofSection() method, 413
getFQPNSearchHistoryFile() method,

413
getFQPNZoneFile() function, 654
getFQPNZoneTemplate() function, 655
getFriendList() method, 439
getFriendsByOrigin() method, 441
getHelpDir() method, 412
getHelpTemplateDir() method, 413
getKeywordFile() method, 414
getKeywordList() method, 412
getKeywordMatch() method, 411
getKeywords() method, 303–304, 366
getKeywordString() method, 412
GETLABELSBYFIELDANDEXECID()

method, 484
getlastDLRecordID() method, 673
GETLISTID() method, 480
getLogs() method, 216
getMails() method, 306
getMapFile() method, 414
getMapHash() method, 420
getMessageInfo() method, 442–443
getMessages() method, 209
getMsgIDbyMessageTitle() method,

212
getMsgPreviewInput() method, 538
getNewResource() method, 368
getNextSection() method, 407
getNumberOfSubscriber() method, 440
getNumberOfUnsubscriber() method,

440
getNumOfResourceInCat() method, 368
getNumSubscriptionPerOrigin()

method, 441
getOfficeAndExtraBreakdown()

method, 216–217
getopt() method, 567
getOriginSubmissions() method, 440
getOwnEvents() method, 340

getParentCategories() method,
299–300

getParentCategory() method, 363
getParentOf() method, 300–301
getPollID() method, 704
getPreviousSection() method,

406–407
getPublishers() method, 252
getRecentSearchList() method, 410
getRelatedMOTDs() method, 305
getRelHelpDir() method, 405
getReminders() method, 306
getRemindersForToday() function, 582
getRepeatMode() method, 342
getResourceByCategory() method, 368
getResourceInfo() method, 368
getResourceUrl() method, 368
GETRESPONSEDATERANGE() method, 484
getResponsesByDocID() method, 259
GETRETURNVALUE() method, 480
getSearchMatchCount() method, 409
getSearchResults() method, 409–410
getSearchResultTemplate() method,

413
getSectionAtIndex() method, 407
getSectionContents() method,

405–406
getSectionHash() method, 411
getSectionList() method, 412
getSectionNumberList() method, 411
getSections() method, 412
getSectionTemplate() method, 413
get_size() method, 668
GETSTATUS() method, 479
getSTDIN() function, 563
getSubCategories() method, 300
getSubCategory() method, 363
getSubscriptionStatus() method, 441
GETSURVEYID() method, 479
GETSURVEYINFO() method, 480
GETSURVEYRESPONSE() method, 484
GETTARGETDATA() method, 482

Index 849

549669 Index.qxd 4/4/03 2:42 PM Page 849

getTargetData() method, 518
GETTEMPLATE() method, 483
getTOCContents() method, 408
getTOCTemplate() method, 413
getTopRankingList() method, 368
GETTOTALRECORDCOUNT() method, 482
getTotalResourceNum() method, 368
GETTOTALRESPONSECOUNT() method, 484
getTotalVoteCount() method, 700–701
getTrackDetails() method, 257
_getUniqueWords() method, 415
getUnsubResponse() method, 522
getURL() method, 519
getURLInfo() method, 519
getURLList() method, 519
getURLLocationList() method, 519
getURLResponse() method, 522
getUserInfo() method, 158–159
getUsers() function, 582
getViewers() method, 211,

252–253, 340
getVoteCountByChoice() method, 700
_getWords() method, 414
getZoneConfiguration() function,

645–646
global constants, external configuration

file, 13–14
global environment, Apache 2.0

configuration, 791–794
global events, intranet calendar manager,

335
global flags, debugging

enabling/disabling, 39
global request variables, described, 32–33
GNU software, description, 755
good_screen.html script, 57
good_uploader.php script, 746–747
Google, Language Translation Tools, 83
grep command, 823
Group directive, 795
groupExists() function, 636
GZIP compression, PHP application

output, 725–726

H
hacked_bad_upload_form.html script,

745–746
hard disk usage monitor

alert messages, 592–594
command-line PHP utility, 587–595
configuration file, 588
functions, 594
installation, 594–595
monitoring script, 588–589

hasError() method, 669
haveRequiredData() method, 671
hdmonitor.conf script, 588
hdmonitor_mail.txt script, 592–594
hdmonitor.php script, 588–592
head command, 824
helloworld.php script, 561–562
help application, online help system,

420–423
Help() constructor method, 405
help indexing application, online help

system, 418–420
hidden fields, sensitive information

concealment, 39
holiday events, intranet calendar manager,

335
home application, intranet system,

223–225
host names, central authentication

database, 146
HostnameLookups directive, 802
htdigest utility, Apache 2.0, 785
HTML (HyperText Markup Language),

external templates, 4, 5–11
HTML code, PHP application avoidance,

54–55
HTML templates

e-campaign system, 526–527
e-mail survey system, 497–498
Internet Resource Manager system,

373–374
intranet calendar manager, 348
intranet contact manager, 312–313

850 Index

549669 Index.qxd 4/4/03 2:42 PM Page 850

intranet document publisher, 267–268
intranet system, 222–223
online help system, 417–418
tell-a-friend system, 450
vote application, 703
Web forms manager, 679

HTMLtoText() method, 415
htpasswd utility, Apache 2.0, 785
httpd script, 805–806
httpd.conf script, 786–790, 813–814
HyperText Markup Language (HTML),

external templates, 4, 5–11

I
IfModule directive, 793, 801
implementation documentation,

commenting, 59
implicit_flush directive, 817
include_path directive, 818
_indexOfSection() method, 407–408
information

authentication shielding, 60
debugging display color, 87
debugging storage, 87
sensitive concealing, 38–39

input variables, automatic creation risks,
30–32

INSERT SQL statement, 51–52
installing, phpMyAdmin, 771–772
integer, defined, 765
interfaces, external HTML template, 4
Internet Geographic Database, geo

location finder tool, 584
Internet resource manager application,

intranet system, 204
Internet Resource Manager system

application classes, 362–368
application configuration files,

369–373
calendar.errors file, 373
calendar.messages file, 373
category adding, 395–396
Category Manager, 394

category manager application, 374–379
click-through tracking, 359
error messages, 373
HTML interface templates, 373–374
installation, 391–393
Internet resource adding, 397–398
IRM database, 359–361
IRM search interface, 394
IrmCategory class, 362–363
irm.conf file variables, 369–372
IrmResource class, 364–368
keyword search support, 359
Message class, 368
messages, 368, 373
resource manager application, 379–385
resource organization, 359
resource rankings, 359
resource tracking application, 385–386
search manager application, 386–391
search results display, 399–400
security issues, 401
subcategory adding, 395–396
testing, 393–400

intranet calendar manager
application configuration files,

343–347
automatic reminders, 336
calendar event manager application,

350–352
calendar manager application, 348–349
calendar.conf file, 344–347
database design, 336–337
error messages, 347
event adding, 355–356
event assignments, 336
Event class, 337–343
event modifying, 356
event reminder viewing, 356–357
event sharing, 336
global events, 335
holiday events, 335

continued

Index 851

549669 Index.qxd 4/4/03 2:42 PM Page 851

intranet calendar manager continued
HTML templates, 348
installation, 353–354
messages, 347
repeatable events, 335
testing, 354–357
weekends, 355

intranet contact manager
application classes, 297–307
application templates, 312–313
automatic reminders, 294
category adding, 326–327
Category class, 298–301
central contact database, 293–296
configuration files, 308–311
contact adding, 328
contact category hierarchy, 293
contact category manager application,

313–317
Contact class, 302–307
contact management, 293
contact manager application, 317–323
contact.conf file, 308–312
e-mail interface, 294
e-mail sending, 330
error messages, 312
installation, 323–325
messages, 312
searches, 293, 325–326, 329–330
subcategory searches, 330–332
testing, 325–332

intranet database, tables, 205–206
intranet document publisher

application classes, 250–259
automated announcements, 248
category adding, 286–287
Category class, 251–255
category-based document organization,

247–248
configuration files, 261–267
database design, 248–250
Doc class, 255–258
document adding, 288–292
document details application, 280–281

document index display application,
278–279

document publisher application,
268–277

document response application,
281–282

document view list application,
282–283

error messages, 267
HTML templates, 267–268
id.conf file, 261–265
installation, 283–285
ld.errors file, 267
ld.messages file, 266–267
main document index, 285–286
messages, 266–267
Response class, 258–260
testing, 285–292
user-level access controls, 248
Web forms, 247

intranet home application
message writing, 244–245
testing, 240–245
user access logs, 242–244
user preferences, 242

intranet system
access reporter application, 230–233
ActivityAnalyzer class, 213–217
admin access reporter application,

233–235
application configuration files,

219–222
application templates, 222–223
application testing, 240–245
CD-ROM installing from, 238–240
central contact-manager application,

204
central event-calendar application, 204
central user authentication, 203
daily logbook manager application,

236
database design, 204–206
document-publishing application, 204
home.conf file, 219–222

852 Index

549669 Index.qxd 4/4/03 2:42 PM Page 852

home.php application, 223–225
HTML interface templates, 222–223
Internet resource manager application,

204
IntranetUser class, 217–218
Message class, 207–213
message creation/deletion, 207–213
messages (notes), 204
MOTD (Message of the Day), 204
MOTD manager application, 225–229
reports, 232
user home application, 203
user management, 203
user preference application, 237–238
user preferences, 242
user tip application, 237

intranets
application framework, 67–71
application-specific authorization, 67
business-logic requirements, 69
central authentication, 66–67
database abstraction, 70–81
debugging requirements, 85–91
error handler class, 81–84
PHP Application Framework (PHPAF)

layer, 68–69
relational database, 69–70
shared database, 67
template-based presentation layer, 68
user requirements, 65–67

IntranetUser class, 217–218
IntranetUser() method, 218–219
introduction message, tell-a-friend system,

464–471
IP/network address, authorization access

control, 24
IrmCategory class, 362–363
IrmCategory() constructor method,

362–363
IrmResource class, 364–368
IrmResource() constructor method,

364–365
isAccessAllowed() method, 445
isAccessDenied() method, 445

isAllowed() method, 665
is_authenticated() method, 131, 143
is_coupon() function, 31
is_customer() function, 31
isDenied() method, 665
isKnownForm() method, 670
isLoaded() method, 408
isMaximumSubmitted() method, 438
isNetworkAddr() method, 665, 666
isNodeOf() method, 665, 666
isOKtoSendMail() function, 603–604
isRead() method, 228
isSection() method, 408
isset() function, 568
ISSUBMITTED() method, 483
isValidAge() function, 36
isViewable() method, 212

J
JavaScript, internationalized error

message display, 84
jpcache, PHP applications, 727–729

K
KeepAlive directive, 793
KeepAliveTimeout directive, 793
keepTrack() method, 385
keepTrackAndRedirect() method, 545
key=value pairs, associative arrays,

46–47
keyword search, online help system

element, 403

L
LANGUAGE constant, 20–21
language poll form, vote application, 709
LanguagePriority directive, 804
languages

default setting, 84
internationalizable error messages,

81–84
Language Translation Tools, 83
message selection, 20–21

libraries, PHPLIB, 7–8

Index 853

549669 Index.qxd 4/4/03 2:42 PM Page 853

lib.session_handler.php script,
151–153

links, forgotten password/central login
interface, 201

Linux
Apache 2.0 installation/configuration,

781–808
file/directory commands, 821–831
multiprocessing modules, 783–784
MySQL installation/configuration,

808–810
predefined cron directories, 569

List class, 516–518
list manager application, e-campaign

system, 528–532
List Manager application, e-mail survey

system, 476
Listen directive, 795
lists

combo, 55–58
e-campaign system creating, 549–550

ln command, 824–825
loadCatInfo() method, 252, 298
loadConfigFile() method, 670
loadContactInfo() method, 302–303
loadDocInfo() method, 256
load_error_code() function, 84
load_error_code() method, 84
loadEventInfo() method, 339
_loadFile() method, 415
loadMap() method, 413–414
loadMessageInfo() method, 208–209
loadmonitor.conf script, 596
loadmonitor_mail.txt script, 604
loadmonitor.php script, 597–602
loadResponseInfo() method, 259
locate command, 825
log_errors directive, 818
login application

authentication determination, 131–133
configuration, 133–134
error messages, 136
login.php script, 127–131
menu display, 136–137

purpose, 127
testing, 148–149
warning page, 137–138

login.conf script, 133–134
login.errors script, 136
login.html script, 136–137
login.php script, 127–131
logins

MD5 message digest, 740–743
persistent, 149–155

LogLevel directive, 802
logout application

configuration, 143–145
error messages, 145
flowchart, 138
session termination, 139–143
testing, 148–149

logout.conf script, 143–145
logout.errors script, 145
logout.messages script, 145
logout.php script, 139–143
logresolve utility, Apache 2.0, 785
logresolve.pl script, Apache 2.0, 785
logUserIn() method, 230–231
logUserOut method, 230
loops

benchmarking, 718–722
while, 50

loops.php script, 718–721
ls command, 825–826

M
magic_quotes_gpc directive, 818
magic_quotes_runtime directive, 818
$MAIL_CONTROL_FILE array, 597
$MAIL_FREQUENCY array, 597
$MAIL_TEMPLATE array, 597
mailToContact() method, 317–318
main menu application, tell-a-friend

system, 451
makeAddRequest() method, 635
makeIndex() method, 419
makeindex.php script, 428
makeKeywordIndex() method, 412–413

854 Index

549669 Index.qxd 4/4/03 2:42 PM Page 854

makesite script, 619–635
makesite tool, Apache virtual host,

610–611, 612–636
makesite.conf script, 612–614
makeVirtualHost() function, 615
makezone script, 648–653
makezone utility

BIND domain manager, 641–642
configuration, 642–647
functions, 653–655
implementation process, 647–655
installation, 655
standard template, 644–645
templates, 643–647
testing, 656–658
zone template, 645–646

makezone.conf script, 642–643
map() method, 517
markers, HTML template blocks, 9–11
MaxClients directive, 794
max_execution_time directive, 818–819
MaxKeepAliveRequests directive, 793
MaxRequestPerChild directive, 794
MaxSpareThreads directive, 794
MD5 message digest, login security,

740–743
md5_login.html script, 741–742
md5_login.php script, 742
memory_limit directive, 819
menus, user administration application,

188
Message class

addMessage() method, 210, 443
addNewEcampaign Message()

method, 520
addViewer() method, 211
deleteMessage() method, 444, 520
deleteViewers() method, 212
EcampaignMessage() method,

519–520
getAll Messages() method, 210, 443
getAvailableMessages() method,

520
getEcampaignHeaderInfo() method,

520

getEcampaignMessage Info()
method, 520

getMessageInfo() method, 442–443
getMessages() method, 209
getMsgIDbyMessageTitle() method,

212
getViewers() method, 211
isViewable() method, 212
loadMessageInfo() method,

208–209
Message() method, 208, 442
modifyMessage() method, 211, 444
setEcampaignMessageID() method,

520
setMessageID() method, 442
UpdateEcampaignMessage() method,

520
UpdateEcampaignMessageHdr()

method, 520
Message() constructor method, 442
message editor, tell-a-friend system, 432
message manager application

e-campaign system, 535–538
tell-a-friend system, 454–456

Message() method, 208, 442
Message of the Day (MOTD) manager

application, intranet system,
225–229

messages. See also error messages
creating/deleting, 207–213
customizable, 4, 14–21
dialog/status, 21
e-campaign system, 519–520, 526,

552–553
e-mail survey system, 498–499
forgotten-password recovery, 198
internationalizing, 116
Internet Resource Manager system,

368, 373
intranet calendar manager, 347
intranet contact manager, 312
intranet document publisher, 266–267
intranet home application, 244–245
intranet requirement, 81–84

continued

Index 855

549669 Index.qxd 4/4/03 2:42 PM Page 855

messages continued
intranet system notes, 204
language version selections, 20–21
logout application, 145
multidimensional associative arrays,

20–21
online help system, 417
reminder tool, 573–580
tell-a-friend system, 449, 463–471
user administration application, 186

methods. See also functions
access reporter application, 230–233
AccessControl(), 444
AccessControl class, 444–446
ACL(), 665
ACL class, 665–666
ActivityAnalyzer class, 214–217
ADD(), 484
addAccessIPs(), 446
addCampaign(), 521, 540–541
addCategory(), 169, 270, 375, 380,

487–488, 529–530, 536
addContact(), 304, 319–320
addDatabaseFieldMap(), 532
addDeniedIPs(), 446
addDoc(), 256, 270
addDriver(). See addDriver()

method
addEvent(), 340–341, 352
ADDEXECUTIONRECORD(), 480
addForm(), 437, 488–489
addKeywords(), 366
ADDLABEL(), 483
addLabels(), 489
addList(), 487–488, 531–532
addMapping(), 517
addMessage(), 210, 228, 443, 538
addModifyDriver(), 452, 455
addModifyForm(), 453–454
addModifyMessage(), 456
addNewEcampaignList(), 517
addNewEcampaignMessage(), 520
ADDNEWSURVEYFORM(), 483
ADDNEWSURVEYLIST(), 481–482
addRecord(), 492

addResource(), 365, 382
addResponse(), 260
addSubmissionData(), 438–439
ADDSUBMITRECORD(), 484
addSubscriptionData(), 439–440
ADDSURVEY(), 480
addToBounced(), 518
addURL(), 519, 534
addURLDriver(), 532
addUser(), 169
addViewer(), 211, 341
addVote(), 700, 704
admin access reporter application,

233–235
alert(), 145
analyzeDailyActivity(), 215
apiVersion(), 81
appendHashes(), 538
argument list order, 45–47
array returns, 43–45
askForConfirmation(), 547
authorize(). See authorize()

method
buffer_debugging(), 117
calendar event manager application,

350–352
calendar manager application, 348–349
Campaign class, 521
campaign execution application,

541–543
campaign manager application,

539–541
campaign reporting application,

547–549
Category(), 251, 298
Category class, 251–255, 298–301
category manager application, 374–379
checkInput(), 169
checkPassword(), 190, 197
class.PHPApplication.php,

108–111
cleanupData(), 671
cleanup_lower(), 667
cleanup_ltrim(), 667
cleanup_none(), 666

856 Index

549669 Index.qxd 4/4/03 2:42 PM Page 856

cleanup_rtrim(), 667
cleanup_trim(), 667
cleanup_ucwords(), 666
computeCheckSum(), 545, 546–547
confirmMessage(), 227
connect(), 76
Contact(), 302
contact category manager application,

313–317
Contact class, 302–307
contact manager application, 317–323
convert(), 236
createCampaign(), 539
createSurveyDriver(), 485
CSV data exporter application,

682–683
daily logbook manager application,

236
DataCleanup(), 666
DataCleanup class, 666–667
DataValidator(), 667
DataValidator class, 667–669
delCampaign(), 540
delete(), 383–384
deleteAccessIP(), 446
deleteCampaign(), 521
deleteCategory(), 276–277, 314,

364, 376–377
deleteContact(), 305, 319
deleteDeniedIP(), 446
deleteDoc(), 276
deleteDriver(), 269
deleteEvent(), 351
DELETEEXECUTIONRECORDS(), 480
deleteForm(), 438, 454, 483
deleteKeywords(), 366
deleteList(), 517
DELETELISTS(), 482
deleteMessage(), 226, 444, 456,

520, 537
deleteResource(), 368
deleteResponse(), 277
DELETERESPONSESBYEXECID(), 480
DELETESURVEY(), 480

deleteURL(), 519
deleteUser(), 169, 170
deleteViewers(), 212
delForm(), 489
delList(), 487, 531
delSurvey(), 486
delURL(), 534
displayAddCategoryMenu(), 377
displayAddFormMenu(), 488
displayAddListMenu(), 487, 530
displayAddMessageMenu(), 537
displayAddModCategoryMenu(),

275–276
displayAddModDocMenu(), 274–275
displayAddModifyMenu(), 315, 320,

453, 455
displayAddURLMenu(), 534
displayCalendar(), 349
displayCalendarEventMngrHome(),

350–351
displayCampaignMenu(), 540
displayContactMngrHome(), 319
displayDeleteOptions(), 315
displayDescription(), 384
displayDocDetail(), 280–281
displayDocHome(), 278–279
displayDocVisitList(), 282–283
displayHome(), 223–224
displayMailMenu(), 321
displayMenu(), 238, 486, 528
displayModifyCategoryMenu(), 377
displayModifyURLMenu(), 534
displayModListMenu(), 530
displayModMessageMenu(), 537
displayMsgAddModMenu(), 229
displayMsgMngrMenu(), 228–229
displayOutput(), 422–423
displayReorderMenu(), 272
displayReport(), 232, 234
displayResponseForm(), 282
displaySearchMenu(), 321
displaySearchResult(), 321, 388

continued

Index 857

549669 Index.qxd 4/4/03 2:42 PM Page 857

methods continued
displaySearResultNextand

Previous(), 389
displayTAFMenu(), 451
displayVoteResult(), 704–705
displayWithTheme(), 384–385
Doc(), 255–256
Doc class, 255–258
document details application, 280–281
document index display application,

278–279
document publisher application,

269–277
document response application,

281–282
document view list application,

282–283
doPreview(), 538
doSearch(), 423
EcampaignCampaign(), 521
EcampaignList(), 516
EcampaignMessage(), 519–520
EcampaignReport(), 522
EcampaignTrack(), 522
EcampaignUnsub(), 522
EcampaignURL(), 518–519
email(), 198
Event(), 338–339
Event class, 337–343
executeCampaign(), 542–543
executeSurvey(), 490–491
existlnList(), 364
fetchRow(), 48, 79
forgotten-password recovery app,

197–199
Form(), 436
Form class, 436–441
form manager application, 452–454
form processor application, 457–458
FormData(), 672
FormData class, 672–674
FormSubmission(), 669
FormSubmission class, 669–672

generateCategoryNavigator(), 274
generateDailyReport(), 231,

233–234
generateMonthlyReport(), 232, 234
generateOriginReport(), 460–461
generateWeeklyReport(), 232, 234
getAccessIPs(), 445
getAllDocsByCatID(), 257
getAllForms(), 437
getAllMessages(), 210, 229, 443
getApp(), 405
getAppInfo(), 421
getAvailableCampaigns(), 521
GETAVAILABLEFORMS(), 483
getAvailableLists(), 482, 517
getAvailableMessages(), 520
GETAVAILABLESURVEYS(), 480
getBaseURL(), 413
getBounceResponse(), 522
getCampaignInfo(), 521
getCategories(), 252
getCategoryIDbyName(), 252, 299
getCategoryList(), 363
getCategoryName(), 363
getCheckSum(), 197
getClientDBURL(), 518
getCommand(), 421
getContactInfo(), 218
getContactsByCatID, 305
getDailyActivityInfo(), 214
getDailyEndTS(), 214
getDailyLog(), 215–216
getDailyStartTS(), 214
getDataAfterRecordID(), 673
getDefaultSectionTemplate(), 413
getDeniedIPs(), 445–446
getDocsByCatID(), 257
getEcampaignHeaderInfo(), 520
getEcampaignListInfo(), 517
getEcampaignMessageInfo(), 520
getError(), 79
getErrorMessage(), 669–670
getErrors(), 669

858 Index

549669 Index.qxd 4/4/03 2:42 PM Page 858

getEvents(), 339
GETEXECUTIONRECORDLIST(), 480
getFormData(), 673
GETFORMID(), 480
getFormInfo(), 436–437, 483
getFQPNofSection(), 413
getFQPNSearchHistoryFile(), 413
getFriendList(), 439
getFriendsByOrigin(), 441
getHelpDir(), 412
getHelpTemplateDir(), 413
getKeywordFile(), 414
getKeywordList(), 412
getKeywordMatch(), 411
getKeywords(), 303–304, 366
getKeywordString(), 412
GETLABELSBYFIELDANDEXECID(), 484
getlastDLRecordID(), 673
GETLISTID(), 480
getLogs(), 216
getMails(), 306
getMapFile(), 414
getMapHash(), 420
getMessageInfo(), 442–443
getMessages(), 209
getMsgIDbyMessageTitle(), 212
getMsgPreviewInput(), 538
getNewResource(), 368
getNextSection(), 407
getNumberOfSubscriber(), 440
getNumberOfUnsubscriber(), 440
getNumOfResourceInCat(), 368
getNumSubscriptionPerOrigin(),

441
getOfficeAndExtraBreakdown(),

216–217
getopt(), 567
getOriginSubmissions(), 440
getOwnEvents(), 340
getParentCategories(), 299–300
getParentCategory(), 363
getParentOf(), 300–301
getPollID(), 704

getPreviousSection(), 406–407
getPublishers(), 252
getRecentSearchList(), 410
getRelatedMOTDs(), 305
getRelHelpDir(), 405
getReminders(), 306
getRepeatMode(), 342
getResourceByCategory(), 368
getResourceInfo(), 368
getResourceUrl(), 368
GETRESPONSEDATERANGE(), 484
getResponsesByDocID(), 259
GETRETURNVALUE(), 480
getSearchMatchCount(), 409
getSearchResults(), 409–410
getSearchResultTemplate(), 413
getSectionAtIndex(), 407
getSectionContents(), 405–406
getSectionHash(), 411
getSectionList(), 412
getSectionNumberList(), 411
getSections(), 412
getSectionTemplate(), 413
get_size(), 668
GETSTATUS(), 479
getSubCategories(), 300
getSubCategory(), 363
getSubscriptionStatus(), 441
GETSURVEYID(), 479
GETSURVEYINFO(), 480
GETSURVEYRESPONSE(), 484
GETTARGETDATA(), 482
getTargetData(), 518
GETTEMPLATE(), 483
getTOCContents(), 408
getTOCTemplate(), 413
getTopRankingList(), 368
GETTOTALRECORDCOUNT(), 482
getTotalResourceNum(), 368
GETTOTALRESPONSECOUNT(), 484
getTotalVoteCount(), 700–701
getTrackDetails(), 257

continued

Index 859

549669 Index.qxd 4/4/03 2:42 PM Page 859

methods continued
_getUniqueWords(), 415
getUnsubResponse(), 522
getURL(), 519
getURLInfo(), 519
getURLList(), 519
getURLLocationList(), 519
getURLResponse(), 522
getUserInfo(), 158–159
getViewers(), 211, 252–253, 340
getVoteCountByChoice(), 700
_getWords(), 414
global form variables, 197
hasError(), 669
haveRequiredData(), 671
Help(), 405
Help class, 404–415
help indexing application, 419–420
HTMLtoText(), 415
_indexOfSection(), 407–408
intranet home page application,

223–224
IntranetUser(), 218–219
IntranetUser class, 217–218
IrmCategory(), 362–363
IrmCategory class, 362–364
IrmResource(), 364–365
IrmResource class, 364–368
is_authenticated(), 131, 143
isAccessAllowed(), 445
isAccessDenied(), 445
isAllowed(), 665
isDenied(), 665
isKnownForm(), 670
isLoaded(), 408
isMaximumSubmitted(), 438
isNetworkAddr(), 665, 666
isNodeOf(), 665, 666
isRead(), 228
isSection(), 408
ISSUBMITTED(), 483
isViewable(), 212
keepTrack(), 385
keepTrackAndRedirect(), 545

List class, 516–518
list manager application, 523–532
loadCatInfo(), 252, 298
loadConfigFile(), 670
loadContactInfo(), 302–303
loadDocInfo(), 256
load_error_code(), 84
loadEventInfo(), 339
_loadFile(), 415
loadMap(), 413–414
loadMessageInfo(), 208–209
loadResponseInfo(), 259
logUserIn(), 230–231
logUserOut, 230
mailToContact(), 317–318
main menu application, 451
makeAddRequest(), 635
makeIndex(), 419
makeKeywordIndex(), 412–413
map(), 517
Message(), 208, 442
Message class. See Message class
message manager application, 535–538
modEcampaignList(), 517
modifyCampaign(), 521, 540
modifyCategoryl(), 253, 271, 300,

315–316, 364, 376
modifyContact(), 304, 320
modifyDatabaseFieldMap(), 531
modifyDoc(), 257, 270
modifyDriver(), 169, 270, 375, 380,

530, 536–537
modifyEvent(), 341, 351–352
modifyForm(), 438
modifyList(), 530–531
modifyMapList(), 518
modifyMessage(), 211, 227–228, 444
modifyResource(), 367, 383
modifyURL(), 534
modifyURLDriver(), 533
modifyUser(), 169
modURL(), 519
MOTD manager application, 225–229
myFunction(), 44

860 Index

549669 Index.qxd 4/4/03 2:42 PM Page 860

naming conventions, 41–43
numRow(), 79
parse(), 11
populateCategory(), 378, 380–381,

386–387
populateResource(), 387
populateSubCategory(), 378,

381, 387
prepareLocalList(), 517
processForm(), 670
processRequest(), 457–458,

459, 683
pushMappedFields(), 517
quote(), 50
readKeywordCacheFile(), 414
redirectTest(), 545
_removeExcludedWords(), 414
reorderDriver(), 269
Report class, 522–523
reportDriver(), 231, 236
reporter application, 459–461, 681–682
resetPassword(), 197–198
resetPasswordDriver(), 197
resource manager application, 379–385
resource tracking application, 385–386
Response(), 259
Response class, 258–260
run(). See run() method
saveSurvey(), 486
search(), 408–409
search manager application, 386–391
searchContact(), 303
searchResource(), 366–367, 384
sendEmail(), 197
sendMail(), 672
session_destroy(), 143
session_unset(), 143
setAccessObjectID(), 445
set_block(), 10
setCampaignID(), 521
setCatID(), 252, 298
setCurrentIP(), 445
setDocID(), 256
setEcampaignCampaignID(), 522

setEcampaignListID(), 516
setEcampaignMessageID(), 520
setFormID(), 436, 672–673
setMessageID(), 208, 442
setPollID(), 699, 704
setResponseID(), 259
SETRETURNVALUE(), 481, 483
SETSTATUS(), 480
SETSURVEYEXECID(), 484
SETSURVEYFORMID(), 483
SETSURVEYID(), 479
SETSURVEYLISTID(), 481
setupForm(), 670
setUserType(), 278, 314
set_var(), 11, 58–59
showAddMenu(), 381–382
showContents(), 316, 349, 352
showDetail(), 318
showEcampaignReport(), 548
showHelp(), 421
showMail(), 318
showMenu(), 378–379, 387–388
showModifyMenu(), 382–383
showMostVisitedResource(), 390
showMsgPreview(), 538
showPage(), 680
showReport(), 681–682
showResponse(), 281
showScreen(), 198
showStatusMessage(), 277, 282
showSurveyReport(), 492–493
showTopRankingResource(), 390
showWithTheme(), 379, 390–391
sortAndDisplay(), 389
sortByResourceAddedBy(), 391
sortByResourceRating(), 391
sortByResourceTitle(), 391
sortByResourceVisitor(), 391
storeCategory(), 272–273
storeDoc(), 271
storeMail(), 318
storeTrack(), 522
storeUnsub(), 522

continued

Index 861

549669 Index.qxd 4/4/03 2:42 PM Page 861

methods continued
submission manager application,

679–681
submitData(), 671
submitResponse(), 282
subscriber application, 458–459
SURVEY(), 479
Survey class, 479–480
survey execution manager application,

490–491
survey form manager application,

488–489
survey list manager application,

486–488
survey manager application, 485–486
survey response manager, 491–492
SURVEYFORM(), 482
SurveyForm class, 482–483
SURVEYLIST(), 481
SurveyList, 480–482
SURVEYREPORT(), 484
SurveyReport class, 484
SURVEYRESPONSE(), 483
SurveyResponse class, 483–484
takeFormLabels(), 489
takeMap(), 531
toggleDescField(), 493, 549
trackResourceVisit(), 367
unhtmlentities(), 229
Unsubscription Track class, 522
unsubscription tracking application,

545–547
unsubUser(), 547
updateCampaign(), 541
updateCategory(), 274
updateCategoryOrders(), 253
updateDoc(), 273
updateDownloadTrack(), 674
UpdateEcampaignMessage(), 520
UpdateEcampaignMessageHdr(), 520
updateMessage(), 537
updateMsgTrack(), 223

updateOrders(), 272
updateRecentSearchList(),

410–411
updateUser(), 190, 198
uploadFile(), 672
URL class, 518–519
URL manager application, 532–534
URL Track class, 521–522
URL tracking/redirection application,

544–545
User(), 158
user administration application,

168–170
User class, 159–160
user interface application, 528
user password application, 190–191
user tip application, 237
validate_any_string(), 669
validateData(), 671
validate_email(), 669
validate_file_size(), 669
validate_name(), 668
validate_number(), 668
validate_number_range(), 668
validate_org_name(), 668
validate_size(), 667
validate_string_size(), 668
validate_url(), 669
Vote(), 699
vote application, 703–705
Vote class, 699–701
writeKeywordCacheFile(), 414
writeSearchHistory(), 414

MinSpareThreads directive, 794
mkdir command, 826
modEcampaignList() method, 517
modifyCampaign() method, 521, 540
modifyCategory() method

Category class, 253, 300
category manager application, 376
contact category manager application,

315–316

862 Index

549669 Index.qxd 4/4/03 2:42 PM Page 862

document publisher application, 271
IrmCategory class, 364

modifyContact() method, 304, 320
modifyDatabaseFieldMap() method,

531
modifyDoc() method, 257, 270
modifyDriver() method

category manager application, 375
document publisher application, 370
list manager application, 530
message manager application, 536–537
resource manager application, 380
user administration application, 169

modifyEvent() method, 341, 351–352
modifyForm() method, 438
modifyList() method, 530–531
modifyMapList() method, 518
modifyMessage() method, 211,

227–228, 444
modifyResource() method, 367, 383
modifyURL() method, 534
modifyURLDriver() method, 533
modifyUser() method, 169
modURL() method, 519
monitors

CPU load, 595–605
hard disk usage, 587–595

MOTD manager application, intranet
system, 225–229

multidimensional arrays
$ERRORS, 116
$MESSAGES, 116

multidimensional associative arrays, error
messages, 20–21

multiprocessing modules, Apache 2.0,
783–784

mv command, 826
mycustomers.csv script, 500
myform.php script, 37
myFunction() method, 44
mysite.php script, 38

MySQL
access rights, 764
advantages, 763
CD, 754
central authentication database,

146–147
command-line use, 764
databases, 764–770
inserting data into databases, 767–768
installation/configuration, 808–810
intranet database, 204–206
one-sweep multijoin, 763, 809
program interface support, 808
relational database, 4, 21, 69–70
RPM package installation, 809
server access, 809–810
tables, 765–767
users creating, 148

MySQL database, manage with
phpMyAdmin, 771–780

N
NAMED_CONF constant, 642
named.master_zone.conf script, 646
navigation, online help system element,

403
non_cached.php script, 730–731
numRow() method, 79

O
object-oriented code base, PHP

applications, 3–4, 5
Object-Oriented Programming (OOP) PHP,

basics, 757–762
objects

PHPApplication, 116
$result, 51
sampleApp, 116
Template, 58–59
$thisApp, 116–117

one-sweep multijoin, MySQL, 763, 809

Index 863

549669 Index.qxd 4/4/03 2:42 PM Page 863

one-to-many relationships, relational
databases, 249

one-way hash passwords, forgotten-
password recovery app, 194

online help system
application configuration files,

415–417
classes, 404–415
error messages, 417
help application, 420–423
help indexing application, 418–420
help.conf file, 415–417
help.errors file, 417
help.messages file, 417
HTML templates, 417–418
installation, 423–424
keyword index display, 427
keyword search, 404
messages, 417
navigation ease, 403
search output display, 425
search results display, 426–427
section page display, 425
security issues, 427–428
structured contents, 403
table of contents page, 403
table of contents page display, 424
template-based interface, 404
testing, 424–427

OOP (Object-Oriented Programming) PHP,
basics, 757–762

opcode, PHP application caching, 734–736
Options directive, 797–798
Oracle, relational database, 69–70
output

buffering, 723–725
compression, 725–726

output pages, printing, 11
output template files, directory path, 8–9
output_buffering directive, 819

P
$params associative array, 46–47
$params variable, 49
parse() method, 11
passwd command, 28–29
passwords

authentication access control
method, 24

central user management system, 158
e-mailing reset requests, 168
encrypting, 169
implementing, 190–194
login application authentication,

132–133
MD5 message digest login, 740–743
modifying, 168, 190–193
one-way hash, 194
recovery process, 194–195
resetting, 168, 197–198

PEAR, CD, 754
PEAR cache, PHP applications, 729–734
pear_content_cache.php script,

731–732
pear_func_cache.php script, 733
permissions, Apache virtual host, 609
persistent logins, Web server farms,

149–155
personalization tag fields, e-campaign

system, 510
PHP

basic information, 757–762
CD, 754

PHP Accelerator (PHPA), opcode cache,
735–736

PHP Application Framework (PHPAF)
layer, intranets, 68–69

PHP interpreter, CGI-mode solutions, 811
PHP module, Apache 2.0, 811–812
php_admin_flag directive, 813
php_admin_value directive, 813
PHPApplication object, 116

864 Index

549669 Index.qxd 4/4/03 2:42 PM Page 864

php_flag directive, 814
php.ini file

Apache 2.0 configuration, 813
PHP directives, 814–821

PHPLIB, CD, 754
PHPLIB library, directory path, 7–8
phpMyAdmin

accessing via Web, 773
databases, 773–780
installing and configuring, 771–772
table creation, 773–775

php_value directive, 814
PidFile directive, 792
poll form, vote application, 706–707
populateCategory() method, 378,

380–381, 386–387
populateResource() method, 387
populateSubCategory() method, 378,

381, 387
portable directory structure, PHP

applications, 4, 22–23
preg_grep() function, 36
preg_match() function, 36
preg_match_all() function, 36
preg_quote() function, 36
preg_replace() function, 36
prepareLocalList() method, 517
presentation layer, template-based, 68
print_banner() function, 88
printing

banners, 87–88
buffer content, 89–90
output pages, 11

processForm() method, 670
processRequest() method, 457–458,

459, 683
production environment, php.ini

settings, 748
prompt() function, 563
$PS_BIN array, 597
$PS_OPT array, 597
pushMappedFields() method, 517
pwd command, 827

Q
queries

database access controls, 747
databases, 76–77
error condition return, 51
results display, 77
sessions database, 154–155

query() function, 76
quote character (‘), strings, 79
quote fields, databases, 49–50
quote() function, 79
quote() method, 50

R
readKeywordCacheFile() method, 414
Red Hat Linux, Apache server RPM

package installation, 781
redirectTest() method, 545
regular expressions, functions, 36
relational databases. See also databases

intranet requirement, 69–70
one-to-many relationships, 249
PHP applications, 4, 21

reminder tool
configuration file, 570–571
functions, 581–582
implementing, 573–580
installation, 582–583
symbolic links, 569
tasks, 570
user configuration, 571–573
user messages, 573–580

reminder.conf script, 571
reminder.php script, 573–580
reminders

intranet calendar manager, 356–357
intranet contact manager, 294

reminders.txt script, 571–573
_removeExcludedWords() method, 414
reorderDriver() method, 269
repeatable events, intranet calendar

manager, 355

Index 865

549669 Index.qxd 4/4/03 2:42 PM Page 865

Report class, 522–523
Report Manager application, e-mail survey

system, 476
reportDriver() method, 231, 236
reporter application

tell-a-friend system, 459–461
Web forms manager, 681–682

reporter application method, 459–461,
681–682

reports
access reporter application, 232
e-campaign system, 554
tell-a-friend system, 432, 470–471

require_once() function, 13, 115
reset_buffer() function, 89
resetPassword() method, 197–198
resetPasswordDriver() method, 197
resource manager application, Internet

Resource Manager system, 379–385
RESOURCE table, IRM database, 360
resource tracking application, Internet

Resource Manager system, 385–386
RESOURCE_KEYWORD table, IRM database,

361
RESOURCE_VISITOR table, IRM database,

361
Response() constructor method, 259
Response Manager application, e-mail

survey system, 476
Response() method, 259
restartApache() function, 636
$result object, 51
$retArray array, 44
risks

external programs running, 26–29
identification, 25
sensitive information, 38–39
user-input, 26–38

rm command, 827–828
root users, central user management

system, 157
RPM binary, Apache 2.0 installation, 781
run() function, 116, 118

run() method
accesss reporter application, 230
admin access reporter application, 233
calendar event manager application,

350
calendar manager application, 348–349
campaign execution application, 541
campaign manager application, 539
campaign reporting manager

application, 548
category manager application, 375
contact category application, 313–314
contact manager application, 317
CSV data exporter application, 682
daily logbook manager application,

236
document details application, 280
document index display application,

278
document publisher application, 269
document response application, 281
document view list application, 282
e-campaign user interface application,

528
help application, 420
help indexing application, 419
intranet home application, 223
list manager application, 528
message manager application, 536
MOTD manager application, 225–226
resource manager application, 380
resource tracking application, 385
search manager application, 386
survey execution manager, 490
survey form manager, 488
survey list manager, 486–487
survey manager, 485
survey report manager, 492
survey response manager, 492
tell-a-friend form manager application,

452
tell-a-friend form process application,

457

866 Index

549669 Index.qxd 4/4/03 2:42 PM Page 866

tell-a-friend main menu manager
application, 451

tell-a-friend message manager
application, 454–455

tell-a-friend reporter application, 460
tell-a-friend subscriber application,

458
unsubscription tracking application,

545–546
URL manager application, 532
URL tracking and redirection

application, 544–545
user administration application,

168–169
user preference application, 237
user tip application, 237
vote, application, 704
Web forms reporter application, 681
Web forms submission manager

application, 680

S
safe mode, application security, 749–750
safe_mode directive, 820
safe_mode_allowed_env_vars

directive, 820
safe_mode_protected_env_vars

directive, 820
sampleApp object, 116
sample.conf script, 114–115
sample.errors script, 115
sample.messages script, 116
sample.php script, 113–114
saveSurvey() method, 486
score-card reports, tell-a-friend system,

432
screen.html script, 55
ScriptAlias directive, 803
scripts

Apache virtual host configuration,
611–612

apachectl, 784–785
arg.php, 564

askform.conf, 688–690
ask.php, 562–563
auth.sql, 146–147
autovars_free.php, 33–35
bad_autovars.php, 30–31
bad_screen.html, 56
bad_uploader.php, 745
bad_upload.html, 744
bad_whois.php, 26–28
bench1.php, 714–716
bench2.php, 716–718
better_whois.php, 28–29
calc.php, 14–17
calc2.errors, 20–21
calc2.php, 18–20
class.Authentication.php,

124–126
class.DBI.php, 70–74
class.Debugger.php, 85–87
class.Errorhandler.php, 81–83
class.PHPApplication.php, 91–108
class.sampleApp.php, 116, 118–119
class.User.php, 161–167
cmd_options.php, 564–566
compress.php, 726
ecampaign.sql, 511–515
embedded user interface, 5–6
external configuration file, 13–14
external user interface, 6–9
file system security, 748–749
geolocator.php, 584–585
good_screen.html, 57
good_uploader.php, 746–747
hacked_bad_upload_form.html,

745–746
hdmonitor.conf, 588
hdmonitor_mail.txt, 592–594
hdmonitor.php, 588–592
helloworld.php, 561–562
HTML template, 9–11
httpd, 805–806
httpd.conf, 786–790

continued

Index 867

549669 Index.qxd 4/4/03 2:42 PM Page 867

scripts continued
lib.session_handler.php, 151–153
loadmonitor.conf, 596
loadmonitor_mail.txt, 604
loadmonitor.php, 597–602
login.conf, 133–134
login.errors, 136
login.html, 136–137
login.php, 127–131
logout.conf, 143–145
logout.errors, 145
logout.messages, 145
logout.php, 139–143
logresolve.pl, 785
loops.php, 718–721
makeindex.php, 428
makesite, 619–635
makesite.conf, 612–614
makezone, 648–653
makezone.conf, 642–643
md5_login.html, 741–742
md5_login.php, 742
mycustomers.csv, 500
myform.php, 37
mysite.php, 38
named.master_zone.conf, 646
non_cached.php, 730–731
pear_content_cache.php, 731–732
pear_func_cache.php, 733
reminder.conf, 571
reminder.php, 573–580
reminders.txt, 571–573
sample.conf, 114–115
sample.errors, 115
sample.messages, 116
sample.php, 113–114
screen.html, 55
standard.template, 644–646
std_contents.conf, 617–618
std_vhost.conf, 615–616
std_vhost.mail, 618–619
survey.conf, 493–496
survey.errors, 499

survey.messages, 498
test_dbi.php, 74–76
test_debugger2.php, 89–90
test_debugger3.php, 90
test_query.php, 77–80
todo.txt, 573–574
user_mngr.conf, 184–185
user_mngr.errors, 186–187
usermngr_forgotten_pwd.php,

199–201
user_mngr.messages, 186
user_mngr.passwd.php, 191–193
user_mngr.php, 171–181
VOTE.mysql, 698
warning.html, 138
WEBFORMS.mysql, 663–664

search manager application, Internet
Resource Manager system, 386–391

search() method, 408–409
searchContact() method, 303
searches

Internet Resource Manager system,
386–391

intranet contact manager, 293,
325–326, 329–330

intranet contact manager subcategory,
330–332

searchResource() method, 366–367
security

access controls, 737–744
database access, 747
directory access restrictions, 744
file uploads, 744–747
MD5 message digest login, 740–743
php.inf settings, 748
safe mode, 749–750
script access limitations, 748–749
Web server-based authentication,

739–740
SELECT SQL statement, 44, 47–48
selectResource() method, 384
semicolons, SQL queries, 765
sendAlert() function, 594, 604

868 Index

549669 Index.qxd 4/4/03 2:42 PM Page 868

sendEmail() method, 197
sendMail() function, 636
sendMail() method, 672
sensitive information

access restrictions, 61, 738–739
security risk prevention, 38–39

ServerAdmin directive, 796
Servername directive, 796
ServerRoot directive, 791–792
servers

Apache 2.0 configuration directives,
795–804

MySQL access, 809–810
ServerSignature directive, 802
sess_close() function, 150, 153
sess_destroy() function, 150, 153
sess_gc() function, 150, 153
session_destroy() method, 143
session_open() function, 150, 153
session_set_save_handler() function,

150
session_unset() method, 143
SESSION_USERNAME variable, 133
sess_read() function, 150, 153
sess_write() function, 150
setAccessObjectID() method, 445
set_block() method, 10
set_buffer() function, 89
setCampaignID() method, 521
setCatID() method, 252, 298
setCurrentIP() method, 445
setDocID() method, 256
setEcampaignCampaignID() method,

522
setEcampaignListID() method, 516
setEcampaignMessageID() method, 520
setFormID() method, 436, 672–673
setMessageID() method, 208, 442
setPollID() method, 699, 704
setResponseID() method, 259
SETRETURNVALUE() method, 481, 483
SETSTATUS() method, 480
SETSURVEYEXECID() method, 484

SETSURVEYFORMID() method, 483
SETSURVEYID() method, 479
SETSURVEYLISTID() method, 481
setupForm() method, 670
setUserType() method, 278, 314
set_var() method, 11, 58–59
shared databases, intranet requirement, 67
shareware programs, description, 755
showAddMenu() method, 381–382
showContents() method, 316, 349, 352
showDetail() method, 318
showEcampaignReport() method, 548
showHelp() method, 421
showMail() method, 318
showMenu() method, 378–379, 387–388
showModifyMenu() method, 382–383
showMostVisitedResource() method,

390
showMsgPreview() method, 538
showPage() method, 680
showReport() method, 681–682
showResponse() method, 281
showScreen() method, 198
showStatusMessage() method, 277, 282
showSurveyReport() method, 492–493
showTopRankingResource() method,

390
showWithTheme() method, 379, 390–391
single quotes, strings, 79
slowFunction() 734
sort command, 828–829
sortAndDisplay() method, 389
sortByResourceAddedBy() method, 391
sortByResourceRating() method, 391
sortByResourceTitle() method, 391
sortByResourceVisitor() method, 391
SQL statements

action handling, 49–53
INSERT, 51–52
SELECT, 44, 47–48
UPDATE, 52–53

standard account, Apache virtual host,
615–616

Index 869

549669 Index.qxd 4/4/03 2:42 PM Page 869

standard template, makezone utility,
644–645

standard.template script, 644–646
StartServers directive, 794
stat command, 829
status/dialog messages, applications, 21
std_contents.conf script, 617–618
std_vhost.conf script, 615–616
std_vhost.mail script, 618–619
storeCategory() method, 272–273
storeDoc() method, 271
storeMail() method, 318
storeTrack() method, 522
storeUnsub() method, 522
strings, single quotes, 79
strings command, 829
submission manager application, Web

forms manager, 679–681
submitData() method, 671
submitResponse() method, 282
subscriber application, tell-a-friend

system, 432, 458–459
survey administrator, e-mail survey

system tasks, 475–476
Survey class, 479–480
SURVEY() constructor method, 479
survey execution manager application,

e-mail survey system, 489–491
survey form manager application, e-mail

survey system, 488–489
survey forms, e-mail survey system,

499–500
survey list manager application, e-mail

survey system, 486–488
Survey Manager menu, e-mail survey

system, 501
survey response manager, e-mail survey

system, 491–492
SURVEY table, e-mail survey database, 477
survey.conf script, 493–496
survey.errors script, 499
SURVEY_EXECUTION table, e-mail survey

system, 478
SurveyForm class, 482–483

SURVEYFORM() constructor method, 482
SURVEY_FORM table, e-mail survey

system, 478
SURVEY_FORM_FIELD_LBL table, e-mail

survey system, 478
SurveyList class, 480–482
SURVEYLIST() constructor method, 481
SURVEY_LIST table, e-mail survey

database, 477
SURVEY_LIST_DATA table, e-mail survey

system, 477
survey.messages script, 498
SurveyReport class, 484
SURVEYREPORT() constructor method,

484
SurveyResponse class, 483–484
SURVEYRESPONSE() constructor method,

483
SURVEY_RESPONSE table, e-mail survey

system, 478
SURVEY_RESPONSE_RECORD table, 478
symbolic links, reminder tool, 569
syntax() function, 647, 655
system requirements, CD, 753
$SYSTEM_INFO associative array, 614

T
table of contents page, online help system

element, 403
tables

central contact database, 294–296
creating, phpMyAdmin, 773–775
document publisher database, 249–250
intranet database, 205–206
IRM (Internet Resource Manager)

database, 359–361
MySQL, 765–767
survey database, 477–478
Tell-a-Friend database, 433–435
viewing descriptions, MySQL, 767
VOTE database, 698
WEBFORMS database, 663–664, 685–686

TAF_FORM table, Tell-a-Friend database,
433–434

870 Index

549669 Index.qxd 4/4/03 2:42 PM Page 870

TAF_FRM_BANNED_IP table, Tell-a-
Friend database, 434

TAF_FRM_OWNER_IP table, Tell-a-Friend
database, 434

TAF_MESSAGE table, Tell-a-Friend
database, 434

TAF_MSG_OWNER_IP table, Tell-a-Friend
database, 434

TAF_SUBMISSION table, Tell-a-Friend
database, 434

TAF_SUBSCRIPTION table, Tell-a-Friend
database, 434–435

tail command, 830
takeFormLabels() method, 489
takeMap() method, 531
target lists, e-mail survey system, 474
target URL, e-campaign system, 550–552
tell-a-friend system

AccessControl class, 444–446
activity reports, 470
application configuration files,

446–449
classes, 435–446
database, 431, 433–435
error messages, 449
Form class, 436–441
form elements, 465–468
form management application, 432
form manager application, 452–454
form processor application, 432,

457–458
HTML interface templates, 450
installation, 461–462
introduction message, 464–471
main menu application, 451
Message class, 442–444
message editor, 432
message manager application, 454–456
messages, 449, 464–471
messages adding, 464–465
reporter application, 459–461
reports, 432
score reports, 470

score-card reports, 432
security issues, 471
subscriber application, 458–459
subscription application, 432
taf.conf file, 446–449
taf.errors file, 449
taf.messages file, 449
testing, 462–471

Template object, 58–59
$TEMPLATE_DIR constant, 614
templates

alert messages, 592–594
Apache virtual host e-mail, 618–619
block defining, 9–11
block nesting, 10–11
CPU load monitor e-mail, 604
e-campaign system, 526–527
e-mail survey system, 497–498
external HTML, 4, 5–11
Internet Resource Manager system,

373–374
intranet calendar manager, 348
intranet contact manager, 312–313
intranet document publisher, 267–268
intranet system, 222–223
Login, 136–137
makezone utility, 643–647
online help system, 417–418
presentation layer, 68
tell-a-friend system, 450
user interface, 168
usermngr_forgotten_pwd_email.html,

168
usermngr_forgotten_pwd.html, 168
usermngr_menu.html, 168
usermngr_pwd_change.html, 168
usermngr_pwd_reset.html, 168
usermngr_status.html, 168
usermngr_user_form.html, 168
vote application, 703
Web forms manager, 679

terminate() function, 76
test_dbi.php script, 74–76

Index 871

549669 Index.qxd 4/4/03 2:42 PM Page 871

test_debugger2.php script, 89–90
test_debugger3.php script, 90
testNewSite() function, 636
test_query.php script, 77–80
$thisApp object, 116–117
threads, Apache 2.0 limits, 794
ThreadsPerChild directive, 794
Timeout directive, 793
timeouts, Apache 2.0 directives, 793
todo.txt script, 573–574
toggleDescField() method, 493, 549
touch command, 830
track_errors directive, 820
trackResourceVisit() method, 367
trial software versions, 755
TypesConfig directive, 801

U
UI (user interfaces)

HTML code avoidance, 54–55
HTML combo lists, 55–58
Template object, 58–59

unhtmlentities() method, 229
uniq command, 830–831
Unsubscription Track class, 522
unsubscription tracking application,

e-campaign system, 545–547
unsubUser() method, 547
UPDATE SQL statement, 52–53
updateCampaign() method, 541
updateCategory() method, 274
updateCategoryOrders() method, 253
updateDoc() method, 273
updateDownloadTrack() method, 674
UpdateEcampaignMessage() method,

520
UpdateEcampaignMessageHdr()

method, 520
updateMessage() method, 537
updateMsgTrack() method, 223
updateOrders() method, 272
updateRecentSearchList() method,

410–411
updateUser() method, 190, 198

uploadFile() method, 672
upload_max_filesize directive,

820–821
upload_tmp_dir directive, 821
URL class, 518–519
URL class method, 518–519
URL manager application, e-campaign

system, 532–534
URL Track class, 521–522
URL tracking/redirection application,

e-campaign system, 544–545
UseCanonicalName directive, 796
user access logs, intranet home

application, 242–244
user accounts

adding, 188–189
Apache virtual host, 610
deleting, 170
modifying, 169–170, 189

user add/modify form, central user
management system, 168

user administration application
account modification, 169–170
configuration, 181–183
error messages, 186–187
menu display, 188
messages, 186
methods, 168–170
password encryption, 169
running, 168–169
tasks, 168
testing, 187–189
user account modification, 189
users, adding, 169, 188–189
users, deleting, 170

User() constructor method, 158
User directive, 795
user home application, intranet system,

203
user interface application, e-campaign

system, 528
user interface templates, central user

management system, 168

872 Index

549669 Index.qxd 4/4/03 2:42 PM Page 872

user interfaces (UI)
HTML code avoidance, 54–55
HTML combo lists, 55–58
Template object, 58–59

user management, intranet system, 203
user password application, methods,

190–191
user preference application, intranet

system, 237–238
user preferences, intranet home

application, 242
user table fields, central authentication

database, 147
user tip application, intranet system, 237
UserDir directive, 798–799
userExists() function, 636
user-input risks

automatic input variables, 30–35
external programs running, 26–29
validation code, 35–37

user-level access controls, intranet
document publisher, 248

user_mngr.conf script, 184–185
user_mngr.errors script, 186–187
usermngr_forgotten_pwd.php script,

199–201
user_mngr.messages script, 186
user_mngr.passwd.php script, 191–193
user_mngr.php script, 171–181
usernames

authentication access control method,
24

login application authentication,
132–133

lowercase, 169
setting, 169

USER_REMINDER_DIR constant, 570
users

adding to user administration
application, 169

administrative, 157
central user management system, 157
intranet home page display, 223–224
intranet requirements, 65–67
root, 157

V
validate_any_string() method, 669
validateData() method, 671
validate_email() method, 669
validate_file_size() method, 669
validate_name() method, 668
validate_number() method, 668
validate_number_range() method, 668
validate_org_name() method, 668
validate_size() method, 667
validate_string_size() method, 668
validate_url() method, 669
validation

age, 36
classes, 36
e-mail address, 35
regular expression functions, 36
user input risk reduction method,

35–37
versus cleanup, 35
Web forms manager data, 691
ZIP codes, 35

Validator class, 36
$valueList array, 50
values, adding to database, MySQL, 768
$values array, 49–50
varchar variable, 49
variables

automatic global-request-related,
32–33

banner_printed, 87–88
buffer_str, 87
calendar.conf file, 344–347
central authentication database, 146
char, 49
contact.conf file, 308–311
$DEFAULT_LANGUAGE, 84
ecampaign.conf file, 523–526
global form, 197
help.conf file, 415–416
input, 30–35
irm.conf file, 369–372
ld.conf file, 261–265

continued

Index 873

873

549669 Index.qxd 4/4/03 2:42 PM Page 873

variables continued
Login template, 137
login.conf script, 134–135
naming conventions, 41–43
$params, 49
SESSION_USERNAME, 133
taf.conf file, 447–448
User() method, 158
varchar, 49
vote.conf file, 701–702
webforms.conf file, 674–676
x.conf file, 677–678

version number, returning, 81
vote application

configuration files, 701–703
error messages, 703
HTML templates, 703
installation, 705–706
language poll form, 709
language poll results display, 710
methods, 703–705
multiple votes, 697
poll form, 706–707
poll results display, 708
polling options, 697
results page, 697
single table database, 697
survey/polls, 697
testing, 706–710
Vote class, 699–701
VOTE database, 698
vote.conf file, 701–702
vote.errors file, 703

Vote class, 699–701
Vote() constructor method, 699
VOTE database, vote application, 698
VOTE.mysql script, 698
VOTES table, 698

W
warning page, login application, 137–138
warning.html script, 138
Web forms, intranet document publisher,

247

Web forms manager
ACL class, 665–666
action line editing, 685
application classes, 664–674
configuration files, 674–678
CSV data exporter application,

682–683
data downloading, 692–693
data entry error dialog box, 691
data validation, 691
DataCleanup class, 666–667
DataValidator class, 667–669
e-mail receiving, 687
error messages, 678, 688
files uploading, 687
form data reporting, 661
FormData class, 672–674
FormSubmission class, 669–672
hidden fields, 685
HTML templates, 679
inbound/outbound e-mail handling,

662
installation, 683–685
referred page return automatically, 662
report display, 692
reporter application, 681–682
request forms, 690
request submission, 686
security concerns, 693–694
single application processing, 661
submission manager application,

679–681
submitter e-mail, 687
template-driven interface, 662
testing, 685–693
thank you responses, 687
user redirection, 688
WEBFORMS database, 662–664
webforms.conf file, 674–676
x.conf file, 677–678

Web security
authentication information

shielding, 60
error identification, 61

874 Index

549669 Index.qxd 4/4/03 2:42 PM Page 874

Web server farms, persistent logins,
149–155

Web server-based authentication, PHP
applications, 739–744

Web sites
Apache, 609
Apache 2 configurations, 616
Apache versions, 781–782
APC (Alternative PHP Opcode Cache),

735
commented code, 60
CVS (Concurrent Version System)

information, 62
error reporting levels, 61
error-log function, 61
function information, 36
Google, 83
Internet Geographic Database, 584
jpcache, 727
MySQL, 808, 809
netgeo.php class, 583
PEAR DB information, 71
PHPA (PHP Accelerator), 735
phpSysInfo project, 587
validation classes, 36
Zend tools, 736

WEBFORMS database, tables, 662–664,
685–686

WEBFORMS_DL_TBL table, WEBFORMS
database, 663

WEBFORMS.mysql script, 663–664
weekends, intranet calendar manager, 355
write() function, 89
writeControlFile() function, 604
writeKeywordCacheFile() method, 414
writeLog() function, 582
writeSearchHistory() method, 414
writeZoneFile() function, 654

X
XL_TBL table, WEBFORMS database,

663–664

Z
Zend tools, opcode cache, 736
ZIP codes, validation functions, 35
zone template, makezone utility, 645–646
ZONE_DIR constant, 642
ZONE_TEMPLATE_DIR constant, 642
zoneExists() function, 655
zoneInNamedConf() function, 654

Index 875

549669 Index.qxd 4/4/03 2:42 PM Page 875

549669 Index.qxd 4/4/03 2:42 PM Page 876

549669 Index.qxd 4/4/03 2:42 PM Page 877

549669 Index.qxd 4/4/03 2:42 PM Page 878

549669 Index.qxd 4/4/03 2:42 PM Page 879

549669 Index.qxd 4/4/03 2:42 PM Page 880

Wiley Publishing, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening the soft-
ware packet(s) included with this book “Book”. This is a license agreement “Agreement”
between you and Wiley Publishing, Inc.”WPI”. By opening the accompanying software
packet(s), you acknowledge that you have read and accept the following terms and condi-
tions. If you do not agree and do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software packet(s) to the place you obtained them
for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive
license to use one copy of the enclosed software program(s) (collectively, the
“Software” solely for your own personal or non-commercial purposes on a single
computer (whether a standard computer or a workstation component of a multi-
user network). The Software is in use on a computer when it is loaded into tempo-
rary memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or
other storage device). WPI reserves all rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in
and to the compilation of the Software recorded on the disk(s) or CD-ROM
“Software Media”. Copyright to the individual programs recorded on the Software
Media is owned by the author or other authorized copyright ownerof each program.
Ownership of the Software and all proprietary rights relatingthereto remain with
WPI and its licensers.

3. Restrictions on Use and Transfer.
(a) You may only (i) make one copy of the Software for backup or archival pur-

poses, or (ii) transfer the Software to a single hard disk, provided that you keep
the original for backup or archival purposes. You may not (i) rent or lease the
Software, (ii) copy or reproduce the Software through a LAN or other network
system or through any computer subscriber system or bulletin- board system, or
(iii) modify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You
may transfer the Software and user documentation on a permanent basis, pro-
vided that the transferee agrees to accept the terms and conditions of this
Agreement and you retain no copies. If the Software is an update or has been
updated, any transfer must include the most recent update and all prior
versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in the About the
CD-ROM appendix of this Book. These limitations are also contained in the individ-
ual license agreements recorded on the Software Media. These limitations may
include a requirement that after using the program for a specified period of time,
the user must pay a registration fee or discontinue use. By opening the Software
packet(s), you will be agreeing to abide by the licenses and restrictions for these
individual programs that are detailed in the About the CD-ROM appendix and on
the Software Media. None of the material on this Software Media or listed in this
Book may ever be redistributed, in original or modified form, for commercial
purposes.

36 549669 EULA.qxd 4/4/03 9:28 AM Page 881

5. Limited Warranty.
(a)WPI warrants that the Software and Software Media are free from defects in

materials and workmanship under normal use for a period of sixty (60) days
from the date of purchase of this Book. If WPI receives notification within the
warranty period of defects in materials or workmanship, WPI will replace the
defective Software Media.

(b)WPI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE
CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS
BOOK. WPI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE
SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, andyou may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.
(a) WPI’s entire liability and your exclusive remedy for defects in materials and

workmanship shall be limited to replacement of the Software Media, which may
be returned to WPI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: Secure PHP Development:
Building 50 Practical Applications, Wiley Publishing, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six
weeks for delivery. This Limited Warranty is void if failure of the Software
Media has resulted from accident, abuse, or misapplication. Any replacement
Software Media will be warranted for the remainder of the original warranty
period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever
(including without limitation damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss) arising
from the use of or inability to use the Book or the Software, even if WPI has
been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability
for consequential or incidental damages, the above limitation or exclusion may
not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software
for or on behalf of the United States of America, its agencies and/or instrumentali-
ties “U.S. Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of
the Rights in Technical Data and Computer Software clause of DFARS
252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, and in similar clauses in the
NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and
may not be modified or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement shall take precedence
over any other documents that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any court or tribunal to be
invalid, illegal, or otherwise unenforceable, each and every other provision shall
remain in full force and effect.

36 549669 EULA.qxd 4/4/03 9:28 AM Page 882

36 549669 EULA.qxd 4/4/03 9:28 AM Page 883

36 549669 EULA.qxd 4/4/03 9:28 AM Page 884

TIMELY. PRACTICAL. RELIABLE.

Mohammed J. Kabir

Secure PHP
Development

Wiley Technology Publishing Timely. Practical. Reliable.

Your in-depth guide to designing and developing secure PHP applications

You’ll learn how to:

• Implement the featured applica-
tions in business environments
such as intranets, Internet Web
sites, and system administrations

• Develop e-mail and intranet
solutions using PHP

• Determine the importance of cer-
tain coding practices, coding styles,
and coding security requirements

• Follow the entire process of each
PHP application life cycle from
requirements, design, and develop-
ment to maintenance and tuning.

• Use PHP in groupware, document
management, issue tracking, bug
tracking, and business applications

• Mature as a PHP developer by
using software practices as part
of your design, development, and
software life cycle decisions

• Improve the performance of PHP
applications

Programming and Software Development/Security $50.00 USA/$77.95 CAN/£34.95 UK

It’s a hacker’s dream come true:
over one million Web sites are now
vulnerable to attack through recently
discovered flaws in the PHP scripting
language. So how do you protect your
site? In this book, bestselling author
Mohammed Kabir provides all the
tools you’ll need to close this security
gap. He presents a collection of 50
secure PHP applications that you can
put to use immediately to solve a
variety of practical problems. And he
includes expert tips and techniques
that show you how to write your own
secure and efficient applications for
your organization.

Visit our Web site at www.wiley.com/compbooks/

Secure PH
P D

evelopm
ent

Kabir
ISBN: 0-7645-4966-9

INCLUDES
CD-ROM

MOHAMMED J. KABIR is the
founder and CEO of Evoknow,
Inc., a company specializing in
customer relationship manage-
ment software development. His
previous books include Red Hat®

Security and Optimization, Red

Hat® Linux® 7 Server, Red Hat®

Linux® Administrator’s

Handbook, Red Hat® Linux®

Survival Guide, and Apache 2

Server Bible (all from Wiley).

,!7IA7G4-fejggd!:P;P;k;k;k*85555-BBDACc

Building
50 Practical
Applications

The companion CD-ROM contains:
• 50 ready-to-use PHP applications

• Searchable e-version of the book

• The latest versions of PHP,
Apache, and MySQL™

549669 Cover_rb2.qxp 3/19/03 10:39 AM Page 1

	Secure PHP Development
	Front Matter
	Preface
	Is This Book for You?
	How This Book Is Organized
	Tell Us What You Think

	Acknowledgments
	Contents at a Glance
	Contents

	Part I
	Chapter 1: Features of Practical PHP Applications
	Features of a Practical PHP Application
	Employing the Features in Applications
	Summary

	Chapter 2: Understanding and Avoiding Security Risks
	Identifying the Sources of Risk
	Minimizing User-Input Risks
	Not Revealing Sensitive Information
	Summary

	Chapter 3: PHP Best Practices
	Best Practices for Naming Variables and Functions
	Best Practices for Function/Method
	Best Practices for Database
	Best Practices for User Interface
	Best Practices for Documentation
	Best Practices for Web Security
	Best Practices for Source Configuration Management
	Summary

	Part II
	Chapter 4: Architecture of an Intranet Application
	Understanding Intranet Requirements
	Building an Intranet Application Framework
	Creating a Database Abstraction Class
	Creating an Error Handler Class
	Creating a Built-In Debugger Class
	Creating an Abstract Application Class
	Creating a Sample Application
	Summary

	Chapter 5: Central Authentication System
	How the System Works
	Creating an Authentication Class
	Creating the Central Login Application
	Creating the Central Logout Application
	Creating the Central Authentication Database
	Testing Central Login and Logout
	Making Persistent Logins in Web Server Farms
	Summary

	Chapter 6: Central User Management System
	Identifying the Functionality Requirements
	Creating a User Class
	User Interface Templates
	Creating a User Administration Application
	Creating a User Password Application
	Creating a Forgotten-Password Recovery Application
	Summary

	Chapter 7: Intranet System
	Identifying Functionality Requirements
	Designing the Database
	Designing and Implementing the Intranet Classes
	Setting Up Application Configuration Files
	Setting Up the Application Templates
	Intranet Home Application
	Installing Intranet Applications from the CD- ROM
	Testing the Intranet Home Application
	Summary

	Chapter 8: Intranet Simple Document Publisher
	Identifying the Functionality Requirements
	The Prerequisites
	Designing the Database
	The Intranet Document Application Classes
	Setting up Application Configuration Files
	Setting Up the Application Templates
	The Document Publisher Application
	Installing Intranet Document Application
	Testing Intranet Document Application
	Summary

	Chapter 9: Intranet Contact Manager
	Functionality Requirements
	Understanding Prerequisites
	The Database
	The Intranet Contact Manager Application Classes
	The Application Configuration Files
	The Application Templates
	The Contact Category Manager Application
	The Contact Manager Application
	Installing Intranet Contract Manager
	Testing Contract Manager
	Summary

	Chapter 10: Intranet Calendar Manager
	Identifying Functionality Requirements
	Understanding Prerequisites
	Designing the Database
	The Intranet Calendar Application Event Class
	The Application Configuration Files
	The Application Templates
	The Calendar Manager Application
	The Calendar Event Manager Application
	Installing the Event Calendar on Your Intranet
	Testing the Event Calendar
	Summary

	Chapter 11: Internet Resource Manager
	Functionality Requirements
	Understanding the Prerequisites
	Designing the Database
	Designing and Implementing the Internet Resource Manager Application Classes
	Creating Application Configuration Files
	Creating Application Templates
	Creating a Category Manager Application
	Creating a Resource Manager Application
	Creating a Resource Tracking Application
	Creating a Search Manager Application
	Installing an IRM on Your Intranet
	Testing IRM
	Security Concerns
	Summary

	Chapter 12: Online Help System
	Functionality Requirements
	Understanding the Prerequisites
	Designing and Implementing the Help Application Classes
	Creating Application Configuration Files
	Creating Application Templates
	Creating the Help Indexing Application
	Creating the Help Application
	Installing Help Applications
	Testing the Help System
	Security Considerations
	Summary

	Part III
	Chapter 13: Tell-a-Friend System
	Functionality Requirements
	Understanding Prerequisites
	Designing the Database
	Designing and Implementing the Tell- a- Friend Application Classes
	Creating Application Configuration Files
	Creating Application Templates
	Creating the Tell-a-Friend Main Menu Manager Application
	Creating a Tell-a-Friend Form Manager Application
	Creating a Tell-a-Friend Message Manager Application
	Creating a Tell-a-Friend Form Processor Application
	Creating a Tell-a-Friend Subscriber Application
	Creating a Tell-a-Friend Reporter Application
	Installing a Tell-a-Friend System
	Testing the Tell-a-Friend System
	Security Considerations
	Summary

	Chapter 14: E-mail Survey System
	Functionality Requirements
	Architecture of the Survey System
	Designing the Database
	Designing and Implementing the Survey Classes
	Designing and Implementing the Survey Applications
	Developing Survey Execution Manager
	Setting Up the Central Survey Configuration File
	Setting Up the Interface Template Files
	Testing the Survey System
	Security Considerations
	Summary

	Chapter 15: E-campaign System
	Features of an E-campaign System
	Architecting an E-campaign System
	Designing an E-campaign Database
	Understanding Customer Database Requirements
	Designing E-campaign Classes
	Creating Common Configuration and Resource Files
	Creating Interface Template Files
	Creating an E-campaign User Interface Application
	Creating a List Manager Application
	Creating a URL Manager Application
	Creating a Message Manager Application
	Creating a Campaign Manager Application
	Creating a Campaign Execution Application
	Creating a URL Tracking and Redirection Application
	Creating an Unsubscription Tracking Application
	Creating a Campaign Reporting Application
	Testing the E-Campaign System
	Security Considerations
	Summary

	Part IV
	Chapter 16: Command-Line PHP Utilities
	Working with the Command-Line Interpreter
	Building a Simple Reminder Tool
	Building a Geo Location Finder Tool for IP
	Building a Hard Disk Usage Monitoring Utility
	Building a CPU Load Monitoring Utility
	Summary

	Chapter 17: Apache Virtual Host Maker
	Understanding an Apache Virtual Host
	Defining Configuration Tasks
	Creating a Configuration Script
	Developing makesite
	Installing makesite on Your System
	Testing makesite
	Summary

	Chapter 18: BIND Domain Manager
	Features of makezone
	Creating the Configuration File
	Understanding makezone
	Installing makezone
	Testing makezone
	Summary

	Part V
	Chapter 19: Web Forms Manager
	Functionality Requirements
	Understanding Prerequisites
	Designing the Database
	Designing and Implementing the Web Forms Manager Application Classes
	Creating the Application Configuration Files
	Creating Application Templates
	Creating the Web Forms Submission Manager Application
	Creating the Web Forms Reporter Application
	Creating the CSV Data Exporter Application
	Installing the Web Forms Manager
	Testing the Web Forms Manager
	Security Considerations
	Summary

	Chapter 20: Web Site Tools
	Functionality Requirements
	Understanding Prerequisites
	Designing the Database
	Designing and Implementing the Voting Tool Application Class
	Creating the Application Configuration Files
	Creating the Application Templates
	Creating the Vote Application
	Installing the Voting Tool
	Testing the Voting Tool
	Summary

	Part VI
	Chapter 21: Speeding Up PHP Applications
	Benchmarking Your PHP Application
	Buffering Your PHP Application Output
	Compressing Your PHP Application Output
	Caching Your PHP Applications
	Summary

	Chapter 22: Securing PHP Applications
	Controlling Access to Your PHP Applications
	Securely Uploading Files
	Using Safe Database Access
	Recommended php.ini Settings for a Production Environment
	Limiting File System Access for PHP Scripts
	Running PHP Applications in Safe Mode
	Summary

	Part VII
	Appendix A: What's on the CD-ROM
	System Requirements
	What's on the CD
	Troubleshooting

	Appendix B: PHP Primer
	Object-Oriented PHP

	Appendix C: MySQL Primer
	Using MySQL from the Command- Line
	Using phpMyAdmin to Manage MySQL Database

	Appendix D: Linux Primer
	Installing and Configuring Apache 2.0
	Installing and Configuring MySQL Server
	Installing and Configuring PHP for Apache 2.0
	Common File/Directory Commands
	Index
	Wiley Publishing, Inc. End-User License Agreement

